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Abstract.
This paper contributes to the theory of hybrid substructural logics, i.e. weak logics given by

a Gentzen-style proof theory in which there is only a limited possibility to use structural rules.
Following the literature, we use an operator to mark formulas to which the extra structural rules
may be applied. New in our approach is that we do not see this ∇ as a modality, but rather as the
meet of the marked formula with a special type Q. In this way we can make the specific structural
behaviour of marked formulas more explicit.

The main motivation for our approach is that we can provide a nice, intuitive semantics for
hybrid substructural logics. Soundness and completeness for this semantics are proved; besides
this we consider some proof-theoretical aspects like cut-elimination and embeddings of the ‘strong’
system in the hybrid one.
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1 Introduction

If we drop some or all of the structural rules from a Gentzen-type sequent calculus for let’s say
intuitionistic logic, the arising logic will be resource-conscious: for instance, in the absence of
Contraction or Weakening, the number of times that a premisse is used, becomes relevant; if
the rule of Permutation is absent, the ordering of the premisses. In recent years, such so-called
substructural logics have received a lot of attention, partly for their theoretical interest, but also
because of applications in e.g.

• computer science: linear logic, cf. Girard [9], Troelstra [21],

• linguistics: Lambek Calculus, cf. Lambek [14] for the original article, or Moortgat [15],
van Benthem [2] or Morrill [16] for recent developments,

• philosophy: relevance logic, cf. Dunn [7].

There is a bewildering variety of substructural logics, as we may drop any subset of structural
rules from a standard derivation system. Of this landscape, Wansing [24] draws a partial map in
the form of a lattice, set-inclusion of the derivable sequents being the ordering.

In general however one is not after systems where structural rules are categorically absent
or present; certainly for applications such a rigidity would be unsatisfactory. For instance, the
ordering of premisses in Lambek’s Calculus reflects the fact that in natural languages the meaning
of a sentence generally depends on the word order. But this dependency is not ubiquitous, and
varies from one language to another; hence the adequacy becomes questionable of a formalism
like the Lambek Calculus, which has no access to the rule of permutation at all. Besides that,
a restricted version of Permutation (and Contraction) provides an elegant tool to describe some
linguistic phenomena like (parasitic) gaps in relative clauses, cf. Morrill [16] for details. Apart
from such considerations from the field of applications, there are mathematical motivations as well
to study hybrid systems. As an example, if one wants to embed a strong logic into a weak one, the
latter needs to have have at least a restricted access to the structural rules that the strong one
has.

Linear logic had this hybridity built in from the beginning, so let us now have a look at this
site of the substructural landscape in some more detail. Girard used operators, the so-called
exponentials (! and ?) as devices to encapsulate stronger logics. Operators need logical rules in
the Gentzen paradigm: Girard gave the following left and right rule for ! (we consider intuitionistic
linear logic):

X1, A,X2 −→ B

X1, !A,X2 −→ B
[!L]

and
!X −→ A
!X −→!A

[!R]

where !X denotes !A1, . . . , !An if X = A1, . . . , An. Because of the S4-like character of these rules,
the shriek ! is often referred to as a modality.

Weakening and Contraction now are only allowed on formulas marked with a !:

X −→ B
X, !A −→ B

[W !]
and

X, !A, !A −→ B

X, !A −→ B
[C!]

It was a very natural move for researchers interested in developing other hybrid substructural
logics to look at linear logic for inspiration. The issue was addressed in wide scope in Došen

(cf. [5, 6]) who discusses the general picture, concentrating on proof-theoretical properties like
embeddability. Independently, the idea was taken up by Morrill et alii in [17], who were interested
in an extension of the Lambek Calculus with restricted Permutation, and in Yetter [25] where
an extension of cyclic linear logic is treated.

The point that we want to make here is that there are some problems involved with a straight-
forward adaptation of the proof calculus for ! from linear logic to other substructural logics. To
discuss these problems, let us assume that we add an operator 2 to a substructural logic (for a
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precise definition of a substructural logic we refer to the next section), giving it the operational
rules of !, i.e.

X1, A,X2 −→ B

X1,2A,X2 −→ B
[2L]

and
2X −→ A

2X −→ 2A
[2R]

where 2X denotes 2A1, . . . ,2An if X = A1, . . . , An. We will argue that the right rule of the
‘modality’ is not as natural as it seems to be. Wording it somewhat boldly:

• Having side effects on the meaning of other operators, [2R] is not intuitive for all substruc-
tural logics, in particular not for those lacking the rule of Permutation.

• Some natural and appealing semantics for substructural logics do not allow for an equally
natural and appealing interpretation of 2, if [2L] and [2R] are its operational rules.

These topics are best illustrated via the Lambek Calculus (again, cf. the next section for
definitions), a system lacking the rule of Permutation. Suppose that we want to add Contraction
and Weakening to the Lambek Calculus, and that we introduce a !-like operator 2, for which we
have given rules [2L], [2R], [W2] and [C2]:

X −→ B
X,2A −→ B

[W2]
X,2A,2A −→ B

X,2A −→ B
[C2]

Note that according to the resource-conscious character of Lambek’s Calculus, the naive meaning
of a formula 2A will be “any list of information packages with A”, here represented as: A . . . A.
Now consider the following derivation

A −→ A
2A −→ A

[2L] B −→ B
2B −→ B

[2L]

2A,2B −→ A ◦B [◦R]

2A,2B −→ 2(A ◦B)
[2R]

2A ◦2B −→ 2(A ◦B)
[◦L]

which is a proof of the sequent 2A◦2B −→ 2(A◦B). Our naive understanding of this sequent is:
“A . . . AB . . . B gives AB . . . AB”. Now in our opinion, it is counterintuitive to have this sequent
as a theorem, unless we add some kind of permutation rule for 2-ed formulas. The crucial step in
the derivation is the application of the rule [2R]: it is here where the A’s and B’s are shuffled.

Note that we do not argue against having [2R] itself as part of a hybrid system; we only feel
that it should not be part of the basic hybrid system, and certainly not (a side effect of) the rule
of proof for 2.

Related to this problem, and in some sense formalizing it, is the second issue that we want
to raise, namely that of the semantics of hybrid substructural logics. As we already mentioned,
there are strong linguistic reasons for adding restricted permutation to the Lambek Calculus. Let
us suppose, that we add a 2 to the set of operators, with the logical rules given above. The rules
allowing permutation of boxed formulas then could be

X1, B,2A,X2 −→ C

X1,2A,B,X2 −→ C
[P ′2]

(The double bar indicates that we have both the downward and the upward rule.)
The problem however is to give an intuitive semantics for the arising system L2. The Lambek

calculus L itself is known to have nice interpretations: for instance1, it is sound and complete
with respect to semigroup semantics, cf. Buszkowski [3]. If we view 2 as a modality, the obvious
way to interpret 2 would be via some accessibility relation. Some results are known in this
direction, cf. Kurtonina [13] for a completeness result of L2 with respect to semigroup-like

1L has other interesting interpretations, which we will not discuss here.
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relational structures expanded with an accessibility relation. In de Paiva [18], a category-theoretic
interpretation is given which was inspired, again, by linear logic. However, it is not immediately
clear what intuitive meaning one can assign to these proposed interpretations for the 2-operator.

Indeed, more natural from the applicational point of view seems to be the subalgebra inter-
pretation of Hepple [10] and Morrill [17]. The boxed Lambek calculus L2 is interpreted in
semigroups G having a designated ‘commuting subalgebra’ G′ (i.e. consisting of elements g′ sat-
isfying (∀x ∈ G) g′ · x = x · g′). Here the meaning function assigns to a boxed formula 2A
the intersection of the meaning of A with the universe of the subalgebra. In other words, boxed
formulas are special pieces of information, with a special (commutative) semantic behaviour.

Unfortunately, the rules given above, although sound, are not sufficient to prove completeness
with respect to this subalgebra semantics. This was shown in Versmissen [23]; replacing [2R] by

X1 −→ 2B1 . . . Xn −→ 2Bn X1, . . . , Xn −→ A

X1, . . . , Xn −→ 2A
[2R′]

he can prove completeness for the subalgebra interpretation.
To analyze the rule [2R′], let us drop for a moment the association of 2 with modal logic, and

read 2A as ‘a special A’. Now [2R′] says the following: if X proves an A, it proves that A is
special if it can be decomposed into sequences proving (some other2) formulas to be special. Our
idea is now to make this ‘specialness’ explicit by adding a special type Q to the language, and
reading 2A as some sort of meet of Q and A. In the semigroup semantics, Q is then assigned a
special subset of the semigroup, and [2R′] can be decomposed into

X −→ Q X −→ A

X −→ 2A and
X1 −→ Q X2 −→ Q

X1, X2 −→ Q

where intuitively, the latter rule states that the Q-elements of the semigroup indeed form a subal-
gebra. Adding the 2-permutation rule [P ′2] ensures that this subalgebra consists of commuting
elements.

Let us finish this introduction with putting these semantic considerations on the Lambek Cal-
culus in a more general perspective. Došen [4] describes an algebraic semantics for substructural
logics, in which the resource-conscious intuitions concerning various substructural logics are some-
how made explicit. Different kinds of algebras correspond to different substructural logics — we
will go into details in section 4, the point that we want to make here is that these correspondences
are such that when we consider two substructural logics, S and S′, of which S′ is stronger than S,
then the algebras for S′ form a subclass of those for S. Now if we want to have ‘parts’ of S that do
allow all structural rules of S′, what could be more natural than look at subalgebras of S-algebras
that are themselves algebras for S′? The interpretation of a ‘special’ formula ∇A will then consist
of that part of the interpretation of A which belongs to the S′-part of the algebra, viz.
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2One may restrict the rule by demanding that the Bi’s be subformulas of formulas in the Xi’s and A.
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In this sense, the linguistic motivation for the subalgebra interpretation of the strengthening
operator, has a nice mathematical counterpart.

Overview In the next section we give some preliminary definitions on substructural logics and
their semantics. In section three we give our basic proof-theoretical definitions, and in section
four we discuss the semantics for our approach. The following two sections are devoted to proof-
theoretical properties of our systems: cut-elimination and embeddings. In the last section we draw
some conclusions and we raise some questions.

Acknowledgements I would like to thank Natasha Kurtonina, Michael Moortgat, Glyn Morrill,
Valeria de Paiva, Koen Versmissen and in particular: Dirk Roorda and Heinrich Wansing for
encouragement, here stimulating discussions, and comments on earlier versions of this paper.

2 Preliminaries

In this section we give some basic definitions and results concerning substructural logics. For more
information, the reader is referred to Došen [4].

The idea of using a special meet operator to strengthen logics lacking some structural rules
is not confined to one particular site in the substructural landscape. In this paper, we want to
be as general as possible, for instance abstracting away from the particular connectives3 of the
system under consideration. However, we will confine ourselves to logics meeting the following
constraints:

Definition 2.1 The language of the systems considered will consist of basic types, brackets and
connectives from the following set: \ (left slash, / (right slash), ◦ (concatenation, or multiplicative
product), ∧ (meet), ∨ (join), > (top) and 1 (one). From this alphabet formulas are built up, in
the usual way.

The set of terms is defined by induction4: every formula of the language is a term, and so is the
empty term Λ. If X and Y are terms, then so is (X,Y ). We assume familiarity with notions like
subterms, and substitutions. X[Y ] denotes a term X in which Y occurs as a subterm. Finally, a
sequent is a pair X −→ A consisting of a term X and a formula A.

As variables we take capitals A,B,C,A′, . . . ranging over formulas, capitals X,Y, Z,X ′, . . .
ranging over terms.

Definition 2.2 We associate with every connective of the list given above a standard pair of
derivation rules, a left rule (or rule of use), and a right rule (or rule of proof).

3Note that the behaviour of the logical operators is partly determined by the structural rules; for instance, in the
presence of Permutation, the right and the left slash of the Lambek Calculus collapse into the linear implication.

4Characteristic of substructural logics is that terms are structured; in the most general case, i.e. if we even allow
for the absence of the rule of Associativity, we need the given definition of terms and sequents.
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X[B] −→ C Y −→ A

X[Y,A\B] −→ C
[\L]

(A,X) −→ B

X −→ A\B
[\R]

X[B] −→ C Y −→ A

X[B/A, Y ] −→ C
[/L]

(X,A) −→ B

X −→ B/A
[/R]

X[A,B] −→ C

X[A ◦B] −→ C
[◦L] X −→ A Y −→ B

(X,Y ) −→ A ◦B
[◦R]

X[Ai] −→ C

X[A0 ∧A1] −→ C
[∧L] X −→ A X −→ B

X −→ A ∧B [∧R]

X[A] −→ C X[B] −→ C

X[A ∨B] −→ C
[∨L] X −→ Ai

X −→ A0 ∨A1
[∨R]

no left rule for > X −→ > [>R]

X[Λ] −→ A

X[1] −→ A
[1L]

Λ −→ 1
[1R]

Definition 2.3 Without defining what a structural rule is, we just mention the ones that we will
focus on in this paper. These are Associativity [A], Permutation [P ], Contraction [C], Expansion
[E] and Weakening [W ], given by5

X[(Y1, Y2), Y3] −→ B

X[Y1, (Y2, Y3)] −→ B
[Al]

X[Y2, Y1] −→ B

X[Y1, Y2] −→ B
[P ]

X[Y ] −→ B

X[Y, Y ] −→ B
[E]

X[Y1, (Y2, Y3)] −→ B

X[(Y1, Y2), Y3] −→ B
[Ar]

X[Y, Y ] −→ B

X[Y ] −→ B
[C]

X[Λ] −→ B

X[Y ] −→ B
[W ]

Besides these, we need structural rules to ensure that Λ indeed functions as the empty sequence:

X[Y ] −→ B

X[Λ, Y ] −→ B
[IΛl]

X[Λ, Y ] −→ B

X[Y ] −→ B
[EΛl]

X[Y ] −→ B

X[Y,Λ] −→ B
[IΛr]

X[Y,Λ] −→ B

X[Y ] −→ B
[EΛr]

Now we are in the position to give a definition of the logical systems we will be treating in this
paper.

Definition 2.4 In this paper we will understand with a substructural logic, a Gentzen-type deriva-
tion system of the following type.

Let C be a set of connectives, Ξ a set of structural rules containing the Λ-rules6. Then SΞ(C)
is the logic consisting of the following groups of (axioms and) rules:

1. the basics: the axiom of Identity and the Cut-rule:

A −→ A
[Id]

Y −→ A X[A] −→ B

X[Y ] −→ B
[Cut]

.

5Note that these rules act on terms, not on formulas; in the presence of the product ◦ and the top > one can
give an equivalent system where the structural rules operate on formulas, cf. Došen [4].

6At the moment, we are not interested in calculi where the ‘empty’ sequent has non-standard behaviour.
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2. operational rules for the connectives of C, as given in definition 2.2.

3. of course, the structural rules of the system are those in Ξ.

Notions like derivability and theoremhood are defined as usual.

Examples: In this terminology, the Lambek Calculus finds it place as S{A}({◦, \, /}) (at least
if we relax the condition that the empty term is not allowed as the antecedent of a sequent).
S{A,P}(C) will be the C-fragment of intuitionistic linear logic, etc...

In the sequel we will consider extensions of such systems, and investigate some mathematical
properties like cut-elimination and semantics. With respect to the first, it is of interest whether
the Cut-rule can be eliminated from the system. We state the following fact (cf. Došen [4] for a
proof).

Theorem 2.5 Let X be a substructural logic such that the structural rules of X are among [A],
[P ], [C], [M ] and the Λ-rules. Then applications of [Cut] can be removed from proofs in X.

Now we turn to providing some basic information on the semantics of substructural logics. We
follow Došen [4] (cf. section 4 for motivations):

Definition 2.6 A resource algebra7 is a structure (W, ·,∩, 1) where 1 ∈ W , the set W is closed
under the binary operations · and ∩, the structure (W,∩) is a semilattice, and · is distributive over
∩. Define the partial ordering ≤ by ‘x ≤ y iff x ∩ y = x’.

A resource model is a pair (F, v0) with F a resource algebra and v0 a valuation, i.e. function
mapping propositional variables into subsets of the universe of F. Such a v0 is understood to satisfy

(Heredity v0) x1 ∩ x2 ∈ v0(q) ⇐⇒ (x1 ∈ v0(q) & x2 ∈ v0(q)).

The function v0 can be extended to a map v for all formulas and terms. We only give the
following clauses:

v(A1/A2) = {w ∈W |(∀y ∈ v(A2)) w · y ∈ v(A2)}
v(A1\A2) = {w ∈W |(∀y ∈ v(A1)) y · w ∈ v(A2)}
v(A1 ◦A2) = {w ∈W |∃y1 ∈ v(A1) ∃y2 ∈ v(A2) y1 · y2 ≤ w}
v(1) = {w ∈W |1 ≤ w}
v(A1 ∧A2) = {w ∈W |w ∈ v(A1) & w ∈ v(A2)}
v(A1 ∨A2) = {w ∈W |w ∈ v(A1) or w ∈ v(A2) or ∃yi ∈ v(Ai)y1 ∩ y2 ≤ w}
v(>) = W

v(Λ) = {w ∈W |1 ≤ w}
v(X1, X2) = {w ∈W |∃y1 ∈ v(X1)∃y2 ∈ v(X2) y1 · y2 ≤ w}.

Because of the modal flavour of the definition, we will also use terminology and notation from
modal logic, like possible world for elements of the universe of the resource algebra, truth of a
formula A at a world x of a model M, notation: M, x |= A, for membership of x in v(A). A
sequent X −→ A is valid in a model M if v(X) ⊆ v(A), valid in a class K of frames if it holds in
every model on a frame of K, valid or holds in a frame F if it is valid in the class {F}.

We need the following technical lemma later on:

Proposition 2.7 Let M = (F, vo) be a resource model, and let Y be a term; then for all x1, x2 in
F:

(Heredity v) x1 ∩ x2 ∈ v(Y ) ⇐⇒ (x1 ∈ v(Y ) & x2 ∈ v(Y )).

7These algebras are called semi-lattice-ordered groupoids or slogs in Došen [4].
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3 The basic idea

The basic idea of our approach is very simple: we introduce two new symbols to the language: a
constant type Q and a unary operator∇. Intuitively, a formula∇A should be read as: an A having
special structural behaviour. The proof rules for ∇ will be very simple (cf. the definition below):
∇A will be indistinguishable from the meet of Q and A8. The ‘special structural behaviour’ is
coded in the formula Q: Q is intended to be a type containing meta-information rather than
information proper.

We already mentioned in the introduction that our strategy to make a substructural logic
hybrid is to select a new set of structural rules and only permit the application of these rules on
formulas/terms that are special. For instance, the naive idea to allow Permutation only on marked
items would be to introduce

X[∇A2,∇A1] −→ B

X[∇A1,∇A2] −→ B
[P∇],

and likewise for the other structural rules. The disadvantage of this approach is that we face
problems with cut-elimination. For instance, the following derivation would involve a necessary
application of [Cut]:

Q −→ Q Q −→ Q

Q −→ ∇Q [∇R]

Q −→ Q ∇A −→ ∇A
Q,∇A −→ Q ◦ ∇A [◦R]

∇Q,∇A −→ Q ◦ ∇A [∇L]

∇A,∇Q −→ Q ◦ ∇A [P∇]

∇A,Q −→ Q ◦ ∇A [Cut]

For, a cut-free proof of ∇A,Q −→ Q◦∇A should end in an application of [◦R], which is clearly im-
possible. We will follow the usual way out here, by compiling the [Cut]-rule into the hybridization
rules.

Recall from the introduction that one of our objections against S4-like modalities as structural
operators, was the right rule of proof. We were looking for a formalization in which we can choose
explicitly whether the multiplicative addition of special formulas will be special, or semantically,
whether the special formulas are interpreted in a subalgebra or merely in a subset of the resource
algebra. Again, the naive solution

X1 −→ Q X2 −→ Q

(X1, X2) −→ Q Λ −→ Q

will cause problems with cut-elimination, so the Q-rules9 of our system will be slightly more
complex as well.

Definition 3.1 Let S be a substructural logic as defined in 2.4. We assume that we add the
following new connectives to the language: a constant Q and a unary ∇, for which we define some
operational rules.

The operator ∇ has two left rules:

X[A] −→ B

X[∇A] −→ B
[∇L, 1]

X[Q] −→ B

X[∇A] −→ B
[∇L, 2]

8If we have a meet-operator in the language (with standard logical rules), then the equivalence of ∇A and
Q ∧ A will be easily provable, and ∇A may be read as an abbreviation. However, we feel it philosophically more
sound to have the structural-behaviour-operator ∇ as an primitive connective of the language. Besides that, there
are situations where having an unrestricted meet-operator in the systems is less attractive: for instance, adding a
meet-operator to the Lambek calculus, will pump up the recognizing power, cf. some results in Kanazawa [12], and
the recent proof of Pentus [19] that all languages recognized by a Lambek Grammar are context free.

9The second rule is needed to ensure that the Q-part of the algebra is not only closed under ·, but also contains
the basic piece of information 1.
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and the following right rule:
X −→ A X −→ Q

X −→ ∇A [∇R]

For Q, we have two rules:

X1 −→ Q X2 −→ Q X[Q] −→ A

X[(X1, X2)] −→ A
[Q◦]

X[Q] −→ A

X[Λ] −→ A
[Q1]

The (Q-)hybridization rules [AlQ], . . . , [WQ] are defined as the ordinary structural rules,
with the proviso that they have as an extra premiss that the terms involved derive Q, for instance
Permutation:

X[Y2, Y1] −→ B Y1 −→ Q Y2 −→ Q

X[Y1, Y2] −→ B
[PQ]

The extension of S with the left and right rule for ∇ will be called S∇, and the extension of S∇
with the Q-rules: SQ. If we add, furthermore, a set Ξ of hybridization rules to either S∇ or SQ,
we will denote the resulting hybrid substructural logic by S∇Ξ, resp, SQΞ.

Example Let ILL0 be intuitionistic linear logic without exponentials or quantifiers (cf. Troel-

stra [21], then ILL0QCW is our version of propositional intuitionistic linear logic. To give the
reader some feeling for our approach, we show how to derive the ∇-version of [R!] in our system:

∇X −→ A
∇X −→ ∇A (∗)

where ∇X = ∇A1, . . . ,∇An if X = A1, . . . , An (note that we use multiset notation for terms).
First we show by induction on n, that ∇A1, . . . ,∇An −→ Q. For the induction step, we prove

∇A1, . . . ,∇An−1 −→ Q

Q −→ Q

∇An −→ Q
[∇L]

∇A1, . . . ,∇An −→ Q
[Q]

so now we can prove (∗) by one application of [∇R]. In fact, it is straightforward to show that
propositional intuitionistic linear logic can be embedded in ILL0QCW . Note however, that our
approach yields somewhat more than propositional intuitionistic linear logic, as ILL0QCW `
A ∧∇B −→ ∇(A ∧B), while A∧!B −→!(A ∧B) is not provable in the latter system.

Remark By no means does definition 3.1 exhaust the possibilities to hybridize a substructural
logic. For instance, the attentive reader will have noticed the subtle difference between the rules
[P ′2] on page 2, and [P∇] on page 7. In the approach of definition 3.1, a proper reformulation of
[P ′2] would have been

X[Y2, Y1] −→ B Y2 −→ Q

X[Y1, Y2] −→ B
[P lQ]

X[Y2, Y1] −→ B Y1 −→ Q

X[Y1, Y2] −→ B
[P rQ]

In other words, the question is whether we allow special terms to jump over arbitrary terms, or
only over terms that are special themselves. Both approaches seem to deserve investigation — in
Venema [22] we investigated in detail a hybrid version of the Lambek Calculus with [P lQ] and
[P rQ] as the hybridization rules, cf. also the remark at the end of section 4.

4 Semantics

Of course, a judgement of the intuitive appeal of an interpretation is not a mathematical ordeal;
besides, one will not have a rigid opinion of the ideal semantics for a certain system. Nevertheless,
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some semantics are more equal than others, and we want to start this section with a defense of the
Došen groupoid semantics, of which we already gave a formal definition in the preliminaries. Here
we mention a reading of this semantics which renders its interpretation as much more than the
technical, algebraic tool that it may seem to be at first sight. Wansing [24] develops a so-called
informational interpretation, in which the universe W of a resource algebra (W, ·,∩, 1) is a set of
information pieces, 1 is the initial (empty) set of information, ∩ is the intersection of information
and · is the addition operation. The valuation v is to be read as a support function: x ∈ v(A) iff
x supports the information A.

The naturalness of the various clauses in the truth definition 2.6 are argued for by both Došen
and Wansing. For instance, the odd-looking clause for the disjunction (∨) is defended by Došen by
pointing out an analogy in the Birkhoff representation of lattices by sets, while Wansing reasons
that “In the case of ∨ it makes perfectly good sense to require that (A ∨ B) is not only true at
pieces of information a at which A is true or at which B is true but also at pieces of information
which prolong the intersection of pieces of information b1 and b2 such that A is true at b1 and B
is true at b2. Thus, (A ∨ B) should also be true at information pieces which prolong so to speak
the common content of information pieces b1, b2 with A true at b1 and B true at b2.”

We agree with Wansing that this informational interpretation is quite intuitive; in fact, it is
maybe even the most obvious one when one has the resource-conscious character of substruc-
tural logics in mind, where the ethereal notion of information is caught by the resource-bounded
carriers. The very nice thing about Došen’s semantics is that it can make our intuitions about
substructural logics mathematically explicit. In particular, much in the style of modal logic, there
is a correspondence theory for substructural logics, where every structural rule of inference finds a
counterpart in a condition on resource algebras. For instance, the rule of Contraction is sound pre-
cisely in those algebras where one given information package x gives at least as much information
as two of it added together (x · x): x is re-usable. To be more precise:

Definition 4.1 Below we give a table in which we list the corresponding resource equations of
some structural rules:

[Al] x · (y · z) ≤ (x · y) · z

[Ar] (x · y) · z ≤ x · (y · z)

[P ] x · y ≤ y · x

[E] x ≤ x · x

[C] x · x ≤ x

[W ] 1 ≤ x

[IΛl] x ≤ 1 · x

[EΛl] 1 · x ≤ x

[IΛr] x ≤ x · 1

[EΛr] x · 1 ≤ x

Let Ξ be a set of structural rules, then φ(Ξ) is the set of corresponding formulas. For a class K of
resource algebras and a set of formulas Φ, KΦ is the class of resource algebras in K validating all
the formulas in Φ, and that G is the class of all resource algebras.

The following theorem can be seen as a general soundness and completeness theorem for sub-
structural logics:

Theorem 4.2 (Došen) Let Ξ be a set of structural rules. Then (for any set of connectives) SΞ

is sound and complete with respect to Gφ(Ξ), i.e. for every sequent X −→ A we have

SΞ ` X −→ A ⇐⇒ Gφ(Ξ) |= X −→ A.
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Proof
For the soundness part of the proof, we refer to Došen [4]; for the completeness part, we just
mention how in that same article the canonical model for SΞ is defined.

First of all, a possible world (i.e. an element of the universe of the resource algebra) is any
set x for which there is a term X such that x = {A | SΞ ` X −→ A}. The initial information
set 1 consists of all those formulas that can be derived form the empty term Λ, the intersection
operation ∩ is just set intersection, and if x1, x2 consist of those formulas that can be derived
from resp. X1 and X2, then x1 · x2 is defined as the set {A | SΞ ` (X1, X2) −→ A}. Finally, the
canonical valuation is given by V0(p) = {x | p ∈ x}.

The crucial lemma in the proof is then the canonical lemma stating that for any formula A
and possible world X of the canonical frame, we have

x |= A ⇐⇒ A ∈ x.

Finally, one has to prove that for the respective substructural logics, the canonical frame is
indeed in the corresponding class of resource algebras. We will give one example, Contraction:
suppose that Ξ contains [C], then we have to show that in the canonical resource algebra, ∃x(x·x ≤
x). Thereto, let x be an element of the model, and let X be the corresponding term such that
x = {A | SΞ ` X −→ A}. By definition, x · x = {A | SΞ ` (X,X) −→ A}. So, it is immediate
that x · x is a subset of x, and thus by definition of ≤, we find x · x ≤ x. 2

So now we come to the main and motivating part of this paper: defining the semantics for our
hybrid systems, and proving the proof theory sound and complete with respect to it. Let us first
repeat the motivation already given in the introduction, but now in a more explicit terminology.
If Ξ ⊂ Ξ′ are two sets of structural rules, and C a set of connectives, then the resource algebras
corresponding to SΞ′(C) form a subclass of those for SΞ(C). In other words, extra structural rules
impose extra conditions on resource algebras. So what could be a more natural semantics for the
hybrid system SΞ(C)∇Ξ′ , than resource algebras in which all information carriers are governed
by the φ(Ξ)-laws, and some special ones (to be ‘precise’, the carriers of Q) by the φ(Ξ′)-laws.

This inspires the following definition:

Definition 4.3 Let Φ,Ψ be formulas in the (algebraic) language of resource algebras. A (Φ,Ψ)-
hybrid resource algebra is a quintuple (W,V, ·,∩, 1) satisfying the conditions A1 . . .A4 below:
(A1) (W, ·,∩, 1) is a resource algebra,
(A2) (W, ·,∩, 1) |= Φ,
(A3) V ⊂W is closed under ∩,
(A4) (V, ·,∩, 1) |= Ψ,
(A5) (V, ·,∩, 1) is a resource algebra,

If moreover, (W,V, ·,∩, 1) satisfies condition A5, too, we call (W,V, ·,∩, 1) a (Φ,Ψ)-oval resource
algebra.

Models are defined in the obvious way, and the definition of the interpretation function is
extended with the following clauses:

v(Q) = V
v(∇A) = {y | y ∈ V & y ∈ v(A)},

if ((W,V, ·,∩, 1), v) is the model at hand.

The idea of the subset/subalgebra interpretation is best illustrated via a picture:
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Note that (W,V, ·,∩, 1) is a (Φ,Ψ)-oval resource algebra iff (W, ·,∩, 1) is a Φ-resource algebra
and (V, ·,∩, 1) is a Ψ-resource algebra.

Theorem 4.4 Let Ξ ⊂ Ξ′ be sets of structural rules. Then
(i) the hybrid system SΞ(C)∇Ξ′ is sound and complete with respect to (φ(Ξ), φ(Ξ′))-hybrid resource
algebras.
(ii) the hybrid system SΞ(C)QΞ′ is sound and complete with respect to (φ(Ξ), φ(Ξ′))-oval resource
algebra.

Proof
(i) To start with soundness, we show that all the axioms and rules of SΞ′(C)∇Ξ′ (which we abbre-
viate by S) are valid resp. sound in (φ(Ξ), φ(Ξ′)-hybrid resource algebras. This is straightforward
to check for the logical rules and axioms, and for the operational rules for the old connectives.

Of the rules for ∇, we only treat [∇R]. Let F = (W,V, ·,∩, 1) be an arbitrary algebra in the
class. Suppose that v0 is a valuation on F such that v(X) ⊆ v(Q) and v(X) ⊆ v(A). Then
obviously v(X) ⊆ v(Q) ∩ v(A) = V ∩ v(A) = v(∇A).
The soundness of the structural rules in Ξ follows from 4.2.

Finally we consider the hybridization rules, by example of Expansion:

Y −→ Q X[Y ] −→ A

X[Y, Y ] −→ A
[EQ]

Suppose that Ξ′ contains the rule of Expansion, and Ξ does not, and that we have a valuation
v0 for which v(X[Y ]) ⊆ v(A). We have to show that v(X[Y, Y ]) ⊆ v(A). To do so, it suffices to
establish that

(∗) v(X[(Y, Y )]) ⊆ v(X[Y ])

which we will do by induction to the complexity of X. We only treat the basic case, where
X = (Y, Y ). Let y be in v(Y, Y ). By unraveling the definition of v(Y ), we find that y ≥ s · t for
some s, t with (i) s, t ∈ v(Y ). By ` Y −→ Q we have v(Y ) ⊂ V , so (ii) s, t ∈ V . By (ii) and
condition (A3), we have that (iii) s ∩ t ∈ V . This implies by (A4) that (s ∩ t) · (s ∩ t) ≥ s ∩ t.
Therefore, we find by (A1) that (iv) s ∩ t ≤ s · t ≤ y. By (Heredity v) and (i) we obtain (v)
y ∈ v(Y ).

For completeness, we give a canonical (φ(Ξ), φ(Ξ′))-hybrid resource algebra G and a canon-
ical valuation v0 on G such that for any sequent X −→ A which is not provable in S, we have
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v(X) 6⊆ v(A). G = (W,V, ·,∩, 1) is defined as follows:

W = {x | for some term X, x = {A | S ` X −→ A}}
V = {x | Q ∈ x}

x ∩ y = {A | A ∈ x & A ∈ y}
x · y = {x | S ` X,Y −→ A}

1 = {A | S ` Λ −→ A}

where in the clause for ·, we adopted the convention that x and X are related by x = {A | S `
X −→ A}. (In the sequel we will do the same, without warning.) The canonical valuation v0 is
given by

v0(p) = {x | p ∈ x}.

Let M be the canonical model (G, v0).
First we prove that G is a (φ(Ξ), φ(Ξ′))-hybrid resource algebra. The conditions (A1) and

(A2) follow from Došen’s completeness proof, cf. 4.2. For (A3), suppose that x1, x2 ∈ V ; then by
definition of V , Q ∈ x1, x2, so by definition of ∩, Q ∈ x1 ∩ x2.
Condition (A4) again is proved by example: Permutation. Suppose that [P ] ∈ Ξ′ − Ξ, then we
have to show that

(†) G |= (∀x1x2 ∈ V ) x1 · x2 ≤ x2 · x1.

As ≤ is set-inclusion, it suffices to prove that every formula A provable from (X1, X2) is also
provable from (X2, X1), provided that from both Xi’s, Q is provable. But this is precisely what
the rule [PQ] says.

Second, we need the Truth Lemma

(‡) M, x |= A ⇐⇒ A ∈ x

which is proved by induction on the complexity of A.
We only consider the cases where A = Q or A = ∇B, referring the reader to section 3.4 of

Došen [4] for the other cases. Now, with respect to the first case: M, x |= Q iff x ∈ V (by definition
of |=) iff Q ∈ x (by definition of V ). And for the second case we have:

M, x |= ∇B
iff x ∈ V & M, x |= B (by definition of |=)
iff Q ∈ x & B ∈ x (by the induction hypothesis)
iff S ` X −→ Q and S ` X −→ B (by the x,X-convention)
iff S ` X −→ ∇B (proof theory)
iff ∇B ∈ x (by the x,X-convention)

Now we are finished, for assume that S 6` X −→ A, and let x be the set {A | S ` X −→ A}. It
is easy to show that x ∈ v(X), while x 6∈ v(A). So we find that v(X) is not a subset of v(A).

(ii) This proof builds on the proof in (i).
For soundness, we have to prove that the Q-rules are sound in (φ(Ξ), φ(Ξ′))-resource resource

algebra.
For [Q◦], suppose that v0 is a valuation on a (φ(Ξ), φ(Ξ′))-oval resource algebra F = (W,V, ·,∩, 1)

such that v(Xi) ⊂ V and v(Y [Q]) ⊂ v(A). We have to show (∗) v(Y [X1, X2]) ⊂ v(A).
It follows easily by (A5) (closure of V under ·) that v(X1, X2) ⊂ V . By induction on Y one

can easily infer that this implies (∗).
To show [Q1] is likewise simple, now using the fact that 1 ∈ V .
For completeness, we assume that we have defined a canonical algebra S like in the proof of

(i); it will be clear that it suffices to show that this S is a (φ(Ξ), φ(Ξ′))-oval resource algebra. In
other words, we have to establish (i) V is closed under ·, (ii) 1 ∈ V , (iii) (V,∩) is a semilattice,
and (iv) · is distributive over ∩.

For (ii), note that the logic contains the theorem Λ −→ Q. By definition of 1 then Q ∈ 1,
so by definition of v0 we find 1 ∈ V . For (i), let x1, x2 be in V . By definition we have proofs

12



for X1 −→ Q and X2 −→ Q, so with the axiom Q −→ Q, one application of [Q◦] gives a proof
of X1, X2 −→ Q. By definition of · then, Q ∈ x1 · x2, so x1 · x2 is in V by definition of V .
The conditions (iii) and (iv) follow immediately from the fact that (V, ·,∩, 1) is a subalgebra of
(W, ·,∩, 1) 2

Remark Similar results can be proved for hybridization rules like [P lQ] and [P rQ] discussed
at the end of section 3. For instance, adding precisely these two rules to a logic SΞ will yield a
logic which is sound and complete with respect to oval resource algebras satisfying

(φ(P ′)) ∀x ∈ V ∀y ∈W x · y = y · x,

i.e. the subalgebra consists of elements that commute with arbitrary elements of the bigger alge-
bra.

5 Cut-elimination

For several reasons, among which are resource-consciousness and proof-theoretical elegance, the
logical rule of [Cut] is less attractive. Thus the question becomes relevant whether it can be
eliminated from the logic, whether every provable sequent has a [Cut]-free derivation. For some
families of systems we will answer this question in the affirmative. In order to give a more elegant
proof of cut-elimination, we consider a seemingly stronger version of the [Cut]-rule:

Definition 5.1 Let Y (Z) denote a term Y with a positive number of occurrences of Z. In the
following we asume that our [Cut]-rule has the following form:

X −→ A Y (A) −→ B

Y (X) −→ B
[Cut]

Put into words, the version of the [Cut]-rule given above says that any number of occurrences
of A in Y may be cut at once. Note that this rule is not really stronger than the usual [Cut]-rule
— we even gave it the same name.

In the sequel we will show that for suitable combinations of a substructural logic S and a set
Ξ of Q-hybridization rules, the resulting system SQΞ (and thus S∇Ξ) can do without [Cut]. First
we need some definitions:

Definition 5.2 Proof-trees are defined as usual, we denote “Π is a proof for X −→ A” by:
Π

X −→ A. The tree-depth of a proof (tree) is defined as follows: the tree-depth of an axiom is zero,

and if Π is of the form

Π1

P1 · · ·
Πn

Pn
Cn , then t(Π) = 1 + max{t(Πi) | 1 ≤ i ≤ n}.

The complexity c(A) of a formula A is the total number of occurrences of connectives in A.

Definition 5.3 All formulas in the application of a rule [R] are called side formulas, except in
the following cases:
(1) [R] is an operational rule, and A is the formula introduced; then A is called the main formula.
(2) [R] is [Cut], and A is the formula not appearing in the conclusion; then A is called the cut
formula.

We leave it to the reader to give a formal definition of a multiple resp. single cut formula.

The main lemma needed to eliminate [Cut] from the system is the following:

Lemma 5.4 Let Ξ ⊂ Ξ′ be sets of structural rules such that Ξ,Ξ′ ⊆ {[A], [P ], [C], [W ]}. If a
theorem has an SΞQΞ′-proof with a single application of [Cut], then the sequent is also cut-free
provable.
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Proof.
Abbreviate SΞQΞ′ by T . We define a cut-degree d(Π) of proofs Π with one application of [Cut]:
let Π0 be the subproof of Π ending in the application of [Cut]. Assume that the daughters of Π0

are Π1 and Π2, and that A is the cut formula. Then (c(A), t(Π1) + t(Π2)) is the cut-degree of Π.
Assume that cut-degrees are lexicographically ordered.

We will now prove the lemma, by induction on the degree of the proof given in the assumption
of the lemma. So, assume that the proof has a subproof Π of the form

Π1

X −→ A
[LR]

Π2

Y (A) −→ B
[RR]

Y (X) −→ B
[Cut]

(Note our convention concerning the bracketing (·)!)
The idea of the proof is of course to move [Cut] upwards into Π1 or Π2 (whence it will

eventually disappear) in such a way that the cut-degree of the transformed proof has decreased.
This calculation will not always be made explicitly, nor will we always explicitly apply the induction
hypothesis to the transformed proof.

To decide which action to take, we make a case distinction. First, divide the axioms/rules of
T into the following groups:

I the identity axiom, and the operational rules for the ‘old’ connectives and ∇,

II the structural rules in Ξ,

III the Q-rules,

IV the hybridization rules (i.e. from Ξ′).

Our main distinction however, is whether the cut formula A is main or side formula in the
rules [LR] and [RR], and single or multiple:

A The cut formula is single, and main formula in both [LR] and [RR]. In this case we have to do
with rules from I in both the left and right proof. As an example we treat the case where A
is of the form ∇C (the other cases are standard); transform the proof

Π11

X −→ C

Π12

X −→ Q

X −→ ∇C [∇R]

Π20

Y [P ] −→ B

Y [∇C] −→ B
[∇L]

Y [X] −→ B
[Cut]

;

Π1i

X −→ P

Π20

Y [P ] −→ B

Y [X] −→ B
[Cut]

where either P = C and i = 2, or P = Q and i = 1. Note that the cut-degree of this proof is
indeed less than that of the original one, as the complexity of the cut formula has decreased.

A’ The cut formula is multiple, and main formula in both [LR] and [RR]. Now the idea is first to
cut the left premisse of [Cut] with the premisse(s) of [RR], thus leaving a [Cut] of a single
main case- kind. After removing this [Cut] in the way described in A, we have a proof with
two applications of [Cut], like in the following example:

Π11

X −→ C

Π12

X −→ Q

X −→ ∇C [∇R]

Π20

Y (∇C)[P ] −→ B

Y (∇C)[∇C] −→ B
[∇L]

Y (X)[X] −→ B
[Cut]

;

Π1i

X −→ P

Π11

X −→ C

Π12

X −→ Q

X −→ ∇C [∇L]
Π20

Y (∇C)[P ] −→ B

Y (X)[P ] −→ B
[Cut]

Y (X)[X] −→ B
[Cut]
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Now we first remove the upper [Cut], which is possible by Induction Hypothesis, as its depth
is less than that of the original [Cut]. Then we remove the second [Cut], which the Induction
Hypothesis allows us to do because of the decreased complexity of the cut formula.

B The cut formula is side formula of [LR]. Look at which group [LR] is from: if [LR] is from I
or II, the procedure is standard.

In case we are dealing with [Q◦], transform

Π11

X1 −→ Q

Π12

X2 −→ Q

Π13

X[Q] −→ A

X[(X1, X2)] −→ A
[Q◦] Π2

Y (A) −→ B

Y (X[(X1, X2)]) −→ B
[Cut]

into

Π11

X1 −→ Q

Π12

X2 −→ Q

Π13

X[Q] −→ A

Π2

Y (A) −→ B

Y (X[Q]) −→ B
[Cut]

Y (X[(X1, X2)]) −→ B
[Q◦]

In the other case of III, [LR] = [Q1], and our move is:

Π10

X[Q] −→ A

X[Λ] −→ A
[Q1]

Π2

Y (A) −→ B

Y (X[Λ]) −→ B
[Cut]

;

Π10

X[Q] −→ A

Π2

Y (A) −→ B

Y (X[Q]) −→ B
[Cut]

Y (X[Λ]) −→ B
[Q1]

For the case where the left rule applied was from group IV, we consider an example: suppose
that [LR] = [CQ]:

Π11

Z −→ Q

Π12

X[Z,Z] −→ A

X[Z] −→ B
[CQ]

Π2

Y (A) −→ B

Y (X[Z]) −→ B
[Cut]

is transformed into

Π11

Z −→ Q

Π12

X[Z,Z] −→ A

Π2

Y (A) −→ B

Y (X[Z,Z]) −→ B
[Cut]

Y (X[Z]) −→ B
[CQ]

Note that indeed the cut degree of the proof has decreased, (although the complexity of the
cut formula is still the same).

C The cut formula is a side formula in [RR]. Now distinguish cases, according to which group
[RR] is from:

The cases of I and II are well-known again (for A not identical to ∇B) and straightforward
in the case of A = ∇B.

If [RR] = [Q◦], make a further case distinction as to where in Y [(Y1, Y2)] the formula A
occurs. We only treat the most complex case, where the cut formula occurs both inside Y1

and inside Y2, and outside (Y1, Y2).

Π1

X −→ A

Π21

Y1(A) −→ Q

Π22

Y2(A) −→ Q

Π23

Y (A)[Q] −→ B

Y (A)[(Y1(A), Y2(A))] −→ B
[Q◦]

Y (X)[(Y1(X), Y2(X))] −→ B
[Cut]
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which we transform into

Π1

X −→ A

Π2i

Yi(A) −→ Q

Yi(X) −→ Q
[Cut]

Π1

X −→ A

Π23

Y (A)[Q] −→ B

Y (X)[Q] −→ B
[Cut]

Y (X)[(Y1(X), Y2(X))] −→ B
[Q◦]

The case where [RR] = [QΛ] is rather straightforward, and is left to the reader.

So we are left with the situation where the right rule was one of the new hybridization rules.
Again, we confine ourselves to the example of Contraction. Note that the cut formula A may
occur inside the contracted term, outside of it, or both. It is this third (and most complex)
case that we treat here:

Π1

X −→ A

Π21

Z(A) −→ Q

Π22

Y (A)[Z(A), Z(A)] −→ B

Y (A)[Z(A)] −→ B
[CQ]

Y (X)[Z(X)] −→ B
[Cut]

is replaced by

Π1

X −→ A

Π21

Z(A) −→ Q

Z(X) −→ Q
[Cut]

Π1

X −→ A

Π22

Y (A)[Z(A), Z(A)] −→ B

Y (X)[Z(X), Z(X)] −→ B
[Cut]

Y (X)[Z(X)] −→ B
[CQ]

Note that this is the only case where the multiplicity of the cut formula increases. As this
does not affect the cut degree, we may apply the Induction Hypothesis to both applications
of [Cut] in the transformed proof, as their depth is less than that of the original [Cut].

2

Theorem 5.5 Let Ξ ⊂ Ξ′ be sets of structural rules such that Ξ,Ξ′ ⊆ {[A], [P ], [C], [W ]}. Any
theorem of SΞQΞ′-proof has a cut-free proof.

Proof Using lemma 5.4, we can successively remove all applications of [Cut] from a given SΞQΞ′ -
proof. 2

6 Embeddings

In the same way that intuitionistic and classical logic can be faithfully embedded in linear logic,
we can show that our hybrid logic SΞ(Q)QΞ′ is not weaker in expressive power than SΞ. The
basic idea behind our embeddings is very simple to illustrate via the semantics of section 4: let S,
SQ′ and S′ be abbreviations for SΞ(C), SΞ(C)QΞ′ and SΞ′(C) respectively. By our completeness
theorem 4.4, every SQ′-structure has a subalgebra (consisting of Q-elements) which is in itself an
appropriate structure for S′. In other words, in a certain semantic sense, the ‘Q-part of the hybrid
logic SQ′ is S′. Our embeddings can be seen a proof-theoretical counterpart and implementation
of this idea to identify S′ with the Q-part of SQ′.

First we define translations from the formulas of SΞ to the formulas of SΞ(C)QΞ′ , then we
prove the embedding theorem.
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Definition 6.1 Let C be a set of connectives; define the following translations (·)∇ and (·)′ from
C-formulas to L ∪ {∇, Q}-formulas:

p∇ = ∇p
(>)∇ = ∇>
(1)∇ = ∇1

(A ∧B)∇ = ∇(A∇ ∧B∇)
(A ∨B)∇ = ∇(A∇ ∨B∇)
(A/B)∇ = ∇(A∇/B∇)
(A\B)∇ = ∇(A∇\B∇)
(A ◦B)∇ = ∇(A∇ ◦B∇)

p′ = p
(>)′ = Q
(1)′ = ∇1

(A ∧B)′ = (A′ ∨B′)
(A ∨B)′ = (∇A′ ∨∇B′)
(A/B)′ = (A′/∇B′)
(A\B)′ = (∇A′\B′)
(A ◦B)′ = (∇A′ ◦ ∇B′)

Both are extended to terms by putting

Λ∇ = Λ
(X,Y )∇ = (X∇, Y ∇)

Λ+ = Λ
A+ = ∇A′

(X,Y )+ = (X+, Y +)

Theorem 6.2 Let C be a set of connectives containing >, and let Ξ ⊂ Ξ′ be sets of structural
rules. Then for any sequent X −→ A we have that

SΞ′(C) ` X −→ A ⇐⇒ SΞ(C)QΞ′ ` X∇ −→ A∇

SΞ′(C) ` X −→ A ⇐⇒ SΞ(C)QΞ′ ` X+ −→ A′

Proof.
Let us fix Ξ and Ξ′, and abbreviate SΞ′(C) by S′, SΞ(C)QΞ′ by SQ′. We will only prove the
theorem for the more parsimonious translation (·)′.
⇒ First, the following claim will be needed later on:

(∗) For all terms X: SQ′ ` X+ −→ Q.

One can easily prove (∗) by term-induction (note that the Q-rules are essential here).
The correctness of the embedding will be proved by induction on the derivation of X −→ A in

S′.
For the atomic step, assume that X −→ A is an axiom of S′. We are dealing with one of the

following three cases:
(i) X is of the form A. Then SQ′ ` ∇A −→ A is easily proved.
(ii) A is of the form T . Then SQ′ ` X+ −→ A is the claim (∗).
(iii) X = Λ and A = 1. Then SQ′ ` Λ+ −→ 1′ follows from ` Λ −→ Q and ` Λ −→ 1.

If S′ derives X −→ A by application of a structural rule in Ξ, SQ′ has this rule too and the
proof is straightforward.

For the case where the last rule applied was in Ξ′ − Ξ, we give an example:

Y [(Z,Z)] −→ A

Y [Z] −→ A
[C]

By the inductive hypothesis, SQ′ ` Y +[(Z+, Z+)] −→ A′. Now consider the following derivation:

Y +[Z+, Z+] −→ A′ Z+ −→ Q

Y +[Z+] −→ A′
[CQ]

The only case left is where the last step in the derivation is of an application of an operational
rule. Below we will give a few examples (IH stands for: induction hypothesis).

[/R] Assume that X −→ B/A was derived from (X,A) −→ B. Using the (IH), we find

(X+,∇A′) −→ B′

X+ −→ (B/A)′
[/R]
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[/L] If Y [C/B,X] −→ A is derived from X −→ B and Y [C] −→ A, then the following is an
SQ′-derivation of Y +[∇(C/B)′, X+] −→ A′:

∇(C ′/∇B′) −→ ∇C ′/∇B′

IH
X+ −→ B′

(∗)
X+ −→ Q

X+ −→ ∇B′
[∇R] IH

Y +[∇C ′] −→ A′

Y +[∇C ′/∇B′, X+] −→ A′
[/L]

Y +[∇(C ′/∇B′), X+] −→ A′
[Cut]

where the reader is invited to show that ∇(C ′/∇B′) −→ ∇C ′/∇B′ is a SQ′-theorem.

[◦R] Assume that X,Y −→ A ◦B is derived from X −→ A and Y −→ B. Then we obtain:

(∗)
X+ −→ Q

(IH)
X+ −→ A′

X+ −→ ∇A′
[∇R]

(∗)
Y + −→ Q

(IH)
Y + −→ B′

Y + −→ ∇B′
[∇R]

(X,Y )+ −→ ∇A′ ◦ ∇B′
[◦R]

[1L] Here we use the following transformation:

X[Λ] −→ A

X[1] −→ A
[1L]

IH
X+[Λ] −→ A′

X+[1] −→ A′
[1L]

X+[∇1] −→ A′
[∇L]

⇐ The basic idea for the other direction is that in a certain sense, every SQ′-derivation ‘is’
an S′-derivation. The only problem is that SQ′-formulas are not necessarily S′-formulas, because
we added new connectives. So let us start with defining a forgetful translation (·)− from SQ′-
formulas to S′-formulas: for atoms we set P− = P , and we continue with Q− = >, (∇A)− = A−,
and (·)− is a homomorphism with respect to the other connectives. For terms, we set Λ− = Λ and
(X,Y )− = (X−, Y −). Our aim now is to establish the following claim:

(∗) SQ′ ` Y −→ B ⇒ S′ ` Y − −→ B−.

The proof of this claim is by induction to SQ′-derivations. The basic step, and most of the inductive
steps are trivial. We only consider the cases where the last step of the derivation of Y −→ B was
by one of the hybridization rules, and this case is treated by an example (Contraction): suppose
that the conclusion is of the form Y [Z] −→ B, and it was derived from

Z −→ Q Y [Z,Z] −→ B

Y [Z] −→ B
[CQ]

By induction hypothesis, S′ ` Y −[Z−, Z−] −→ B− (and S′ ` Z− −→ >, but this we do not need),
so by one application of [C] we find that S′ ` Y −[Z−] −→ B−.

We are virtually finished now: let X −→ A be an S′-sequent for which SQ′ ` X+ −→ A′. It
is straightforward to show that (X+)− = X and (A′)− = A, so by (∗) we find that S′ ` X −→ A,
which is what we wanted to prove indeed. 2

Remark Note that the non-modal kind of embedding defined here, deviates from the tradition
in the literature. The connections between our theorem and the results in e.g. Došen [5, 6] remains
to be investigated.
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7 Conclusions

Accepting the idea to use operators for the task of strengthening a substructural logic, we have
asked ourselves the question what the meaning of a formula ∇A (∇ the operator) in a resource-
bounded derivation system might be. Our answer was, that a formula ∇A is like a labelled
formula: the label (∇, but in fact a special type Q) tells us that the information proper, A, may
be used, qua structural rules, in a way extending the default character of the logic. The novelty
of this paper (as far as we know) lies in the fact that we have implemented this idea in a fashion
inspired by the wish to give a natural semantics for the arising hybrid logic. We have separated
the information of a formula from its structural behaviour, thus being able to make the structural
properties of marked formulas explicit by manipulating the proof- and structural rules involving
the special type Q.

It seems that this idea can easily be extended to logics having more than two kinds of structural
behaviour. In fact, one could introduce a type QΞ for every set of structural rules, and allow
precisely these rules on sequences that derive QΞ.

We believe our approach to be intuitive and compatible with the paradigm of resource-conscious-
ness in substructural logics. Besides, it enjoys the nice mathematical properties one would want
for hybrid substructural logics, like cut-elimination for the basic systems, and embeddability of
the ‘strong’ logic in the hybrid system.

A lot of research remains to be done — we mention a few questions:

1. A huge part of the research into linear logic is of a category-theoretic nature. Recently, the
use of modalities in weaker logics has been studied from such a perspective as well, cf. de

Paiva [18]. What is the category-theoretic side of our approaches?

2. Substructural logics have a type-theoretical side, via (adaptations of) the Curry-Howard
interpretation, cf. Wansing [24], van Benthem [2]. (How) can we assign terms to proofs
in our calculi?

3. Besides linear logic itself, Girard also invented a new proof method for it, viz. via proofnets.
In his dissertation [20], Roorda extended this method to the Lambek calculus. Can we also
find proof nets for the extended logic discussed here?
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