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Abstract

We introduce a simple propositional calculus for compact Hausdor� spaces. Our ap-

proach is based on de Vries duality. The main new connective of our calculus is that

of strict implication. We de�ne the strict implication calculus SIC as our base calculus.

We show that the corresponding variety SIA of strict implication algebras is a discrimi-

nator and locally �nite variety. We prove that SIC is strongly sound and complete with

respect to the universal subclass RSub of SIA, where the modality � associated with the

strict implication only takes on the values of 0 and 1. We develop Π2-rules for strict

implication algebras, and show that every Π2-rule de�nes an inductive subclass of RSub.
We prove that every derivation system axiomatized by Π2-rules is strongly sound and

complete with respect to the inductive subclass of RSub it de�nes. We introduce the de

Vries calculus DVC and show that it is strongly sound and complete with respect to the

class of compingent algebras, and then use MacNeille completions to prove that DVC is

strongly sound and complete with respect to the class of de Vries algebras. We then utilize

de Vries duality to introduce topological models of our calculus, and conclude that DVC
is strongly sound and complete with respect to the class of compact Hausdor� spaces.

We also develop strongly sound and complete calculi for zero-dimensional and connected

compact Hausdor� spaces, and give a general criterion of admissibility for Π2-rules. We

�nish the paper by comparing our approach to the existing approaches in the literature

that are related to our work.

1 Introduction

Logic, algebra, and topology Extending Stone's seminal representation theorems for
Boolean algebras [31] and distributive lattices [32], categorical dualities linking algebra and
topology have been of fundamental importance in the development of the 20th century math-
ematics in general [23], and of logic and theoretical computer science in particular [20]. With
algebras corresponding to the syntactic, deductive side of logical systems, and topological
spaces to their semantics, Stone-type duality theory provides an elegant and useful mathe-
matical framework for studying various properties of logical systems. In many particular cases,
one sees natural specimens of logics, classes of algebras, and classes of topologies coming to-
gether. Out of a multitude of examples of such triples, we mention: (i) classical logic/Boolean
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algebras/Stone spaces [3]; (ii) intuitionistic logic/Heyting algebras/Esakia spaces [15]; (iii) geo-
metric logic/spatial frames/sober spaces [36]; and (iv) modal logic/modal algebras/topological
Kripke frames [8].

Our aim is to add to the study of these `logic/algebra/topology' triples by providing a
simple logical calculus for reasoning about compact Hausdor� spaces�a widely studied class
of spaces, properly containing the class of Stone spaces. We do this by generalizing the classical
setting of

classical logic/Boolean algebras/Stone spaces.

Namely, we extend the classical propositional language with a new logical connective of strict
implication, which admits a natural topological interpretation; and we design a calculus con-
sisting of �nitely many axioms and rules that is sound and complete with respect to a category
of algebras which is dual to the category KHaus of compact Hausdor� spaces and continuous
maps. The resulting triple is reminiscent of the

modal logic/modal algebras/topological Kripke frames

triple, but has a di�erent slant.
Over the years, a great number of dualities have been established for KHaus. Already the

1940s saw the development of Kakutani-Krein-Yosida duality [26, 27, 38], and of Gelfand-
Naimark-Stone duality [19, 33], which have a distinctive ring-theoretic �avor. Later years saw
the appearance of dualities with a more logical �avor, such as de Vries duality [13] and Isbell
duality [21]. Unfortunately, however, none of the dually equivalent categories in the above-
mentioned examples is �nitary. In fact, there is no properly �nitary dual algebraic category
for KHaus [2].

De Vries algebras, �nitarily Given the unavailability of a �nitary duality for KHaus, and
our goal of �nding a �nitary logical calculus for compact Hausdor� spaces, a natural approach
is to see whether one of the dual algebraic categories can be somehow approximated by a
�nitary logic. In line with our earlier work [7], we will utilize de Vries duality, and work with
the category DeV of de Vries algebras. Objects of this category are complete Boolean algebras
B with a special binary relation ≺ (called by de Vries a compingent relation) satisfying certain
conditions that resemble the de�nition of a proximity on a set [29] (precise de�nitions will be
given in the next section).

In order to design a sound and complete �nitary logical calculus for de Vries algebras, we
need to overcome three obstacles. First of all, de Vries algebras are formally not algebras, due
to the presence of the binary relation ≺. But any binary relation R on a Boolean algebra B can
be equivalently described by means of its characteristic function χR : B × B → {0, 1}. Since
we may identify the values 0 and 1 of this map with the top and bottom element of B itself, we
may actually represent the binary relation ≺ by means of the binary operation  := χ≺ that
we call a strict implication [7, Sec. 3]. Second, the fact that de Vries algebras are complete as
Boolean algebras means that algebraically their signature involves in�nite disjunctions. This
problem can be solved rather easily by simply dropping the completeness condition from the
de�nition; following de Vries himself, we call the resulting structures compingent algebras. As
we will see, de Vries algebras can then be realized as MacNeille completions of compingent
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algebras. Consequently, our �nitary calculus is in fact sound and complete with respect to both
classes of algebras, compingent algebras and de Vries algebras. Third, when designing a sound
and complete logical calculus for compingent algebras, we will see that two of the de�ning
conditions of strict implication are not given by equations or even universal conditions, but
rather, they are expressed by universal-existential statements or Π2-statements. We overcome
this �nal obstacle by �rst considering a wider class of algebras satisfying the universal part of
the axiomatization of compingent algebras, and then adding particular non-standard inference
rules which, as we will show, correspond to Π2-statements. As a result, we obtain a sound
and complete logical calculus for compingent algebras; we then use MacNeille completions to
obtain completeness of the calculus with respect to de Vries algebras; and �nally, we utilize
de Vries duality to yield completeness for compact Hausdor� spaces.

Contribution of this paper The propositional calculus that we design is based on the
extension of the language of classical propositional logic with a single binary connective  
of strict implication, which constitutes the backbone of our approach. For the topological
interpretation of this language, we de�ne a compact Hausdor� model as a pair (X, v) consisting
of a compact Hausdorf space X and a valuation v assigning a regular open subset of X to
each propositional letter, where we recall that U ⊆ X is regular open if Int(Cl(U)) = U .
The Boolean connectives of the language are then interpreted as the corresponding operations
in the (complete) Boolean algebra RO(X) of regular open subsets of X, while the strict
implication  is interpreted as the binary operation  : RO(X) ×RO(X) → RO(X) given
by

U  V =

{
X, Cl(U) ⊆ V
∅, otherwise.

We introduce a �nitary derivation system and prove that it is sound and complete with respect
to the class of compact Hausdor� models. The proof is based on de Vries duality for compact
Hausdor� spaces, and the fact that all but two axioms de�ning a strict implication can easily
be rewritten as formulas, while the remaining two axioms can be rewritten as the so-called
non-standard rules (we call them Π2-rules due to the universal-existential statements they
correspond to). The use of non-standard rules in modal logic is not new. One of the pioneers
of this approach was Gabbay [17], who introduced a non-standard rule for irre�exivity. A
precursor to this work was Burgess [9] who used such rules in the context of branching time
logic. We also refer to [18] for the application of non-standard rules to axiomatize the logic
of the real line in the language with the Since and Until modalities, and to [34] for a general
completeness result for modal languages that are su�ciently expressive to de�ne the so-called
di�erence modality. Our approach is closest to that of Balbiani et al. [1] who use similar non-
standard rules in the context of region-based theories of space (see below for a more detailed
comparison to their work).

We introduce the variety SIA of strict implication algebras and show that it is a discrimi-
nator and locally �nite variety. We mainly work with the class RSub of subdirectly irreducible
strict implication algebras, which turns out to be a universal class. We show that Π2-rules
de�ne subclasses of RSub axiomatized by universal-existential statements, and that every
derivation system axiomatized by Π2-rules is sound and complete with respect to the subclass
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of RSub it de�nes. We also give a criterion of when a Π2-rule is admissible. Finally, we apply
the developed theory of Π2-rules to the derivation system for compingent algebras. We de�ne
the MacNeille completion of a compingent algebra, and show that it is a de Vries algebra.
From this we deduce that the derivation system for compingent algebras is strongly sound
and complete with respect to the class of de Vries algebras. By de Vries duality, this yields
that the derivation system is strongly sound and complete with respect to the class of compact
Hausdor� spaces. We also design �nitary derivation systems that are strongly sound and com-
plete for zero-dimensional and connected de Vries algebras, and hence for zero-dimensional
and connected compact Hausdor� spaces. Finally, we show that the two non-standard rules
used in the derivation system for compingent algebras are admissible.

Related work We next discuss several lines of research that are related to our work. The
connection between compingent relations and strict implications on Boolean algebras was �rst
discussed in [16]. Compingent relations on Boolean algebras generalize naturally to contact
and pre-contact relations [14]. The dual concept of the latter is that of subordination [7].
In turn, pre-contact relations and subordinations are in 1-1 correspondence with quasi-modal
operators of Celani [10]. In a di�erent direction, proximity-like relations on Boolean algebras
have an obvious generalization to lattices and posets [20]. One such relevant concept is that
of proximity lattice (see, e.g., [37, 30, 25]). Jung et al. [24] and Moshier [28] developed the
corresponding sequent calculi. One of the calculi in [28] is designed for compact Hausdor�
spaces, but the approach of [28] and the duality it is based on is rather di�erent from de Vries
duality, and hence from our approach.

As we already pointed out, our approach is most closely related to that of Balbiani et
al. [1], which in many ways inspired the current paper. Balbiani et al. develop two-sorted
logical calculi for region-based theories of space. We instead use a simpler calculus, which
extends the classical propositional calculus with one binary connective of strict implication.
In Section 9 we establish a full and faithful translation from the two-sorted language of [1] to
our language. The simplicity of our language allows the universal algebraic treatment of our
framework, which we undertake in Section 3.

Our approach involving non-standard rules is similar to the one taken in [1]. In the body
of the paper we will indicate which of our results have the same �avor as theirs. Going beyond
[1], we give a general notion of a Π2-rule, connect it to inductive classes of algebras, and
prove a general soundness and completeness result for every derivational system axiomatized
by these rules. We also give a general criterion of admissibility for Π2-rules, show that the
MacNeille completion of a compingent algebra is a de Vries algebra, and use this result to
prove completeness of the corresponding derivational system with respect to de Vries algebras.
Completeness with respect to compact Hausdor� spaces then follows from de Vries duality.

Overview The paper is organized as follows. In the next section we provide some basic
information on compingent algebras, de Vries algebras, and de Vries duality. We also discuss
subordinations and contact relations, and how to represent them by means of strict implica-
tions. In Section 3 we study our base variety SIA of strict implication algebras. In particular,
we prove that it is a discriminator and locally �nite variety. In Section 4 we introduce and
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study the strict implication calculus SIC, which corresponds to the variety of strict implication
algebras. We prove that SIC is strongly sound and complete with respect to SIA, as well as
with respect to the class RSub of subdirectly irreducible strict implication algebras. In Sec-
tion 5 we introduce Π2-rules and show that they correspond to inductive subclasses of RSub.
In Section 6 we use two speci�c Π2-rules to de�ne the de Vries calculus DVC, which is strongly
sound and complete with respect to the class of compingent algebras. Then, using MacNeille
completions, we prove that DVC is also strongly sound and complete with respect to the class
of de Vries algebras. In Section 7 we use de Vries duality to evaluate our language in compact
Hausdor� spaces. This leads to the de�nition of topological semantics for our language; and
the completeness results of the previous section yield strong completeness of our system with
respect to the class of compact Hausdor� spaces. We also design strongly sound and complete
derivation systems for zero-dimensional and connected compact Hausdor� spaces. In Section 8
we give a model-theoretic criterion for admissibility of Π2-rules, using which we prove that the
two Π2-rules of our system are admissible. Finally, in Section 9, we give a detailed comparison
of our work to that of Balbiani et al. [1].

2 Preliminaries

As mentioned in the introduction, the dual category of KHaus that we will be working with
is the category DeV of de Vries algebras and de Vries morphisms. In this short preliminary
section we provide the formal de�nition of the objects of this category, discuss their connection
to compact Hausdor� spaces, and provide a presentation of de Vries proximity relations by
means of strict implications.

De�nition 2.1.

(1) A compingent relation on a Boolean algebra B is a binary relation ≺ satisfying the
following conditions:

(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a;
(S7) a ≺ b implies there is c ∈ B with a ≺ c ≺ b;
(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

(2) A compingent algebra is a pair (B,≺), where B is a Boolean algebra and ≺ is a compin-
gent relation on B.

(3) Compingent relations on complete Boolean algebras are called de Vries proximities, and
de Vries algebras are compingent algebras whose underlying Boolean algebra is complete.

Remark 2.2. In presence of (S6), (S2) and (S3) are interde�nable. If (B,≺) is a de Vries
algebra, then (S8) is equivalent to a =

∨
{b | b ≺ a}.
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For a compact Hausdor� space X, let RO(X) be the complete Boolean algebra of regular
open subsets of X. De�ne ≺ on RO(X) by

U ≺ V i� Cl(U) ⊆ V.

Then (RO(X),≺) is a de Vries algebra. Conversely, suppose (B,≺) is a compingent algebra.
A round �lter of (B,≺) is a �lter F of B satisfying a ∈ F implies ∃b ∈ F with b ≺ a. An end
of (B,≺) is a maximal proper round �lter. Let X be the set of ends of (B,≺). For a ∈ B, let

β(a) = {x ∈ X | a ∈ x}.

Then {β(a) | a ∈ B} generates a compact Hausdor� topology onX. Moreover, ifX is compact
Hausdor�, then X is homeomorphic to the dual of (RO(X),≺); if (B,≺) is a compingent
algebra and X is its dual, then (B,≺) embeds in (RO(X),≺); and (B,≺) is isomorphic to
(RO(X),≺) i� (B,≺) is a de Vries algebra. These correspondences extend to contravariant
functors, which yield a dual equivalence of the categories KHaus and DeV. We refer to [13] for
missing details and proofs.

Axioms (S1)�(S6) of De�nition 2.1 are universal statements, while axioms (S7), (S8) are
universal-existential statements. By deleting them we arrive at the concepts of subordination
and contact relation.

De�nition 2.3.

(1) A subordination on a Boolean algebra B is a binary relation ≺ satisfying (S1)�(S4).

(2) A subordination is re�exive if it satis�es (S5), and it is a contact relation if in addition
it satis�es (S6).

(3) A contact algebra is a pair (B,≺), where B is a Boolean algebra and ≺ is a contact
relation on B.

(4) Let Sub be the class of all pairs (B,≺), where B is a Boolean algebra and ≺ is a
subordination on B; let RSub be the subclass of Sub consisting of the pairs (B,≺), where
≺ is a re�exive subordination on B; and let Con be the subclass of RSub consisting of
contact algebras.

Remark 2.4. Subordinations correspond to the quasi-modal operators of [10] and to the
precontact relations of [14]. Morphisms between objects of Sub were studied in [7].

As was pointed out in [7, Sec. 3], subordinations on B can be described by means of strict
implications.

De�nition 2.5. A strict implication on a Boolean algebra B is a binary operation : B×B →
B with values in {0, 1} satisfying

(I1) 0 a = a 1 = 1;
(I2) (a ∨ b) c = (a c) ∧ (b c);
(I3) a (b ∧ c) = (a b) ∧ (a c).
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If ≺ is a subordination on B, then de�ne  : B ×B → B by

a b =

{
1 if a ≺ b
0 otherwise.

It is easy to see that  is a strict implication on B. Conversely, if  is a strict implication
on B, then de�ne ≺ by setting

a ≺ b i� a b = 1.

It is easy to see that ≺ is a subordination on B, and that this correspondence is 1-1. Moreover,
the axioms (S5)�(S8) correspond, respectively, to the axioms:

(I4) a b ≤ a→ b;
(I5) a b = ¬b ¬a;
(I6) a b = 1 implies ∃c : a c = 1 and c b = 1;
(I7) a 6= 0 implies ∃b 6= 0 : b a = 1.

As we will see in the next section, adding (I4) to (I1)�(I3) is very useful in algebraic as well
as logical calculations. Therefore, as our base variety, we will consider the variety generated
by the algebras (B, ), where B is a Boolean algebra and  is a strict implication on B
satisfying (I4). The corresponding subordinations are re�exive.

3 The variety of strict implication algebras

From now on, when we write (B, ) ∈ RSub, we mean that  is a strict implication on B
satisfying (I4), and hence the corresponding subordination is re�exive. In this section we will
study the variety V generated by RSub. We will prove that V is axiomatized by adding to
(I1)�(I4) the following axioms:

(I8) �(a→ b) ∧ (b c) ≤ a c;
(I9) (a b) ∧�(b→ c) ≤ a c;
(I10) (a b) ≤ c (a b);
(I11) ¬(a b) ≤ c ¬(a b).

But �rst we observe that V is a discriminator variety. Let (B, ) ∈ RSub. For a ∈ B,
de�ne

�a = 1 a.

If a = 1, then 1  a = 1  1 = 1 by (I1). On the other hand, if a 6= 1, then by (I4),
1 a ≤ 1→ a = a 6= 1, so 1 a 6= 1. But 1 a ∈ {0, 1}, so 1 a = 0. Thus,

�a =

{
1 if a = 1
0 if a 6= 1.

In other words, � is the Boolean dual of the so-called unary discriminator term [22]. From
this, and the fact that the class RSub is axiomatized by universal �rst-order formulas, the
following observations are immediate [35, Sec. 8.2.].

Proposition 3.1.
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(1) The variety V is a discriminator variety, and hence a semisimple variety.

(2) The simple algebras in V are exactly the members of RSub.

We already saw that (I1)�(I4) hold in every member of RSub, and hence in every member
of V.

Lemma 3.2. (I8)�(I11) hold in every member of RSub.

Proof. Let (B, ) ∈ RSub and let a, b, c ∈ B. First we show that (I8) holds. Since �(a →
b) ∧ (b  c) ∈ {0, 1}, the only interesting case is when �(a → b) ∧ (b  c) = 1. But then
�(a → b) = 1 and b  c = 1, so a ≤ b and b ≺ c, yielding a ≺ c by (S4). Therefore,
a c = 1, and so (I8) holds.

Second we show that (I9) holds. Again, the only interesting case is when (a b)∧�(b→
c) = 1. But then a ≺ b and b ≤ c, yielding a ≺ c by (S4). Thus, a  c = 1, and hence (I9)
holds.

Third we show that (I10) holds. The only interesting case is when a  b = 1. But then
c (a b) = c 1 = 1 by (I1). Therefore, (I10) holds.

Finally we show that (I11) holds. Again, the only interesting case is when ¬(a b) = 1.
But then c ¬(a b) = 1 by (I1). Thus, (I11) holds.

De�nition 3.3. We call a pair (B, ) a strict implication algebra if B is a Boolean algebra
and  is a binary operation on B satisfying (I1)�(I4) and (I8)�(I11). Let SIA be the variety
of all strict implication algebras.

As we observed, RSub ⊆ SIA, and hence V ⊆ SIA. To prove the converse, we require some
preparation.

Lemma 3.4. Let (B, ) ∈ SIA. Then the following hold for every a, b, c ∈ B:
(1) �(a ∧ b) = �a ∧�b.
(2) a ≤ b implies �a ≤ �b.
(3) �1 = 1.
(4) �a ≤ a.
(5) a b = �(a b).
(6) ��a = �a.
(7) ¬(a b) = �¬(a b).
(8) �¬�a = ¬�a.
(9) �a ≤ c a.

Proof. (1) By (I3), �(a ∧ b) = 1 (a ∧ b) = (1 a) ∧ (1 b) = �a ∧�b.
(2) If a ≤ b, then a = a∧ b. Therefore, by (1), �a = �(a∧ b) = �a∧�b. Thus, �a ≤ �b.
(3) By (I1), �1 = 1 1 = 1.
(4) By (I4), �a = 1 a ≤ 1→ a = a.
(5) It is immediate from (I10) that a  b ≤ �(a  b). That �(a  b) ≤ a  b follows

from (4).
(6) By (5), �a = 1 a = �(1 a) = ��a.
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(7) It is immediate from (I11) that ¬(a b) ≤ �¬(a b). That �¬(a b) ≤ ¬(a b)
follows from (4).

(8) By (7), ¬�a = ¬(1 a) = �¬(1 a) = �¬�a.
(9) By (I1), c 1 = 1, so �(c 1) = 1 by (3). Therefore, by (I8),

�a = 1 ∧�a = �(c 1) ∧ (1 a) ≤ c a.

Remark 3.5. By (5) and (9) of Lemma 3.4, a  b = �(a  b) ≤ c  (a  b). Since the
proof of (9) does not require (I10), we see that a  b = �(a  b) implies (I10). Similarly,
¬(a b) = �¬(a b) implies (I11).

It is well known that congruences of Boolean algebras correspond to �lters, and this
correspondence is obtained as follows. If θ is a congruence on a Boolean algebra B, then
Fθ = {a ∈ B | aθ1} is a �lter of B. If F is a �lter of B, then θF de�ned by aθF b i� a↔ b ∈ F
is a congruence of B. Moreover, θFθ = θ and FθF = F . We next characterize congruences of
strict implication algebras.

Proposition 3.6. For (B, ) ∈ SIA, there is a 1-1 correspondence between

(1) congruences of (B, );
(2) congruences θ of B such that aθb implies (a c)θ(b c) and (c a)θ(c b);
(3) �lters F of B such that a ∈ F implies �a ∈ F ;
(4) �lters F of B such that a→ b ∈ F implies (b c)→ (a c), (c a)→ (c b) ∈
F ;
(5) �lters F of B such that a→ b, b c, c→ d ∈ F imply a d ∈ F .

Proof. (1)⇒(2): This is obvious.
(2)⇒(1): Suppose aθb and cθd. By (2), (a c)θ(b c) and (b c)θ(b d). Therefore,

(a c)θ(b d). Thus, θ is a congruence of (B, ).
(3)⇒(4): Suppose F satis�es (3) and a → b ∈ F . Then �(a → b) ∈ F . By (I8) and (I9),

for any c ∈ B, we have �(a → b) ≤ (b  c) → (a  c) and �(a → b) ≤ (c  a) → (c  b).
Therefore, (b c)→ (a c), (c a)→ (c b) ∈ F , and so F satis�es (4).

(4)⇒(5): Suppose F satis�es (4) and a→ b, b c, c→ d ∈ F . From a→ b ∈ F it follows
that (b  c) → (a  c) ∈ F . Therefore, since b  c ∈ F , we have a  c ∈ F . Also, from
c → d ∈ F it follows that (a  c) → (a  d) ∈ F . This together with a  c ∈ F yields
a d ∈ F . Thus, F satis�es (5).

(5)⇒(3): Suppose F satis�es (5) and a ∈ F . Since 1→ 1 = 1 1 = 1 and 1→ a = a, we
have 1→ 1, 1 1, 1→ a ∈ F . Therefore, by (4), �a = 1 a ∈ F . Thus, F satis�es (3).

(2)⇒(3): Suppose θ is a congruence of (B, ) and a ∈ Fθ. Then aθ1. Therefore, (1  
a)θ(1 1). Thus, �aθ1, and so �a ∈ Fθ.

(4)⇒(2): Suppose F satis�es (4), aθF b, and c ∈ B. Then a → b ∈ F and b → a ∈ F .
Therefore, by (4), (b  c) → (a  c), (c  a) → (c  b) ∈ F and (a  c) → (b  c), (c  
b) → (c  a) ∈ F . Thus, (a  c) ↔ (b  c), (c  a) ↔ (c  b) ∈ F . Consequently,
(a c)θF (b c) and (c a)θF (c b), and hence θF satis�es (2).
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De�nition 3.7. Let (B, ) be a strict implication algebra. We call a �lter F of B a �-�lter
provided F satis�es Proposition 3.6(3); that is, a ∈ F implies �a ∈ F .

By Proposition 3.6, congruences of strict implication algebras correspond to their �-�lters.

Lemma 3.8. Let (B, ) be a strict implication algebra, a ∈ B, and F a �-�lter. Then the
�lter generated by F ∪ {�a} is a �-�lter. In particular, we have that ↑�a and ↑¬�a are
�-�lters.

Proof. Let F ′ be the �lter generated by F ∪ {�a}, and let b ∈ F ′. Then there is c ∈ F such
that c∧�a ≤ b. Lemma 3.4(2) yields �(c∧�a) ≤ �b. Since F is a �-�lter, �c ∈ F . Also, by
Lemma 3.4(6), �a = ��a. Therefore, by Lemma 3.4(1), �(c∧�a) = �c∧��a = �c∧�a ∈
F ′. Thus, �b ∈ F ′, which shows that F ′ is a �-�lter.

In particular, as {1} is a �-�lter, it follows that ↑�a is a �-�lter, and by Lemma 3.4(8),
the same holds for ↑¬�a.

Lemma 3.9. If (B, ) ∈ SIA is subdirectly irreducible, then (B, ) ∈ RSub.

Proof. Let (B, ) ∈ SIA be subdirectly irreducible. Since members of SIA satisfy (I1)�(I4),
it is su�cient to show that for every a, b ∈ B, we have a  b ∈ {0, 1}. By Lemma 3.4(5),
a b = �(a b). Therefore, it su�ces to show that �a ∈ {0, 1} for each a ∈ B.

Let a ∈ B. If �a /∈ {0, 1}, then ¬�a /∈ {0, 1}. By Lemma 3.8, F := ↑�a and G := ↑¬�a
are �-�lters. Moreover, F,G 6= {1}, but if b ∈ F ∩ G, then b ≥ �a,¬�a, so b = 1, and
hence F ∩ G = {1}. Therefore, among the �-�lters di�erent from {1}, there is no least
one. This contradicts to (B, ) being subdirectly irreducible. Thus, �a ∈ {0, 1}, and hence
(B, ) ∈ RSub.

Theorem 3.10. V = SIA.

Proof. We already observed that V ⊆ SIA. Conversely, by Lemma 3.9, every subdirectly
irreducible member of SIA belongs to RSub ⊆ V. Therefore, SIA ⊆ V. Thus, the equality.

Applying Proposition 3.1 yields:

Corollary 3.11. The variety SIA is semisimple, and (B, ) ∈ SIA is simple i� (B, ) ∈
RSub.

We next show that our base variety SIA is locally �nite, and study subvarieties and induc-
tive subclasses of SIA.

Proposition 3.12. The variety SIA is locally �nite.

Proof. Let (B, ) ∈ RSub be n-generated, with generators a1, . . . , an ∈ B. For each a ∈ B,
there is a term t(x1, . . . , xn) such that a = t(a1, . . . , an). Since (B, ) ∈ RSub, for each
b, c ∈ B, we have b  c ∈ {0, 1}. Therefore, by replacing each subterm of t(x1, . . . , xn)
of the form x  y with either 0 or 1, we obtain a Boolean term t′(x1, . . . , xn) such that
a = t′(a1, . . . , an). Thus, B is n-generated as a Boolean algebra, and hence has at most
22n elements. By Corollary 3.11, there is a uniform bound m(n) = 22n on all n-generated
subdirectly irreducible members of SIA. Consequently, by [4, Thm. 3.7(4)], SIA is locally
�nite.
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As an immediate consequence we obtain:

Corollary 3.13. Every subvariety of SIA is generated by its �nite members.

While SIA has many subvarieties, we will be interested in the subvariety VCon obtained by
postulating the identity (I5). Our interest is motivated by the fact that VCon is exactly the
subvariety of SIA generated by the class Con of contact algebras. We further restrict Con to the
class Com of compingent algebras, by postulating (I6) and (I7). But unlike (I5), neither (I6)
nor (I7) is an identity. However, both (I6) and (I7) are Π2-statements (i.e., statements of the
form ∀x∃yΦ(x, y), where x, y are tuples of variables and Φ(x, y) is a quanti�er-free formula).
By the Chang-�o±-Suszko Theorem (see, e.g., [11, Thm. 3.2.3]), the classes corresponding to
Π2-statements are inductive classes, where we recall that a class is inductive provided it is
closed under unions of chains (equivalently, closed under directed limits). While we will be
mainly interested in the inductive class Com, in Section 5 we will show that all inductive
subclasses of RSub can be axiomatized by non-standard rules.

We conclude this section by observing that, unlike subvarieties of SIA, not every inductive
(already universal) subclass of SIA is determined by its �nite algebras. For example, consider
the universal subclass C of SIA obtained by postulating

(I12) a b = 0 or a b = 1.

Clearly C ⊆ RSub. Let (B, ) correspond to the de Vries algebra of regular opens of [0, 1].
Since [0, 1] is a connected space, x x = 1 is refuted on (B, ). However, a �nite (B, ) ∈ C
corresponds to the de Vries algebra of some �nite discrete space, and all such algebras validate
x x = 1. Thus, C is not determined by its �nite algebras.

4 The strict implication calculus

We next present a sound and complete deductive system for SIA. We will work with the
language of classical propositional logic, which we will enrich with one binary connective  
of strict implication. For a formula ϕ, we will abbreviate > ϕ as �ϕ.

A valuation on (B, ) is an assignment of elements of B to propositional letters of our
language L, which extends to all formulas of L in the usual way. We say that a valuation v
on (B, ) satis�es a formula ϕ if v(ϕ) = 1. If all valuations on (B, ) satisfy ϕ, then we say
that (B, ) validates ϕ, and write (B, ) |= ϕ. For a set of formulas Γ, we write (B, ) |= Γ
if (B, ) |= ϕ for every ϕ ∈ Γ.

Suppose U is a class of algebras, ϕ is a formula, and Γ is a set of formulas. We say that ϕ
is a semantic consequence of Γ over U , and write Γ |=U ϕ, provided for all (B, ) ∈ U , from
(B, ) |= Γ it follows that (B, ) |= ϕ.

De�nition 4.1. The strict implication calculus SIC is the derivation system containing all
theorems of classical propositional calculus CPC, the axiom schemes:

(A1) (⊥ ϕ) ∧ (ϕ >)
(A2) (ϕ ψ) ∧ (ϕ χ)↔ (ϕ ψ ∧ χ)
(A3) (ϕ χ) ∧ (ψ  χ)↔ (ϕ ∨ ψ  χ)
(A4) (ϕ ψ)→ (ϕ→ ψ)
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(A8) �(ϕ→ ψ) ∧ (ψ  χ)→ (ϕ χ)
(A9) (ϕ ψ) ∧�(ψ → χ)→ (ϕ χ)
(A10) (ϕ ψ)→ (χ (ϕ ψ))
(A11) ¬(ϕ ψ)→ (χ ¬(ϕ ψ)),

and is closed under the inference rules:

(MP)
ϕ ϕ→ ψ

ψ

(R)
ϕ

�ϕ

Remark 4.2. The numbering of the axioms in De�nition 4.1 matches the numbering of the
axioms for strict implication algebras.

For a set of formulas Γ and a formula ϕ, we write Γ `SIC ϕ if ϕ is derivable in SIC from
Γ. Since each axiom of SIC has an equational counterpart in the axiomatization of SIA, the
standard Lindenbaum construction yields that SIC is strongly sound and complete with respect
to SIA; that is, for a set of formulas Γ and a formula ϕ,

Γ `SIC ϕ i� Γ |=SIA ϕ.

We next show that SIC is in fact strongly sound and complete with respect to RSub. For
this we require the following lemma.

Lemma 4.3. Let (B, ) ∈ SIA.

(1) For a proper �-�lter F in (B, ), the following are equivalent:

(a) F is a maximal �-�lter.
(b) For each a ∈ B, we have �a ∈ F or ¬�a ∈ F .
(c) (B/F, F ) ∈ RSub.

(2) If F is a �-�lter and a /∈ F , then there is a maximal �-�lter M such that F ⊆ M
and a /∈M .

Proof. (1) (a)⇒(b): Suppose �a /∈ F . Let G be the �lter generated by F and �a. By
Lemma 3.8, G is a �-�lter. Since F is a maximal �-�lter, G is improper. Therefore, 0 = �a∧b
for some b ∈ F . Thus, b ≤ ¬�a, and so ¬�a ∈ F .

(b)⇒(c): Let a ∈ B. Then �a ∈ F or ¬�a ∈ F . If �a ∈ F , then �F [a] = [�a] = 1F . On
the other hand, if �a /∈ F , then ¬�a ∈ F , so ¬�F [a] = [¬�a] = 1F , and hence �F [a] = 0F .
Thus, (B/F, F ) ∈ RSub.

(c)⇒(a): Suppose G is a �-�lter properly containing F . Then there is a ∈ G \F . Since G
is a �-�lter and �a ≤ a, we see that �a ∈ G \ F . Therefore, [�a] 6= 1F . Since (B/F, F ) ∈
RSub, we conclude that [�a] = 0F . Thus, [¬�a] = 1F , yielding that ¬�a ∈ F ⊆ G.
Consequently, G is an improper �-�lter, and hence F is a maximal �-�lter.

(2) Since a /∈ F , by Zorn's lemma there is a �-�lter M such that F ⊆ M , a /∈ M , and
M is maximal with this property. If M is not a maximal �-�lter, then by (1), there is b ∈ B
such that �b,¬�b /∈ M . Let G be the �lter generated by M and �b and H be the �lter
generated by M and ¬�b. By Lemma 3.8, both G and H are �-�lters that properly extend
F . Therefore, a ∈ G,H, so there exist c, d ∈M such that a ≥ �b∧ c and a ≥ ¬�b∧ d. Thus,
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a ≥ (�b∨¬�b)∧ (�b∨ d)∧ (c∨¬�b)∧ (c∨ d) ∈M . The obtained contradiction proves that
M is a maximal �-�lter.

Theorem 4.4. The system SIC is strongly sound and complete with respect to RSub; that is,
for a set of formulas Γ and a formula ϕ,

Γ `SIC ϕ ⇔ Γ |=RSub ϕ.

Proof. Since RSub ⊆ SIA and SIC is strongly sound and complete with respect to SIA, from
Γ `SIC ϕ it follows that Γ |=RSub ϕ. Conversely, if Γ 6`SIC ϕ, then in the Lindenbaum
algebra (B, ) of SIC, the �-�lter generated by {[ψ] | ψ ∈ Γ} does not contain [ϕ]. By
Lemma 4.3(2), there is a maximal �-�lter F such that {[ψ] | ψ ∈ Γ} ⊆ F and [ϕ] /∈ F . But
then (B/F, F ) |= Γ and (B/F, F ) 6|= ϕ. By Lemma 4.3(1), (B/F, F ) ∈ RSub. Thus,
Γ 6|=RSub ϕ.

5 Π2-rules

As follows from the previous section, SIC is sound and complete with respect to SIA. Therefore,
normal extensions of SIC correspond to subvarieties of SIA. To work with inductive subclasses
of SIA, we require non-standard rules. Since SIA is generated by RSub (which is a universal
class), it is su�cient to work with inductive subclasses of RSub.

De�nition 5.1 (Π2-rule). A Π2-rule is a rule of the form

(ρ)
F (ϕ, p)→ χ

G(ϕ)→ χ

where F,G are formulas, ϕ is a tuple of formulas, χ is a formula, and p is a tuple of propositional
letters.

The non-standard feature of Π2-rules is that their application is subject to the side condi-
tion that the proposition letters p do not occur in any assumptions.

With the rule ρ, we associate the �rst-order formula

Φρ := ∀x, z
(
G(x) � z → ∃y : F (x, y) � z

)
.

Our purpose will be to show that the system S obtained by adding the Π2-rules {ρi | i ∈ I} to
SIC is strongly sound and complete with respect to the inductive subclass U of RSub de�ned
by the statements {Φρi | i ∈ I}. The proof of the next theorem is similar to that of [1,
Lem. 7.10].

Theorem 5.2. Let S = SIC + {ρi | i ∈ I}, U = RSub + {Φρi | i ∈ I}, and V be the variety
generated by U . For a set of formulas Γ and a formula ϕ, we have:

(1) Γ `S ϕ⇔ Γ |=U ϕ.
(2) `S ϕ⇔|=V ϕ.
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Proof. (1) That Γ `S ϕ ⇒ Γ |=U ϕ can be shown by a fairly straightforward inductive proof
on the length of derivations. We only show that Π2-rules preserve validity. Suppose ρ is a
Π2-rule and v is a valuation into (B, ) ∈ SIA satisfying Φρ. If G(v(ϕ)) � v(χ), then since
(B, ) satis�es Φρ, there is a tuple c̄ in B such that F (v(ϕ), c̄) � v(χ). Consider the valuation
v′ which coincides with v everywhere, except maps p̄ to c̄. Then v′(F (ϕ, p̄)) = F (v(ϕ), c̄) �
v(χ) = v′(χ), so v′(F (ϕ, p̄) → χ) 6= 1. Therefore, if the conclusion of ρ is refuted on (B, ),
then so is the premise of ρ.

To complete the proof of (1), it remains to show that Γ 6`S ϕ ⇒ Γ 6|=U ϕ. We do this by
slightly modifying the construction of the Lindenbaum algebra.

Suppose Γ 6`S ϕ. For each rule ρi, we add a countably in�nite set of fresh propositional
letters to the set of existing propositional letters, build the Lindenbaum algebra (B, ) over
the expanded set of propositional letters, and construct a maximal �-�lter M of (B, ) such
that {[ψ] | ψ ∈ Γ} ∪ {¬�[ϕ]} ⊆M and for every rule ρi and formulas ϕ̄, χ:

(†) if [Gi(ϕ̄)→ χ] 6∈M , then there is a tuple p̄ of variables such that [Fi(ϕ̄, p̄)→ χ] 6∈M.

To construct M , since Γ 6`S ϕ, the �-�lter M0 generated by {[ψ] | ψ ∈ Γ} ∪ {¬�[ϕ]}
is proper. Enumerate all formulas ϕ and all tuples (ϕ̄, χ) of formulas, and build the �lters
M0 ⊆M1 ⊆ · · · ⊆Mn ⊆ . . . as follows:

• For n = ki, if �[ϕn] /∈Mn, let Mn+1 be the �lter generated by Mn and ¬�[ϕn].

• For n = ki+ l (l ≤ i), if [Gl(ϕ̄)→ χ] /∈Mn, let Mn+1 be the �lter generated by Mn and
¬�[Fl(ϕ̄, p̄)→ χ], where p̄ is a tuple of variables for ρl not occurring in ϕ̄, χ, and any of
ψ with [ψ] ∈Mn.

It is easy to see by induction that each Mn is proper. Indeed, if the �lter generated by
Mn and ¬�[ϕn] is improper, then there is [ψ] ∈ Mn such that [ψ] ∧ ¬�[ϕn] = 0. Therefore,
[ψ] ≤ �[ϕn], and so �[ϕn] ∈Mn, a contradiction. On the other hand, if the �lter generated by
Mn and ¬�[Fl(ϕ̄, p̄)→ χ] is improper, then there is [ψ] ∈Mn such that [ψ] ∧ ¬�[Fl(ϕ̄, p̄)→
χ] = 0. Thus, [ψ] ≤ �[Fl(ϕ̄, p̄) → χ] ≤ [Fl(ϕ̄, p̄)] → [χ]. This yields [Fl(ϕ̄, p̄)] ≤ [ψ → χ], so
[Fl(ϕ̄, p̄)]→ [ψ → χ] = 1. Applying ρl gives [Gl(ϕ̄)]→ [ψ → χ] = 1, so [ψ]→ [Gl(ϕ̄)→ χ] =
1, and hence [ψ] ≤ [Gl(ϕ̄)→ χ]. Consequently, [Gl(ϕ̄)→ χ] ∈Mn, a contradiction.

It also follows from Lemma 3.8 that each Mn is a �-�lter. Let M =
⋃
n∈ωMn. Then it

is clear that M is a proper �-�lter. It is a maximal �-�lter by Lemma 4.3(1), and it follows
from the construction that M satis�es (†).

By (†), the quotient of (B, ) by M satis�es each Φρi . By Lemma 4.3(1), the quotient
belongs to RSub. Therefore, the quotient belongs to U . Moreover, since ¬�[ϕ] ∈M , we have
that ¬�[ϕ] maps to 1, so �[ϕ] maps to 0 in the quotient. Thus, [ϕ] does not map to 1 in the
quotient, and hence Γ 6|=U ϕ.

(2) Observe that U consists of the subdirectly irreducible members of V, and apply (1).

It follows that the class of subdirectly irreducible algebras in SIA validating a set of Π2-
rules is an inductive subclass of RSub. We next show that the converse is also true. Namely,
for every inductive subclass K of RSub, there is a set of Π2-rules {ρi | i ∈ I} such that
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S = SIC + {ρi | i ∈ I} is sound and complete with respect to K. To obtain such a set of Π2-
rules, it is su�cient to show that every Π2-statement is equivalent to a statement of the form
Φρ for some Π2-rule ρ. Without loss of generality we may assume that all atomic formulas
Φ(x̄, ȳ) are of the form t(x̄, ȳ) = 1 for some term t.

De�nition 5.3. Given a quanti�er-free �rst-order formula Φ(x, y), we associate with the
tuples of variables x, y the tuples of propositional letters p, q, and de�ne the formula Φ∗(p, q)
in the language of SIC as follows:

(t(x, y) = 1)∗ := 1 t(p, q)

(¬Ψ)∗(x, y) := ¬Ψ∗(p, q)

(Ψ1(x, y) ∧Ψ2(x, y))∗ := Ψ∗1(p, q) ∧Ψ∗2(p, q)

Let (B, ) ∈ RSub. For each term t(x, y), if we evaluate x, p as a and y, q as b, then it
is obvious that (B, ) satis�es t(x, y) = 1 i� (B, ) satis�es 1 t(p, q). Therefore, an easy
induction shows that (B, ) satis�es Φ(x, y) i� (B, ) satis�es Φ∗(p, q).

Lemma 5.4. Let (B, ) ∈ RSub. For any quanti�er-free formula Φ(x, y), we have (B, ) |=
∀x∃yΦ(x, y) i� (B, ) |= ∀x, z

(
1 � z → ∃y : Φ∗(x, y) � z

)
.

Proof. (⇒) Suppose (B, ) |= ∀x∃yΦ(x, y). Let a be a tuple of elements of B and c ∈ B. By
assumption, there exists a tuple b in B such that (B, ) |= Φ(x, y)[a, b]. Therefore, if 1 � c,

then Φ∗(a, b) = 1 � c. Thus, (B, ) |= ∀x, z
(

1 � z → ∃y : Φ∗(x, y) � z
)
.

(⇐) Suppose (B, ) |= ∀x, z
(

1 � z → ∃y : Φ∗(x, y) � z
)
. Let a be a tuple of elements of

B. Since 1 � 0, there exists a tuple b in B such that Φ∗(a, b) � 0. Therefore, since Φ∗(a, b)
evaluates only to 0 or 1, we obtain Φ∗(a, b) = 1. Thus, (B, ) |= Φ(x, y)[a, b]. This shows
that (B, ) |= ∀x∃yΦ(x, y).

Consequently, an arbitrary Π2-statement ∀x∃yΦ(x, y) is equivalent to the Π2-statement
associated to the Π2-rule

(ρΦ)
Φ∗(ϕ̄, p̄)→ χ

χ

Thus, by Theorem 5.2, we obtain:

Theorem 5.5. If T is a Π2-theory of �rst-order logic axiomatizing an inductive subclass K of
RSub, then the system SIC + {ρΦ | Φ ∈ T} is sound and complete with respect to K.

6 Π2-rules for compingent relations

We recall from Section 2 that a binary relation ≺ on a Boolean algebra B is a compingent
relation if it satis�es (S1)�(S8), and that a compingent algebra is a pair (B,≺), where B is a
Boolean algebra and ≺ is a compingent relation on B. In this section we will use our results
of the previous two sections to construct a sound and complete system for the class Com of
compingent algebras.
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Recall that the axioms (A1)�(A4) and (A8)�(A9) de�ning the system SIC correspond to
the equations (I1)�(I4) and (I8)�(I11) de�ning the variety SIA. We will now add an axiom and
two derivation rules that correspond, respectively, to the equation (I5) and the ∀∃-statements
(I6) and (I7).

De�nition 6.1. The de Vries calculus DVC is the extension of SIC with the axiom

(A5) (ϕ ψ)↔ (¬ψ  ¬ϕ)

and the Π2-rules (ρ6) and (ρ7):

(ρ6)
(ϕ p) ∧ (p ψ)→ χ

(ϕ ψ)→ χ

(ρ7)
p ∧ (p ϕ)→ χ

ϕ→ χ

It is obvious that (A5) corresponds to the equation (I5). The Π2-statements corresponding
to the rules (ρ6) and (ρ7) are:

(Φρ6) ∀x1, x2, y
(
x1  x2 � y → ∃z : (x1  z) ∧ (z  x2) � y

)
(Φρ7) ∀x, z

(
x � z → ∃y : y ∧ (y  x) � z

)
These directly correspond to the respective conditions (I6) and (I7), as we will see now.

Lemma 6.2. Let (B, ) ∈ RSub.

(1) (B, ) |= (I6) i� (B, ) |= Φρ6.
(2) (B, ) |= (I7) i� (B, ) |= Φρ7.

Proof. (1) (⇒) Suppose (B, ) |= (I6). Let a, b, d ∈ B be such that a  b � d. Then d 6= 1
and a b 6= 0, so a b = 1. By (I6), there is c ∈ B such that a c = c b = 1. Therefore,
1 = (a c) ∧ (c b) � d. Thus, (B, ) |= Φρ6.

(⇐) Suppose (B, ) |= Φρ6. Let a, b ∈ B be such that a  b = 1. Then a  b � 0. By
Φρ6, there is c ∈ B such that (a c)∧ (c b) � 0. Therefore, since (B, ) ∈ RSub, we have
a c = c b = 1. Thus, (B, ) |= (I6).

(2) (⇒) Suppose (B, ) |= (I7). Let a, c ∈ B be such that a � c. Then a ∧ ¬c 6= 0. By
(I7), there is b 6= 0 such that b (a ∧ ¬c) = 1. By (I3), b (a ∧ ¬c) = (b a) ∧ (b ¬c).
Therefore, b a = 1 and b ¬c = 1. The latter equality, by (I4), yields b ≤ ¬c. Since b 6= 0,
we must have b � c. Thus, we have found b ∈ B such that b ∧ (b  a) = b � c. This shows
that (B, ) |= Φρ7.

(⇐) Suppose (B, ) |= Φρ7. Let a 6= 0 be an element of B. By Φρ7, there is b ∈ B such
that b ∧ (b a) � 0. Therefore, b 6= 0 and b a = 1. Thus, (B, ) |= (I7).

Theorem 6.3. DVC is strongly sound and complete with respect to Com.

Proof. By Theorem 5.2(2), DVC is strongly sound and complete with respect to the inductive
subclass of RSub satisfying (A5), Φρ6, and Φρ7. Since (A5) obviously corresponds to (I5), by
Lemma 6.2, this inductive subclass coincides with Com.
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We recall that a de Vries algebra is a compingent algebra whose underlying Boolean algebra
is complete. To show that DVC is strongly sound and complete with respect to the class of de
Vries algebras, we will work with MacNeille completions of compingent algebras.

We will view a Boolean algebra B as a subalgebra of its MacNeille completion B, so every
element of B is a join and a meet of elements from B. We denote elements of B by a, b, c, . . .
and elements of B by x, y, z, . . .

De�nition 6.4. Let B be a Boolean algebra and ≺ be a binary relation on B. De�ne C on
the MacNeille completion B of B by setting

xC y i� there exist a, b ∈ B such that x ≤ a ≺ b ≤ y.

We call (B,C) the MacNeille completion of (B,≺).

Lemma 6.5. If ≺ is a subordination on a Boolean algebra B, then C is a subordination on
B. Moreover, if ≺ is a compingent relation on B, then C is a compingent relation on B.

Proof. Suppose that ≺ is a subordination on B. We show that C satis�es (S1)�(S4).
(S1) We have 0 ≤ 0 ≺ 0 ≤ 0 and 1 ≤ 1 ≺ 1 ≤ 1, so 0C 0 and 1C 1.
(S2) Suppose x C y, z. Then there are a, a′, b, b′ ∈ B such that x ≤ a ≺ b ≤ y and

x ≤ a′ ≺ b′ ≤ z. By (S2) and (S4) applied to (B,≺), we have x ≤ a ∧ a′ ≺ b ∧ b′ ≤ y ∧ z.
Therefore, xC y ∧ z.

(S3) Suppose x, y C z. Then there are a, a′, b, b′ ∈ B such that x ≤ a ≺ b ≤ z and
y ≤ a′ ≺ b′ ≤ z. By (S3) and (S4) applied to (B,≺), we have x ∨ y ≤ a ∨ a′ ≺ b ∨ b′ ≤ z.
Therefore, x ∨ y C z.

(S4) Suppose x ≤ y C z ≤ u. From y C z it follows that there are a, b ∈ B such that
y ≤ a ≺ b ≤ z. Therefore, x ≤ a ≺ b ≤ u, and so xC u.

Consequently, C is a subordination on B. Next suppose ≺ is a compingent relation on B.
We show that C satis�es (S5)�(S8).

(S5) Suppose xC y. Then there are a, b ∈ B such that x ≤ a ≺ b ≤ y. By (S5) applied to
(B,≺), we have a ≤ b. Therefore, x ≤ y.

(S6) Suppose xC y. Then there are a, b ∈ B such that x ≤ a ≺ b ≤ y. By (S6) applied to
(B,≺), we have ¬y ≤ ¬b ≺ ¬a ≤ ¬x. Therefore, ¬y C ¬x.

(S7) Suppose x C y. Then there are a, b ∈ B such that x ≤ a ≺ b ≤ y. Since a ≺ b, by
(S7) applied to (B,≺), there is c ∈ B such that a ≺ c ≺ b. Therefore, x ≤ a ≺ c ≤ c and
c ≤ c ≺ b ≤ y. Thus, xC cC y.

(S8) Suppose x 6= 0. Then there is a 6= 0 such that a ≤ x. By (S8) applied to (B,≺),
there is b 6= 0 such that b ≺ a. Therefore, b ≤ b ≺ a ≤ x. Thus, we have found b 6= 0 such
that bC x.

This shows that, indeed, C is a compingent relation on B.

Let DeV be the class of all de Vries algebras. We view (B,≺) ∈ DeV as the strong
implication algebra (B, ), where B is a complete Boolean algebra and the subordination
corresponding to  is a compingent relation.
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Theorem 6.6. The system DVC is strongly sound and complete with respect to DeV; that is,
for a set of formulas Γ and a formula ϕ,

Γ `DVC ϕ i� Γ |=DeV ϕ.

Proof. Since DeV ⊆ Com, by Theorem 6.3, Γ `DVC ϕ implies Γ |=DeV ϕ. Conversely, suppose
Γ 6`DVC ϕ. By Theorem 6.3, there is (B, ) ∈ Com satisfying Γ and refuting ϕ. Let ≺ be the
corresponding compingent relation. By Lemma 6.5, C is a compingent relation on B. Let  ′

be the strict implication corresponding to C. Since B is a subalgebra of B and C extends ≺,
we see that (B, ) is a subalgebra of (B, ′). Therefore, (B, ′) satis�es Γ and refutes ϕ.
Thus, Γ |=DeV ϕ.

7 Topological completeness

In this section we show how our results from the previous sections directly imply completeness
results for the topological interpretation of our language.

We recall that the de Vries algebra of a compact Hausdor� spaceX is the pair (RO(X),≺),
where RO(X) is the complete Boolean algebra of regular open subsets of X and U ≺ V i�
Cl(U) ⊆ V . By de Vries duality [13], every de Vries algebra is isomorphic to the de Vries
algebra of some compact Hausdor� space. This allows us to de�ne topological semantics for
our language.

De�nition 7.1. A compact Hausdor� model is a pair (X, v), where X is a compact Hausdor�
space and v is a valuation assigning a regular open set to each propositional letter.

If  is the strict implication corresponding to ≺, then the formulas of our language are
interpreted in (RO(X), ) ∈ DeV. Since each (B, ) ∈ DeV is isomorphic to (RO(X), )
for some compact Hausdor� space X, as an immediate consequence of Theorem 6.6, we obtain
the following result.

Theorem 7.2. The system DVC is strongly sound and complete with respect to compact Haus-
dor� models.

In the completeness proof of DVC with respect to de Vries algebras, we have used the fact
that being a compingent relation is preserved by the MacNeille completion. Since every de
Vries algebra is isomorphic to the de Vries algebra of a compact Hausdor� space, a �rst-order
statement in the language of Boolean algebras with a binary relation, when satis�ed by a de
Vries algebra, can be regarded as expressing a property which is satis�ed by the regular open
subsets of a compact Hausdor� space. This fact can be used to obtain deductive systems
that are strongly sound and complete with respect to some interesting subclasses of the class
KHaus of compact Hausdor� spaces.

More precisely, suppose ρ1, . . . , ρk are Π2-rules such that their corresponding �rst-order
statements Φρ1 , . . . ,Φρk are preserved by MacNeille completions. Then the system DVC +
ρ1 + · · · + ρk is strongly sound and complete with respect to the compact Hausdor� spaces
satisfying the property Φρ1 ∧ · · · ∧Φρk . By the results of the previous sections, this system is
strongly sound and complete with respect to the algebras in RSub which satisfy Φρ1∧· · ·∧Φρk .
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Therefore, DVC+ρ1 + · · ·+ρk is strongly sound and complete with respect to de Vries algebras
satisfying Φρ1 ∧ · · · ∧ Φρk . By de Vries duality, this can be seen as a completeness result
with respect to compact Hausdor� spaces which satisfy the topological property expressed by
Φρ1 ∧ · · · ∧ Φρk . The same applies not only to Π2-rules, but also to formulas. Therefore, we
have:

Proposition 7.3. Suppose the formulas ϕ1, . . . , ϕn and the Π2-rules ρ1, . . . , ρk are preserved
by MacNeille completions. Then the system

DVC + ϕ1 + · · ·+ ϕn + ρ1 + · · ·+ ρk

is strongly sound and complete with respect to the subclass of KHaus satisfying the conditions
ϕ1, . . . , ϕn and Φρ1 , . . . ,Φρk .

In the remainder of this section, we will construct deductive systems for, respectively,
zero-dimensional and connected compact Hausdor� spaces.

Starting with zero-dimensionality, we consider the following property, studied in [5, 6]:

(S9) a ≺ b implies ∃c : c ≺ c and a ≺ c ≺ b.

Also consider the Π2-rule

(ρ9)
(p p) ∧ (ϕ p) ∧ (p ψ)→ χ

(ϕ ψ)→ χ

and the corresponding ∀∃-statement

(Φρ9) ∀x, y, z
(
x y � z → ∃u : (u u) ∧ (x u) ∧ (u y) � z

)
.

Lemma 7.4. Let (B, ) ∈ Com. Then (B, ) |= (S9) i� (B, ) |= Φρ9.

Proof. (⇒) Suppose a b � d. Then d 6= 1 and a b 6= 0, so a b = 1. Therefore, a ≺ b,
and so by (S9), there is c such that c ≺ c and a ≺ c ≺ b. Thus, (c c)∧ (a c)∧ (c b) =
1 � d. Consequently, (B, ) |= Φρ9.

(⇐) Suppose a ≺ b. Then a  b = 1 � 0. Therefore, by Φρ9, there is c such that
(c c) ∧ (a c) ∧ (c b) � 0, which implies (c c) ∧ (a c) ∧ (c b) = 1. Thus, c ≺ c
and a ≺ c ≺ b. Consequently, (B, ) |= (S9).

It follows that DVC + (ρ9) is strongly sound and complete with respect to the class of
compingent algebras satisfying (S9).

Lemma 7.5. The property (S9) is preserved by MacNeille completions.

Proof. Let (B,≺) be a compingent algebra satisfying (S9), and let (B,C) be its MacNeille
completion. Suppose x C y in B. Then there are a, b ∈ B such that x ≤ a ≺ b ≤ y. By (S9)
for ≺, there is c ∈ B such that c ≺ c and a ≺ c ≺ b. By (S4), xC cC y. Thus, (B,C) satis�es
(S9).

Consequently, DVC+(ρ9) is strongly sound and complete with respect to de Vries algebras
satisfying (S9). It is proved in [5, Sec. 4] that a de Vries algebra satis�es (S9) i� its dual
compact Hausdor� space is zero-dimensional. Thus, we arrive at the following.
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Theorem 7.6. The system DVC + (ρ9) is strongly sound and complete with respect to the
class of zero-dimensional compact Hausdor� spaces.

Turning to the connectedness, we now consider the following property:

(S10) a ≺ a implies a = 0 or a = 1.

Clearly (B, ) ∈ Com satis�es (S10) i� (a  a) → (1  a) ∨ (1  ¬a) is satis�ed in
(B, ). Therefore, (B, ) satis�es (S10) i� (B, ) |= (C), where (C) is the formula

(C) (ϕ ϕ)→ (> ϕ) ∨ (> ¬ϕ).

Consequently, DVC + (C) is strongly sound and complete with respect to the class of
compingent algebras satisfying (S10).

Lemma 7.7. The property (S10) is preserved by MacNeille completions.

Proof. Let (B,≺) be a compingent algebra satisfying (S10), and let (B,C) be its MacNeille
completion. Suppose x C x in B. Then it follows from the de�nition of C that x ∈ B.
Therefore, (S10) for ≺ yields that x = 0 or x = 1.

It follows that DVC + (C) is strongly sound and complete with respect to the class of de
Vries algebras satisfying (S10).

Lemma 7.8. A de Vries algebra (B,≺) satis�es (S10) i� its dual space X is connected.

Proof. Suppose U is a clopen subset of X. Then U ≺ U in RO(X). Since (RO(X),≺) is
isomorphic to (B,≺) and (B,≺) satis�es (S10), we see that U = ∅ or U = X. Thus, X
is connected. Conversely, if X is connected, then ∅, X are the only clopen subsets of X.
Therefore, for U ∈ RO(X), we have U ≺ U implies U = ∅ or U = X. Thus, (RO(X),≺)
satis�es (S10). Since (RO(X),≺) is isomorphic to (B,≺), we conclude that (B,≺) satis�es
(S10).

As a result, we arrive at the following:

Theorem 7.9. The system DVC+(C) is strongly sound and complete with respect to the class
of connected compact Hausdor� spaces.

8 Admissibility of Π2-rules

In this section we show that (ρ6) and (ρ7) are admissible in SIC + (A5). To prove this, we
develop a semantic criterion for establishing when a given Π2-rule is admissible in SIC.

De�nition 8.1. A rule ρ is admissible in a system S if for each formula ϕ, from `S+ρ ϕ it
follows that `S ϕ.

Lemma 8.2. A Π2-rule

(ρ)
F (ϕ, p)→ χ

G(ϕ)→ χ

is admissible in SIC i� for any set of formulas Γ and any tuple ϕ, χ of formulas, if Γ `SIC
F (ϕ, p)→ χ and p does not appear in Γ, ϕ, χ, then Γ `SIC G(ϕ)→ χ.
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Proof. (⇒) Suppose Γ `SIC F (ϕ, p) → χ and p does not appear in Γ, ϕ, χ. Then there is a
�nite Γ0 ⊆ Γ such that Γ0 `SIC F (ϕ, p) → χ. Let ψ =

∧
Γ0, so {ψ} `SIC F (ϕ, p) → χ. By

Theorem 4.4, {ψ} |=RSub F (ϕ, p) → χ. We show that |=RSub �ψ → (F (ϕ, p) → χ). Suppose
(B, ) ∈ RSub and v is a valuation on (B, ) such that v(�ψ) = 1. Then v(ψ) = 1, so
v(F (ϕ, p)→ χ) = 1. Therefore, applying Theorem 4.4 again yields `SIC �ψ → (F (ϕ, p)→ χ),
so `SIC F (ϕ, p) → (�ψ → χ). Since p does not appear in ϕ,�ψ → χ, by admissibility of ρ,
we have `SIC G(ϕ) → (�ψ → χ). Therefore, |=RSub G(ϕ) → (�ψ → χ), so |=RSub �ψ →
(G(ϕ) → χ), and hence the same argument as above yields {ψ} |=RSub G(ϕ) → χ. Thus,
{ψ} `SIC G(ϕ)→ χ, and so Γ `SIC G(ϕ)→ χ.

(⇐) Suppose `SIC+ρ ψ. Let ψ1, . . . , ψn be a proof of ψ in SIC + ρ. We show by induction
on i = 1, . . . , n that `SIC ψi, and hence `SIC ψ. If i = 1, then ψ1 is an instance of an axiom
of SIC, so `SIC ψ1. Suppose i > 1. If ψi is an instance of an axiom of SIC or is obtained by
(MP) or (R) from ψj , ψk with j, k < i, then it is obvious that `SIC ψi. Let ψi = G(ϕ)→ χ be
obtained by ρ from ψj = F (ϕ, p) → χ with j < i and p not appearing in ϕ, χ. By inductive
hypothesis, `SIC F (ϕ, p)→ χ. By assumption, `SIC G(ϕ)→ χ. Thus, `SIC ψ.

Theorem 8.3 (Admissibility Criterion). A Π2-rule ρ is admissible in SIC i� for each (B, ) ∈
RSub there is (C, ) ∈ RSub such that (B, ) is a substructure of (C, ) and (C, ) |= Φρ.

Proof. (⇒) Let (B, ) ∈ RSub and let (B0, ) be a countable elementary substructure of
(B, ). Consider the set {pa | a ∈ B0} of propositional letters and let

U = {Φ∗(pa) | (B0, ) |= Φ[a/x]},

where Φ(x) is quanti�er-free and Φ∗ is de�ned as in De�nition 5.3.
Since (B0, ) |= U , by Theorem 4.4, U is consistent in SIC. Therefore, as ρ is admissible

in SIC, U is also consistent in SIC+ ρ. Thus, as in the proof of Theorem 5.2, we can construct
(D, ) ∈ RSub and a valuation v on (D, ) such that (D, ) |= Φρ and v satis�es all formulas
in U . Sending a to v(pa) is then an embedding of (B0, ) into (D, ).

Claim. There is (C, ) ∈ RSub such that (D, ) is an elementary substructure of (C, ) and
(B, ) is a substructure of (C, ).

Proof of claim. Let Th(RSub) be the �rst-order theory of RSub, and consider the �rst-order
theory

T = Th(RSub) ∪ {Φ(x) | (D, ) |= Φ(x)} ∪ {Ψ(x) | (B, ) |= Ψ(x)},

where Φ(x) is a �rst-order formula and Ψ(x) is quanti�er-free. Suppose for contradiction that
T is inconsistent. Then by compactness there exist a ∈ B0, b ∈ B \ B0, c ∈ D, a �rst-order
formula Φ(x, z), and a quanti�er-free formula Ψ(x, y) such that

(D, ) |= Φ(a, c), (1)

(B, ) |= Ψ(a, b), (2)

Th(RSub) |= Φ(a, c)→ ¬Ψ(a, b). (3)

Since the constants a, b, c do not occur among the formulas of Th(RSub), by (3), Th(RSub) |=
∃zΦ(a, z) → ∀y¬Ψ(a, y). Because (D, ) is a model of Th(RSub), (1) yields (D, ) |=
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∀y¬Ψ(a, y). Therefore, as ∀y¬Ψ(a, y) is a universal statement and (B0, ) is a substructure
of (D, ), we obtain (B0, ) |= ∀y¬Ψ(a, y). On the other hand, by (2), (B, ) |= ∃yΨ(a, y).
Since (B0, ) is an elementary substructure of (B, ), we have (B0, ) |= ∃yΨ(a, y), and
so we have arrived at the desired contradiction. In other words, we have proved that T is
consistent. But then T must have a model (C, ), which is easily seen to satisfy the conditions
mentioned in the Claim.

From the Claim it is immediate that (B, ) is a substructure of (C, ) and (C, ) |= Φρ.

(⇐) Suppose `SIC F (ϕ, p) → χ with p not occurring in ϕ, χ. Let (B, ) ∈ RSub and
let v be a valuation on (B, ). By assumption, there is (C, ) ∈ RSub such that (B, )
is a substructure of (C, ) and (C, ) |= Φρ. Let i : B ↪→ C be the inclusion. Then
v′ := i ◦ v is a valuation on (C, ). For any c ∈ C, let v′′ be the valuation (v′)cp. Since
`SIC F (ϕ, p) → χ, we have v′′(F (ϕ, p) → χ) = 1C . This means that for all c ∈ C, we have

F (v′(ϕ), c) ≤ v′(χ). Therefore, (C, ) |= ∀y
(
F (v′(ϕ), y) ≤ v′(χ)

)
. Since (C, ) |= Φρ, we

have (C, ) |= G(v′(ϕ)) ≤ v′(χ). Thus, as G(v′(ϕ)) ≤ v′(χ) in C, we have G(v(ϕ)) ≤ v(χ)
in B. Consequently, v(G(ϕ) → χ) = 1B. This shows that `SIC G(ϕ) → χ, and hence, by
Lemma 8.2, ρ is admissible in SIC.

Remark 8.4. Lemma 8.2 and Theorem 8.3 hold also if we replace SIC with SIC+(A5) and
RSub with Con.

Next we will utilize Theorem 8.3 to prove that both rules (ρ6) and (ρ7) are admissible in
SIC+(A5). For the proof of the following simple lemma consult [14, 7].

Lemma 8.5. Let R be a binary relation on a set X. De�ne ≺R on P(X) by U ≺R V i�
R[U ] ⊆ V .

(1) ≺R is a subordination on P(X).
(2) R is re�exive i� (P(X),≺R) satis�es (S5).
(3) R is symmetric i� (P(X),≺R) satis�es (S6).
(4) R is transitive i� (P(X),≺R) satis�es (S7).

We use Lemma 8.5 to show an analogue of [1, Lem. 2.5] in our setting. We recall [7,
Sec. 2.1] that if (B,≺) ∈ Sub, then the dual of (B,≺) is the pair (X,R), where X is the Stone

space of B and R is given by xRy i� �x ⊆ y; here �S = {a ∈ B | ∃b ∈ S with b ≺ a} for S ⊆ B.
Moreover, R is re�exive i� (B,≺) satis�es (S5), R is symmetric i� (B,≺) satis�es (S6), and R
is transitive i� (B,≺) satis�es (S7). Furthermore, if Clop(X) is the Boolean algebra of clopens
of X, then (B,≺) is isomorphic to (Clop(X),≺R), where U ≺R V i� R[U ] ⊆ V .

Lemma 8.6. Every (B,≺) ∈ Con can be embedded into (C,≺) ∈ Con satisfying (S7).

Proof. Suppose (X,R) is the dual of (B,≺). Then R is re�exive and symmetric. Let Y =
{{x, y} ⊆ X | xRy} and let

X ′ = {(x, α) ∈ X × Y | x ∈ α}.

De�ne R′ on X ′ by
(x, α)R′(y, β)⇔ α = β.
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Clearly R′ is an equivalence relation on X ′ and f : X ′ → X given by f(x, α) = x is onto.
Therefore, f−1 : Clop(X)→ P(X ′) is a Boolean embedding. Since R is re�exive and symmet-
ric, it follows from the de�nition of R′ that (x, α)R′(y, β) implies xRy.

Claim. For U, V ∈ Clop(X), we have U ≺R V i� f−1(U) ≺R′ f−1(V ).

Proof of claim. Since (x, α)R′(y, β) implies f(x, α)Rf(y, β), we see that U ≺R V implies
f−1(U) ≺R′ f−1(V ). For the converse, suppose U 6≺R V . Then R[U ] * V . Therefore, there
are x ∈ U and y /∈ V such that xRy. Let α = {x, y}. Then (x, α)R′(y, α), (x, α) ∈ f−1(U),
and (y, α) /∈ f−1(V ). Thus, R′[f−1(U)] * f−1(V ), and hence f−1(U) 6≺R′ f−1(V ).

Let (C,≺) = (P(X ′),≺R′). By Lemma 8.5, (C,≺) satis�es (S1)�(S7), and by the Claim,
f−1 is an embedding of (B,≺) into (C,≺).

Theorem 8.7. (ρ6) is admissible in SIC + (A5).

Proof. Apply Theorem 8.3 and Lemmas 6.2(1) and 8.6.

Lemma 8.8. Suppose (B,≺) ∈ RSub. Let B′ = B ×B and de�ne ≺′ on B′ by

(a, b) ≺′ (c, d)⇔ a ≺ c and b ≤ d.

Then (B′,≺′) ∈ RSub. Moreover, if (B,≺) ∈ Con, then (B′,≺′) ∈ Con.

Proof. It is su�cient to show that (B′,≺′) satis�es (S1)�(S6).
(S1) Since 0 ≺ 0 and 1 ≺ 1, it is obvious that (0, 0) ≺′ (0, 0) and (1, 1) ≺′ (1, 1).
(S2) Suppose (a, b) ≺ (c, d), (c′, d′). Then a ≺ c, c′ and b ≤ d, d′. Therefore, a ≺ c ∧ c′ and

b ≤ d ∧ d′. Thus, (a, b) ≺′ (c, c′) ∧ (d, d′).
(S3) Suppose (a, b), (a′, b′) ≺′ (c, d). Then a, a′ ≺ c and b, b′ ≤ d. Therefore, a∨a′ ≺ c and

b ∨ b′ ≤ d. Thus, (a ∨ a′, b ∨ b′) ≺′ (c, d).
(S4) Suppose (a, b) ≤ (a′, b′) ≺ (c′, d′) ≤ (c, d). Then a ≤ a′ ≺ c′ ≤ c and b ≤ b′ ≤ d′ ≤ d.

Thus, a ≺ c and b ≤ d, and so (a, b) ≺′ (c, d).
(S5) Suppose (a, b) ≺′ (c, d). Then a ≺ c and b ≤ d. From a ≺ c it follows that a ≤ c.

Thus, (a, b) ≤ (c, d).
(S6) Suppose (a, b) ≺′ (c, d). Then a ≺ c and b ≤ d. Therefore, ¬c ≺ ¬a and ¬d ≤ ¬b.

Thus, ¬(c, d) ≺′ ¬(a, b).

Lemma 8.9. Every (B,≺) ∈ RSub can be embedded into (C,≺) ∈ RSub satisfying (S8).

Proof. Starting from (B,≺), we inductively build a chain

(B,≺) ↪→ (B1,≺) ↪→ (B2,≺) ↪→ (B3,≺) ↪→ · · ·

in RSub such that the union (C,≺) :=
⋃
n∈ω(Bn,≺) satis�es (S8).

If (Bn,≺) is already de�ned, de�ne (Bn+1,≺) := (Bn,≺) × (Bn,≤). By Lemma 8.8,
(Bn+1,≺) ∈ RSub. Moreover, a 7→ (a, a) is an embedding of (Bn,≺) into (Bn+1,≺). We
prove that (C,≺) satis�es (S8).

Let 0 6= a ∈ C. Then there is n such that a ∈ Bn. Therefore, (a, a) ∈ Bn+1. Let
b := (0, a) ∈ Bn+1. We have b 6= 0 and b ≺ (a, a). Thus, (B,≺) satis�es (S8).
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Theorem 8.10. (ρ7) is admissible in SIC.

Proof. Apply Theorem 8.3 and Lemmas 6.2(2) and 8.9.

Remark 8.11. By Theorems 8.7 and 8.10, the logic of DVC (the set of formulas derivable in
DVC) is equal to SIC + (A5). This means that the logic of compingent algebras is the same
as the logic of contact algebras. On the other hand, the Π2-theories (the sets of derivable Π2-
rules) of DVC and SIC+(A5) are obviously di�erent�the Π2-rules (ρ6) and (ρ7) are derivable
in the former but not in the latter. These two rules capture the very essence of the theory
of compact Haudor� spaces in our language. This generates an interesting methodological
question of what the right logical formalism should be to reason about compact Haudro�
spaces. Should we be concerned only with the logics or should we also consider the theories of
Π2-rules? Although in this paper we are only concerned with logics, the results in this section
suggest that a theory of Π2-rules may be a more appropriate framework to reason about
compact Hausdor� spaces. We leave it as a future work to develop the Π2-theory for compact
Hausdor� spaces together with the general theory of such calculi. The connection of Π2-rules
and inductive classes developed in Section 5 should play a key role in these investigations.

9 Comparison with relevant work

In this �nal section we compare our approach to that of Balbiani et al. [1]. Namely, we show
how to translate fully and faithfully the language L(C,≤) of [1] into our language.

We recall that the formulas of the language L(C,≤) are built from atomic formulas using
Boolean connectives ¬,∧,∨,→,⊥,>; atomic formulas are of the form tCs and t ≤ s, where
t, s are Boolean terms (C stands for the contact relation and ≤ for the inclusion relation). In
turn, Boolean terms are built from Boolean variables using Boolean operations u,t, (−)∗, 0, 1.

As usual, a Kripke frame is a pair (W,R), where W is a nonempty set and R is a binary
relation on W , and a valuation is a map v from the set of Boolean variables to the powerset
P(W ). It extends to the set of all Boolean terms as follows:

v(t u s) = v(t) ∩ v(s),

v(t t s) = v(t) ∪ v(s),

v(t∗) = W \ v(t),

v(0) = ∅,
v(1) = W.

A Kripke model is a triple (W,R, v) consisting of a Kripke frame (W,R) and a valuation v.
Atomic formulas are interpreted in (W,R, v) as follows:

(W,R, v) |= (t ≤ s) ⇔ v(t) ⊆ v(s),

(W,R, v) |= (tCs) ⇔ R[v(t)] ∩ v(s) 6= ∅.

Complex formulas are then interpreted by the induction clauses for propositional connectives.
In [1, Sec. 6] the authors de�ne the propositional calculus PWRCC in the language L(C,≤)

and prove that PWRCC is sound and complete with respect to the class of Kripke frames where
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the binary relation R is re�exive and symmetric. Such Kripke frames are closely related to
contact algebras. Namely, as we already pointed out in Section 8, the following lemma holds.

Lemma 9.1.

1. Suppose (W,R) is a re�exive and symmetric Kripke frame. De�ne ≺R on P(W ) by
U ≺R V i� R[U ] ⊆ V . Then (P(W ),≺R) is a contact algebra.

2. Suppose (B,≺) is a contact algebra and (X,R) is the dual of (B,≺). Then (X,R) is
a re�exive and symmetric Kripke frame, and the Stone map β : B → P(X), given by
β(a) = {x ∈ X | a ∈ x}, is an embedding of (B, ) into (P(X), R).

We next translate L(C,≤) into our language L. We identify the set of Boolean variables
of L(C,≤) with the set of proposition letters of L. Then Boolean terms can be translated into
formulas of L as follows:

aT = a, for a Boolean variable a,

(t u s)T = tT ∧ sT ,
(t t s)T = tT ∨ sT ,

(t∗)T = ¬(tT ),

0T = ⊥,
1T = >.

For atomic formulas, we de�ne:

(t ≤ s)T = �(tT → sT ),

(tCs)T = ¬(tT  ¬sT ).

Finally, complex formulas are translated inductively as follows:

(¬ϕ)T = ¬ϕT ,
(ϕ ∧ ψ)T = ϕT ∧ ψT ,
(ϕ ∨ ψ)T = ϕT ∨ ψT ,

(ϕ→ ψ)T = ϕT → ψT ,

⊥T = ⊥,
>T = >.

Theorem 9.2. For any formula ϕ of L(C,≤), we have

PWRCC ` ϕ i� DVC ` ϕT .
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Proof. By [1, Cor. 6.1], PWRCC is sound and complete with respect to the class of re�exive
and symmetric Kripke frames (W,R); and by Theorem 6.3 and Remark 8.11, DVC is sound
and complete with respect to the class of contact algebras. Given a Kripke model (W,R, v),
the valuation v of Boolean variables of L(C,≤) into P(W ) can be seen as a valuation of
propositional letters of L into the algebra (P(W ), R).

Claim 9.3. (W,R, v) |= ϕ i� (P(W ), R, v) |= ϕT .

Proof of Claim. For a Boolean term t, we have v(t) = v(tT ) ⊆ W . If ϕ is an atomic formula
of the form t ≤ s, then

(W,R, v) |= ϕ i� v(t) ⊆ v(s)

i� v(tT ) ≤ v(sT ) in P(W )

i� (P(W ), R, v) |= tT → sT

i� (P(W ), R, v) |= �(tT → sT )

i� (P(W ), R, v) |= ϕT .

If ϕ is an atomic formula of the form tCs, then

(W,R, v) |= ϕ i� R[v(t)] ∩ v(s) 6= ∅
i� R[v(t)] *W \ v(s)

i� R[v(tT )] * v(¬sT )

i� (P(W ), R, v) |= ¬(tT  ¬sT )

i� (P(W ), R, v) |= ϕT .

Finally, if ϕ is a complex formula, then a straightforward induction completes the proof.

Now, if PWRCC 6` ϕ, then there is a re�exive and symmetric Kripke model (W,R, v)
refuting ϕ. By Claim 9.3, ϕT is refuted in (P(W ), R, v). Therefore, DVC 6` ϕT . Conversely,
if DVC 6` ϕT , then there is a contact algebra (B,≺) and a valuation v on (B,≺) refuting ϕT .
By Lemma 9.1(2), ϕT is refuted in (P(X), R, v). By Claim 9.3, ϕ is refuted in (X,R, v).
Therefore, PWRCC 6` ϕ.
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