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Abstract

With each projective geometry we can associate a Lyndon algebra. Such an algebra
always satisfies Tarski’s axioms for relation algebras and Lyndon algebras thus form an
interesting connection between the fields of projective geometry and algebraic logic. In
this paper we prove that if G is a class of projective geometries which contains an infinite
projective geometry of dimension at least three, then the class L(G) of Lyndon algebras
associated with projective geometries in G has an undecidable equational theory. In our
proof we develop and use a connection between projective geometries and diagonal-free
cylindric algebras.

1 Introduction

Lyndon algebras form an interesting connection between the fields of projective geometry and
algebraic logic. Their origin lies in the paper [Jónsson 1959] where the author associates a
relation algebra with a projective plane. Jónsson’s construction was generalized by R. Lyndon
to projective geometries of arbitrary dimension, in order to provide “a method for deriving
consequences in the algebraic theory of binary relations from certain familiar facts of projective
geometry”, cf. [Lyndon 1961].

We need to go into some detail concerning this construction. We formalize a projective
geometry as a two-sorted structure G = (P,L, I) where P is a set of points, L is a set of lines,
and I ⊆ P × L is the binary incidence relation (precise definitions will be given in the next
section). Now the Lyndon algebra associated with a projective geometry G = (P,L, I) is the
algebraic structure L(G) = (℘(Pe),∪,∼,∅, ◦, ι, {e}) defined as follows. The carrier of L(G) is
the power set of the set Pe = P ∪ {e} — here e is some new, ‘useless’ point; the operations ∪
and ∼ denote the ordinary set-theoretic operations of union and complement (with respect to
Pe), respectively, and ∅ denotes the empty set. The interesting operation of Lyndon algebras
is ◦ which interprets the binary operator symbol ; (in algebras of relations corresponding to
relational composition). We first define this operation ◦ for the atoms of the algebras; that
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is, singleton subsets of Pe (here pq denotes the line through p and q). This definition extends
to arbitrary subsets of Pe by requiring complete additivity for ◦.

{p} ◦ {q} =


{e, p} if p = q,
pq \ {p, q} if p 6= q and e 6∈ {p, q},
{p}, if q = e,
{q}, if p = e.

X ◦ Y =
⋃

p∈X,q∈Y
{p} ◦ {q}

(1)

The operation ι is there only to give Lyndon algebras the right similarity type, namely that
of Tarski’s relation algebras; it interprets the unary function symbol ^ (corresponding to
taking the converse of a relation) and is trivially defined as the identity map: ι(X) = X for
any subset X of Pe. Finally, the singleton {e} interprets the constant 1’ (which is the symbol
denoting the identity relation in algebras of real binary relations).

Given a class G of projective geometries, we denote by L(G) the class of associated Lyndon
algebras. In a number of occasions we will be interested in the Lyndon algebras associated
with the class Gd of all d-dimensional projective geometries (d some fixed cardinal); the class
of these d-dimensional Lyndon algebras is denoted as Ld.

Lyndon algebras have played an important role in the representation theory of relation
algebras. First of all, it is straightforward to show that every Lyndon algebra is indeed a
relation algebra; that is, it satisfies the axioms that Tarski proposed as a first approximation
for an axiomatization of the ‘true’ relational equations. In [Jónsson 1959] it is proved that
if a plane does not satisfy Desargue’s Theorem, then its associated Lyndon algebra is not
representable; this result provided natural examples of non-representable relation algebras.
Although Lyndon generalized Jónsson’s work to geometries of arbitrary dimension, his paper
[Lyndon 1961] is usually cited for his work on algebras associated with lines (one-dimensional
projective geometries); in fact, some people use the term ‘Lyndon algebras’ only for this
smaller class of algebras. An important result of Lyndon’s paper states that for a line G of
n points (n ≥ 4), the algebra L(G) is representable iff there is a projective plane in which
all lines have n points. This result formed the basis of Monk’s seminal theorem that the
equational theory of the class RRA is not finitely axiomatizable, cf. [Monk 1964].

Some further results are known about Lyndon algebras. For instance, Andréka, Givant
and Németi proved interesting results on the decidability of various classes of one-dimensional
Lyndon algebras, cf. [Andréka, Givant & Németi 1997]. In particular, it is proved that the
class L1 itself has a decidable equational theory. (The cited paper forms an excellent overview
of the state of the art concerning decidability and undecidability of various classes of relation
algebras.) For some natural classes of geometries, [Givant 199?] contains results connect-
ing the associated Lyndon algebras to the universal class of simple algebras in the variety
generated by L(G). Finally, the paper [Stebletsova 1998] is concerned with the axiomatizabil-
ity problem of various classes of Lyndon algebras; the main result of that paper is a finite
axiomatization for the equational theory of Ld for fixed, finite d.

In this paper we investigate the decidability of the equational theories of Lyndon algebras
of higher dimension. Our main result is the following theorem.
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Theorem 1 If G is a class of projective geometries which contains an infinite projective
geometry of dimension at least three, then the equational theory of L(G) is undecidable.

In particular, the class of all Lyndon algebras has an undecidable equational theory, and
so have the classes Ld for d ≥ 3.

Two remarks are in order concerning our proof of Theorem 1. First, it turns out that in
order to reach undecidability, we do not need the full expressive power of the extra-boolean
operators of Lyndon algebras. We define the slender Lyndon algebra S(G) of a projective
geometry G = (P,L, I) to be the structure S(G) = (℘(P ),∪,∼,∅, •). Here (℘(P ),∪,∼,∅) is
the power set algebra over P , on which the binary operation • on ℘(P ) is defined as follows
(again, first for singletons and then for arbitrary subsets of P ).

{p} • {q} =
{
pq if p 6= q
{p} if p = q,

X • Y =
⋃

p∈X,q∈Y
{p} • {q}

(2)

In the next section we will see that when X and Y are subspaces of the geometry, then
X • Y is in fact the subspace generated by X and Y . For a class G of projective geometries,
we let S(G) denote the class of slender Lyndon algebras of geometries in G; we will use the
notation S and Sd with obvious meanings. Our main technical result (Theorem 3.1 below)
states that for any class G containing an infinite projective geometry of dimension at least
three, the equational theory of the class S(G) is undecidable. As we will show in section 3, it
is straightforward to derive Theorem 1 from this; the crucial observation in this proof is that
the operation • can be defined in terms of ◦ and the other operations of Lyndon algebras.

Second, the main idea underlying our proof involves an interesting connection with another
kind of algebras that are well-known from algebraic logic, namely the diagonal-free cylindric
algebras (cf. the next section for definitions). Roughly speaking, we will show that inside
every slender Lyndon algebra associated with a projective geometry of dimension at least
three, we can find a term-definable representable diagonal-free cylindric algebra of dimension
three (a representable Df3, for short). And conversely, given a ‘small’, simple representable
Df3 A and an infinite geometry G of dimension at least three, we can embed A in one of
these representable Df3’s living inside the slender Lyndon algebra associated with G. These
connections, which modify and generalize an idea of [Venema 1998], allow us to use R. Mad-
dux’ result on the undecidability of the equational theory of the class of representable Df3’s
[Maddux 1980] in order to prove our main technical result.

Finally, we want to mention that our results leave open an interesting problem, namely
whether the class L2 of Lyndon algebras associated with projective planes has a decidable
equational theory. S.Givant (personal communication) announced some strengthenings of
our main result; these will be briefly mentioned at the end of the paper.

Acknowledgement We would like to thank the anonymous referee for a very careful read-
ing of the manuscript of this paper, and for making many suggestions for improving its
presentation.
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2 Preliminaries

We will assume a certain familiarity with the basics of geometry and universal algebra. We
now fix our notation and terminology, and we gather some specific facts from the fields of
projective geometry and diagonal-free cylindric algebras that we need in our proofs. Since
Lyndon algebras are the only relation algebras that we will encounter here, we do not supply
further information on this branch of algebraic logic. The interested reader is referred to
[Jónsson 1982] or [Németi 1991].

Universal algebra

Given a term τ = τ(x1, . . . , xn) in an algebraic similarity type and an algebra A of this
similarity type, τ induces a map: An → A. This map is denoted by τA.

In this paper we will be dealing with three different similarity types, namely those of
relation algebras/Lyndon algebras, slender Lyndon algebras and three-dimensional diagonal-
free cylindric algebras. For brevity, we will denote the second similarity type by SL and the
third by Df3. All these similarity types extend that of Boolean algebras; for the boolean
reducts of the similarity types we will use uniform and familiar notation like +, −, 0, · and
1. Of these, we consider the first three as primitive and the other two as abbreviations. The
relation algebraic similarity type has a binary function symbol ;, a unary ^ and a constant 1’;
as abbreviation we use 0’ for −1’. The similarity type SL has only one non-boolean function
symbol; it is binary and we also denote it by ;. Three-dimensional diagonal-free cylindric
algebras will be discussed below.

For all these languages, we will use standard abbreviations for certain formulas, such as
σ � τ for σ + τ ≈ τ , σ 6≈ τ for ¬(σ ≈ τ), and σ ≺ τ for σ � τ ∧ σ 6≈ τ .

Projective geometries

As we mentioned before, we model projective geometries as structures G = (P,L, I), where
P is a non-empty set of points, L is a non-empty set of lines, and I ⊆ P × L is a binary
incidence relation between points and lines. We use standard geometrical terminology like
‘two lines meet in the point s’; we may also follow standard practice in identifying a line with
the set of points that are incident with it. Now such a two-sorted structure G is a projective
geometry or projective space if it satisfies the following axioms:
(A1) There exists at least one line, and each line has at least four points;
(A2) Each pair of distinct points (x, y) lies on a unique line, xy;
(A3) If x, y and z are distinct points, and a line meets lines xy and xz in distinct points,

then it meets yz.
In the sequel, we will frequently omit the adjective ‘projective’ when referring to geome-

tries.
Now let G = (P,L, I) be a geometry. A subset S of P is a subspace of G if for all distinct

points p, q in S, we have pq ⊆ S. For any X ⊆ G, define 〈X〉, the span of X or subspace
generated by X, to be the smallest subspace containing X. It is easy to see that 〈X〉 is the
intersection of all subspaces containing X. A hyperplane H of a geometry G is a maximal
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proper subspace of G. If 〈X〉 = S we say that X is a spanning set of S. We write 〈X1, . . . , Xn〉
for 〈X1 ∪ . . . ∪Xn〉, and 〈p, q, r〉 for 〈{p}, {q}, {r}〉. A subset S of G is independent if for all
p ∈ S we have 〈S \{p}〉 6= 〈S〉. An independent spanning set of G is called a basis of G. Every
geometry has a basis and all bases of a geometry have the same cardinality; this cardinal
is called the rank r of G. Finally, we can define the dimension d of G as d = r − 1 if r is
finite, and d = ∞ if r is infinite. One-dimensional projective spaces are called lines, and
two-dimensional ones, planes.

One can prove that all lines of a projective space have the same cardinality; a geometry
is said to have order α if each of its lines contains α+ 1 points.

For explicit reference we list the following geometric facts. These results are very easy
to derive from the definitions, or can be found in any textbook on projective geometry; for
instance, the reader might consult Chapter 2 and 6 of [Garner 1981].

Fact 2.1 Let G = (P,L, I) be a projective geometry. Then
(1) If S is a subspace of dimension 2 of G, i.e., a plane, then any two of its lines meet.
(2) Every line in G meets every hyperplane H of G.
(3) Let S0, S1 be non-empty subspaces of G. Then

〈S0, S1〉 = (S0 ∩ S1) ∪
⋃
{s0s1 | s0 ∈ S0, s1 ∈ S1 and s0 6= s1}.

(4) If Si, Sj are subspaces of G, then Si • Sj = 〈Si, Sj〉.
(5) For subspaces S0, S1 and S2 of G we have 〈S0, S1, S2〉 = 〈S0, 〈S1, S2〉〉.
(6) If a line intersects a subspace, while it does not form part of the subspace, then the

intersection is a singleton point.
(7) Let M be an independent set, and {Mi : i < 3} a partition of M . Then there are no

collinear points s0 ∈ 〈M0〉, s1 ∈ 〈M1〉 and s2 ∈ 〈M2〉.

Boolean algebras with operators

All algebras that we encounter in this paper are Boolean algebras with operators; that is,
Boolean algebras augmented with operations that are additive in each of their arguments.
The prime examples of such algebras are the so-called complex algebras.

Given a set W and a relation R ⊆ Wn+1, define the operation mR : ℘(W )n → ℘(W ) by
mR(X1, . . . , Xn) = {y ∈ W | Ryx1 . . . xn for some x1 ∈ X1, . . . , xn ∈ Xn}. The complex alge-
bra of a relational structure F = (W,Ri)i∈I is defined as the algebra F+ = (℘(W ),∪,∼,∅,mRi)i∈I ,
with (℘(W ),∪,∼,∅) being the power set algebra of W . The structure F is called the atom
structure of F+; we will frequently deal with properties of complex algebras that correspond
to certain properties of their atom structures.

A class K of Boolean algebras with operators is a discriminator class if there is some unary
term σ(x) such that K |= x 6≈ 0→ σ(x) ≈ 1 and K |= σ(0) = 0.

Fact 2.2 (Cf. [Tarski & Givant 1988]) For any discriminator class K of Boolean algebras
with operators there is a recursive translation which turns any universal formula into an
equation which is equivalent to it over K.
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Diagonal-free cylindric algebras

Diagonal-free cylindric algebras, and in particular, the representable ones, form an algebraic
counterpart of first-order logic without equality. For a survey of the theory of these algebras
the reader is referred to Chapter 5 of [Henkin, Monk & Tarski 1985]; here we confine ourselves
to the definitions and those facts that we need later on. Let α be an arbitrary but fixed ordinal.

A diagonal-free cylindric algebra of dimension α, for brevity a Dfα, is an algebra A =
(A,+, ·, −, 0, ci)i∈α such that (A,+, ·, −, 0) is a boolean algebra, and each ci is a unary
operation on A such that the following identities hold in A, for all i, j ∈ α:

(C1) ci0 ≈ 0
(C2) x � cix, (i.e., x+ cix ≈ cix)
(C3) ci(x · ciy) ≈ cix · ciy
(C4) cicjx ≈ cjcix.

The variety of all diagonal-free cylindric algebras of dimension α is denoted by Dfα.
In this article we are mainly interested in the representable Dfα’s; elements of these alge-

bras represent α-ary relations. For an arbitrary family U = {Ui : i < α} of non-empty sets,
we define, for any i < α, the relation ≡i on the Cartesian product

∏
i<α Ui by

u ≡i v iff uj = vj for all j 6= i;

that is, the α-sequences u and v are i-related if and only if they differ at most in their i-th
coordinate. Relational structures of the form (

∏
i<α Ui,≡i)i∈I are called blocks; if Ui = Uj

for every pair i, j ∈ I we call the structure a cube. Any subalgebra of the structure

Cα(U) = (
∏
i<α

Ui,≡i )
+

i∈I

is called an α-dimensional diagonal-free cylindric set algebra with base system U , or shortly:
a set Dfα over U . Set Dfα’s of the kind Cα(U) are called full. A full set Dfα is countably
based if it is of the form Cα(U) with each Ui being a countable set. Finally, a Dfα is called
representable if it is isomorphic to a subalgebra of a product of full set Dfα’s. The class of
such algebras is denoted by RDfα.

From now we concentrate on the case α = 3. An element of a Df3 A is called rectangular
if it satisfies a = c0c1a · c0c2a · c1c2a; A is called rectangularly atomic if it is atomic and each
of its atoms is rectangular.

Proofs of the following facts can be found in Chapter 5 of [Henkin, Monk & Tarski 1985].

Fact 2.3 The following hold for diagonal-free cylindric algebras:
(1) A Df3 is simple if and only if it satisfies ∀x(x 6= 0→ c0c1c2x = 1).
(2) A representable Df3 is simple if and only if it is isomorphic to a set Df3.
(3) Any rectangularly atomic Df3 is representable. If such an algebra is in addition complete

and simple, it is isomorphic to a full set Df3.
(4) Suppose that A is a set Df3 with base system U , and V is a larger base system in the

sense that |Ui| ≤ |Vi| for every i < 3. Then A can be embedded in C3(V ).
(5) RDf3 is a variety which is generated by the class of countably based set Df3’s.
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3 Proofs

As we mentioned in our introduction, the main technical result of our paper is the following.

Theorem 3.1 If G is a class of projective geometries which contains an infinite geometry of
dimension at least three, then the equational theory of S(G) is undecidable.

It is the main aim of this section to prove Theorem 3.1, but let us first see how to derive
Theorem 1 from it.

Proof of Theorem 1. Recall that SL denotes the similarity type of slender Lyndon alge-
bras. We will define a translation ·̂ of SL-terms to relation algebraic terms such that for any
SL-equation σ ≈ τ , and any geometry G we have that

S(G) |= σ ≈ τ iff L(G) |= σ̂ ≈ τ̂ .(3)

The definition of this translation proceeds by term induction:

x̂ = x · 0’
−̂τ = −τ̂ · 0’
σ̂ · τ = σ̂ · τ̂
σ̂; τ = ((σ̂ + τ̂ + σ̂; τ̂) · σ̂; 1 · τ̂ ; 1) · 0’

Since ·̂ is a recursive function with a recursive domain, Theorem 1 will follow immediately
from (3) and Theorem 3.1.

Let G be some geometry, and τ an arbitrary SL-term. We claim that

τ̂L(G)(Q1, . . . , Qn) = τS(G)(Q1 ∩ P, . . . , Qn ∩ P )(4)

for arbitrary subsets Q1, . . . , Qn of Pe. This suffices to prove (3) because of the following.
Consider an SL-equation σ ≈ τ , and an arbitrary geometry G. First assume that L(G) |=
σ̂ ≈ τ̂ ; we will prove that S(G) |= σ ≈ τ . Consider arbitrary subsets Q1, . . . , Qn of P . It
follows from L(G) |= σ̂ ≈ τ̂ that σ̂L(G)(Q1, . . . , Qn) = τ̂L(G)(Q1, . . . , Qn). Hence, since Qi ⊆ P
for all i, (4) gives that σS(G)(Q1, . . . , Qn) = τS(G)(Q1, . . . , Qn). But since Q1, . . . , Qn were
arbitrary, this gives that S(G) |= σ ≈ τ , which is what we were after. The other direction is
proved in a similar way.

We prove (4) by a straightforward term induction. The only non-trivial part of this proof
concerns the case of the induction step when τ is of the form τ0; τ1. In order to cover this
case it is sufficient to show that for any X,Y ⊆ P we have that

X • Y = ((X ∪ Y ∪X ◦ Y ) ∩X ◦ Pe ∩ Y ◦ Pe) ∩ P.(5)

For a better understanding of the right hand side of this equation it will help to realize that
for any X ⊂ Pe,

X ◦ Pe =
{
∅ if X = ∅

Pe otherwise.
(6)
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In other words, x; 1 is a unary discriminator term on the class of Lyndon algebras. The
observation (6) makes it easy to see how the parts X ◦ Pe and Y ◦ Pe in (5) are needed only
to handle the case where one of the sets X and Y is empty.

Now suppose that p belongs to X • Y . Then neither X nor Y is empty, and p ∈ P by
definition of •, so by (6) it suffices to show that p belongs to the set X ∪Y ∪X ◦Y . It follows
from the definition of • that there are x ∈ X and y ∈ Y such that either x and y are distinct
and p ∈ xy, or otherwise p = x = y. In the first case we have either p = x (and thus, p ∈ X),
or p = y (and thus, p ∈ Y ), or else p ∈ xy \ {x, y}, whence p belongs to {x} ◦ {y} and thus
to X ◦ Y . In the second case we immediately obtain that p ∈ X. In either case we find that
p ∈ X ∪ Y ∪X ◦ Y .

For the reverse inclusion, suppose that p is an element of the right hand side of (5). It
immediately follows that X ◦Pe and Y ◦Pe are non-empty, so by (6) X and Y themselves are
not empty. Since p ∈ X ∪ Y ∪X ◦ Y , we may distinguish the following four cases: p ∈ X \ Y ,
p ∈ Y \X, p ∈ X ∩Y or p ∈ X ◦Y . In the last two cases p is in X •Y because the latter set is
defined to include all lines through distinct points in X and Y , as well as all points that are
in both X and Y . The first two cases are completely symmetric — we confine ourselves to
treating the first. That is, assume that p belongs to X but not to Y . Since Y is not empty it
must contain some element y which is thus distinct from p. But then from p ∈ py = {p} • {y}
it follows that p ∈ X • Y . This proves (5) and hence (4). qed

We now turn to the proof of Theorem 3.1, which is based on three auxiliary results.
The first two of these, Lemma 3.3 and Lemma 3.4 below, provide the details of the earlier-
mentioned connection between Lyndon algebras and diagonal-free cylindric set algebras. We
then put this connection to work by defining a translation from Df 3-equations to universal
formulas in the algebraic SL-language, and proving that any equation is valid in the class of
set Df3’s iff its translation is valid in the class S(G), for any class G of geometries that meets
the conditions of Theorem 3.1. From this, Theorem 3.1 will follow almost immediately.

Let us first explain the basic idea of the connection, by means of an example. Consider a
projective plane P = (P,L, I), single out one line h which we will call the horizon or line at
infinity, and take two distinct points on h, say, s0 and s1. Let A be the set of ‘finite’ points;
that is, A consists of all points not on h. Now, given any finite point p, we can draw the two
lines connecting p with s0 and with s1 respectively. In the picture below, these lines has been
drawn, for various finite points.
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We define the relations ∼0 and ∼1 on A as follows:

p ∼i q iff p, q and si are collinear.

That is, p ∼i q if and only if q lies on the line through p ‘in the direction of si’.
The key observation underlying the connection between geometries and diagonal-free al-

gebras is that the relational structure (A,∼0,∼1) is isomorphic to a cube (since we are in
dimension 2, the name ‘square’ would have been more appropriate). In algebraic terms this
means that the complex algebra of (A,∼0,∼1) is isomorphic to a full set Df2.

Conversely, consider the complex algebra A of a block (U0 × U1,≡0,≡1), where U0 and
U1 are countable. Now consider an infinite projective plane P = (P,L, I); that is, assume
that P is infinite. This implies that every line has infinitely many points. Hence, carrying
out the construction described above (with a line h ∈ L and points s0 and s1 on h), we find
that all equivalence classes of ∼0 and ∼1 are infinite. Hence, the structure (A,∼0,∼1) is
isomorphic to a square B = (U × U,≡0,≡1) based on an infinite set U . It follows from (the
two-dimensional version of) Fact 2.3(5) that A can be embedded in the complex algebra B+,
and hence, in the diagonal-free set algebra associated with P, h, s0 and s1.

It is obvious how to adapt this idea to projective geometries of dimension three: instead
of a line h we take a plane H, and instead of two designated ‘direction points’ in H, we take
three such points. However, the geometries that we are involved with in this paper are not
necessarily of dimension exactly three, but may be of arbitrary dimension (at least three).
We modify our construction as follows. Instead of working with direction points s0, s1 and s2

we work with direction spaces S0, S1 and S2. To be precise, suppose that G has a hyperplane
H which is spanned by three suitable subspaces S0, S1 and S2. Let A be the set of ‘finite’
points, that is, A = P \H; and for i < 3, define the relation ∼i on A by

p ∼i q iff for some s ∈ Si, the points p, q and s are collinear.

We can still prove that these relations ∼i are equivalence relations, although their equivalence
classes may not all have the same cardinality. Fortunately however, provided that we impose
some restrictions on S0, S1 and S2, we can still make sure that the structure (A,∼i)i<3
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is isomorphic to a block. Again phrased in algebraic terms, we can show that with each
suitable collection of subspaces H, S0, S1 and S2, the associated complex algebra (A,∼i)+

i<3

is isomorphic to a full set Df3. And vice versa, given a ‘small’ set Df3, we can ‘build a geometry
around its atom structure’.

There is one minor problem left, due to the fact that we want to catch this construction in
a nice translation mapping equations in the language of diagonal free algebras to formulas in
the algebraic language of slender Lyndon algebras. The point is that although we can express
algebraically that an SL-variable is interpreted as a subspace of the geometry, we cannot say
that it refers to a hyperplane. What happens if we carry out the construction sketched above
for an arbitrary subspace H, not necessarily a hyperplane? As we will see below, the only
difference this makes is that the structure (A,∼i)i<3 will not be isomorphic to a block, but to
a disjoint union of such blocks. Its complex algebra will therefor not be isomorphic to a full
set Df3, but to a product of such algebras. This will turn out to be only a minor complication.

Now that we have given an informal explanation of our constructions, let us provide the
technical details. The following notion will be used throughout the remainder of the paper.

Definition 3.2 Let G be a projective geometry with point set P . A quadruple T = (H,S0, S1, S2)
is called a tripod in G if

- H is a non-empty proper subspace of G,

- S0, S1 and S2 are proper, mutually disjoint subspaces of H that span H,

- while there is no triple of collinear points s0 ∈ S0, s1 ∈ S1 and s2 ∈ S2.

For a tripod T = (H,S0, S1, S2) in G, we put AT = P \H, and define the binary relations
∼i on AT for i < 3:

p ∼i q iff for some s ∈ Si, the points p, q and s are collinear.(7)

Furthermore, define the following operations on ℘(AT ), for i < 3:

CiQ = {p ∈ AT | p ∼i q for some q ∈ Q}.(8)

Finally, we define the structure DG,T as:

DG,T = (℘(AT ),∪,∼, ∅, Ci)i<3.

That is, DG,T is defined as the complex algebra of the structure (AT ,∼i)i<3.
Since no confusion is likely to arise concerning the geometry involved, we usually omit the

first subscript, writing DT instead of DG,T .

The name tripod stems from the observation that within the lattice of subspaces of G,
the subspace H ‘stands’ on the three legs S0, S1, S2. Observe that if T = (H,S0, S1, S2) is
a tripod, then the dimension of H cannot be smaller than two; hence, only geometries of
dimension at least three can contain tripods.
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As we mentioned already informally, the algebras DG,T in the definition above form the
link between slender Lyndon algebras and representable diagonal-free cylindric algebras. To
start with, observe that for any tripod T in a geometry G, the algebra DG,T is of the similarity
type of diagonal-free algebras. In fact, we know much more about DG,T , as the next lemma
will show.

Lemma 3.3 Suppose T is a tripod in the projective geometry G. Then DT is isomorphic to
a representable diagonal-free cylindric algebra of dimension three.

Proof. Let G = (P,L, I) be a geometry and suppose that T is a tripod of G. We will prove
that DT is a complete and atomic Df3 with rectangular atoms. This suffices to prove the
Lemma by Fact 2.3(3).

It is easy to see that DT is complete and atomic, since its boolean reduct is the power
set algebra of AT . The other properties of DT will be proved in the two Claims below. As
indicated above, in the proofs of these Claims the atom structure (AT ,∼i)i<3 of DT plays a
crucial role.

Claim 1. DT belongs to Df3.

Proof of Claim. It is well-known (cf. [Henkin, Monk & Tarski 1971], Theorem 2.7.40 and
its proof) and in fact, easy to see, that the complex algebra of any structure (W,R1, R2, R3)
belongs to Df3 if and only if the relations Ri are mutually commuting equivalence relations.
(We say that two relations R1 and R2 commute if R1|R2 = R2|R1, where | denotes relational
composition). Since DT is the complex algebra of the structure (AT ,∼i)i<3, it suffices for us
to prove that each ∼i is an equivalence relation and that for each pair of distinct i and j, the
relations ∼i and ∼j commute.

Let us first establish that ∼i is an equivalence relation for each i < 3. Reflexivity and
symmetry are easily proved, so we concentrate on transitivity. Suppose that p ∼i q ∼i r;
that is, there are points s and s′ in Si such that p, q and s and q, r and s′ are collinear,
respectively. If p, q and r are collinear then by Fact 2.1(6) the points s and s′ must be
identical; it is then immediate that p ∼i r. Now assume that p, q and r are not collinear and
consider the projective space 〈p, q, r〉 which then must be a plane, cf. the picture below.
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Since both s and s′ are elements of this plane, the line ss′ is a subset of 〈p, q, r〉 by the
definition of a subspace. In a similar way, the line pr forms part of 〈p, q, r〉. By Fact 2.1(1),
the lines ss′ and pr meet at some point s′′ which is an element of the subspace Si since
ss′ ⊆ Si. Since p, r and s′′ are collinear, this gives p ∼i r.

Let us now check the commutativity condition. Obviously, it suffices to prove that for any
p, q and distinct i and j we have

p ∼i | ∼j q iff p and q are collinear with some s ∈ Si • Sj .(9)

For, it readily follows from its definition (2) that • is a commutative operation; but from
Si • Sj = Sj • Si and (9) it is immediate that ∼i and ∼j commute.

In order to prove (9), suppose that p ∼i r ∼j q for some r ∈ AT . We first take care of the
cases that p, q and r are not all distinct. If p = q or q = r then p, q and si are collinear and
hence (9) follows from si ∈ Si ⊆ Si • Sj . If p = r then p, q and sj are collinear; now we prove
(9) by sj ∈ Sj ⊆ Si • Sj .

Now assume that p, q and r are distinct. We claim that p, q and r cannot be collinear;
for, if they were collinear, by Fact 2.1(6) the intersection of this line with H would be a single
point. Since both si and sj belong to this intersection, we would obtain that si = sj , which
gives the desired contradiction. But if p, q and r are not collinear, then the projective space
〈p, q, r〉 is a plane. The lines sisj and pq are part of 〈p, q, r〉, by the definition of a subspace.
Hence, by Fact 2.1(1) these lines must meet, say, in s (cf. the picture below).
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Clearly, s is the point that we are looking for, since it is collinear with p and q and belongs
to the subspace Si • Sj .

For the reverse direction of (9), assume that p and q are collinear with some point s ∈
Si • Sj . Assume that p and q are distinct (if they are not distinct then we have p ∼i | ∼j q
by p ∼i p ∼j q). Now since s ∈ Si • Sj , there are three possibilities: either s ∈ Si or s ∈ Sj
or s lies on some line sisj with si ∈ Si, sj ∈ Sj .

In the first case we immediately see that p ∼i q, whence p ∼i | ∼j q by q ∼j q; the second
case goes by a symmetric argument. In the third case, consider the plane through the points
p, q, s, si and sj (cf. the same picture). By Fact 2.1(1), the lines psi and qsj meet in some
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point, say r. We claim that r does not lie in H, for suppose otherwise. By Fact 2.1(6), si is
the only point on psi that belongs to H, so we would find that r = si. Analogous reasoning
concerning qsj would yield that r = sj . But this would imply that si = sj which cannot be
the case by our assumption on the disjointness of Si and Sj . Hence, we may assume that r
belongs to AT . By definition of ∼i, the collinearity of q, r and si implies that p ∼i r; and
likewise, the collinearity of q, r and sj implies that r ∼j q. This shows that indeed p ∼i | ∼j q
and hence proves (9). J

Claim 2. DT is rectangularly atomic.

Proof of Claim. Finally, we turn to the proof that all atoms of DT are rectangular. As
with the other properties, rectangularity of the atoms of a Df3 corresponds to a property of
the atom structure. We claim that it suffices to prove the following, for all points p, q and r;

if p ∼i q ∼j r ∼k p for distinct i, j, k < 3, then p = q = r.(10)

For, using (10) we can reason as follows (without any further reference to the geometric origin
of the algebra DT or its atom structure). Consider an arbitrary atom of DT . By definition of
DT , this atom must be a singleton, say {p}, for some point p in AT = P \H. First we show
that

C0{p} = C0C1{p} ∩ C0C2{p}.(11)

For, suppose that q ∈ C0C1{p} ∩ C0C2{p}. Then by the definition of C0 and C1, there
exist s and t in AT such that p ∼0 s ∼1 q and p ∼0 t ∼2 q, respectively; it follows that
q ∼1 s ∼0 t ∼2 q. Therefore, q = s by (10). Hence, q ∈ C0{p}, since s ∈ C0{p}. The opposite
inclusion can be easily derived using the fact that the axioms C2 and C4 hold in DT . This
proves (11), which places us in the right position to prove that {p} is a rectangular atom:

{p} = C0C1{p} ∩ C0C2{p} ∩ C1C2{p}.(12)

First, take an arbitrary point q in C0C1{p} ∩ C0C2{p} ∩ C1C2{p}. Applying (11), we find
that q ∈ C0{p} ∩ C1C2{p}. Then by the definition of the Ci operations, there exists r such
that p ∼0 q ∼2 r ∼1 p; hence, by (10) p and q must be identical, showing that q belongs to
{p}. The opposite inclusion is easily proved using axiom C2.

The only thing left to do is to check condition (10); here we will use the geometric prop-
erty of tripods that there are no collinear points belonging to the three spanning subspaces.
Suppose that for some distinct i, j, k < 3, we have that p ∼i q ∼j r ∼k p while p and q
are distinct. Note that in this case, r cannot be identical to both p and q; without loss of
generality, assume that r 6= q. We may thus freely speak of the lines pq and qr.

By Fact 2.1(6), it follows from p ∼i q that the intersection of the line pq with H is some
point si ∈ Si, and from q ∼j r that the intersection of the line qr with H is some point
sj ∈ Sj . But since Si∩Sj = ∅, the points si and sj are distinct. From this it follows that the
lines pq and qr must be distinct; in particular, we have that p and r must be distinct, and
that p, q and r can not be collinear. But then the subspace 〈p, q, r〉 is a plane.
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Now the intersection S of this plane with H must be a subspace. Since S contains the
points si = pq ∩ H and sj = qr ∩ H, it contains the line sisj . However, the plane 〈p, q, r〉
is not contained in H, for instance, p 6∈ H; therefore, S cannot be bigger than a line. We
conclude that S must be identical to the line sisj . Now consider the line rp; this line must
intersect H in a point sk ∈ Sk, since r ∼k p. But since sk also belongs to the plane 〈p, q, r〉
we find sk ∈ S. By our previous observation then, sk must be incident with the line sisj ,
contradicting the tripod condition that there are no collinear points s0 ∈ S0, s1 ∈ S1 and
s2 ∈ S2. J

Having proved these two claims, we may conclude by Fact 2.3(3) that indeed, DT is a
representable Df3. qed

The next Lemma works the other way around. It states that for a ‘small’ set Df3 A and
an infinite geometry G of dimension at least three, we can find a tripod T in G such that A
can be embedded in DT .

Lemma 3.4 Let A be a countably based set Df3, and let G be an infinite projective geometry
of dimension at least three. Then there is a tripod T in G such that A can be embedded in
DT .

Proof. Our aim is to find a tripod T in G such that DT is simple (that is, it is isomorphic
to a set Df3) and each equivalence class of each relation ∼i is infinite.

Let M be a basis of G. Since G is an infinite geometry, there are two (not necessarily
exclusive) possibilities: G may be of infinite order, or of infinite dimension. Observe that in
the second case M will be infinite as well. Fix some t ∈ M and define H as the subspace
generated by M \ {t}; it is easy to see that H is a hyperplane. By our assumption concerning
the dimension of G, we have that |M \ {t}| ≥ 3. Partition M \ {t} into three non-empty sets
M0,M1,M2, with the proviso that if M is infinite, then each Mi is infinite as well. We define
Si to be the span of Mi: Si = 〈Mi〉. Clearly, H = 〈S0, S1, S2〉. Furthermore, it follows from
Fact 2.1(7) that there is no triple of collinear points s0 ∈ S0, s1 ∈ S1 and s2 ∈ S2. Hence,
T = (H,S0, S1, S2) is a tripod in G; let AT , Ci and DT be as in Definition 3.2. Our main aim
is now to prove the following Claims.

Claim 1. DT is simple.

Proof of Claim. It suffices to show that

for any p, q ∈ AT , there are v, u ∈ AT such that p ∼0 v ∼1 u ∼2 q.(13)

For, assume that (13) holds and take an arbitrary non-empty subset Q of AT = P \H, and
an arbitrary point p ∈ AT . Since Q is non-empty it contains some point q. Then (13) yields
points v and u in AT such that p ∼0 v ∼1 u ∼2 q; from this and the definitions we may easily
infer that p ∈ C0C1C2Q. But since p was arbitrary, this shows that C0C1C2Q = AT whence
DT is simple indeed, by Fact 2.3(1).

In order to prove (13), let p and q be arbitrary points in AT . If p = q then (13) trivially
follows by reflexivity of the relations ∼i. Now assume that p 6= q; hence, we may speak of the
line pq.
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One of the key observations is that since H is a hyperplane, it must intersect the line pq
by Fact 2.1(2). By Fact 2.1(6) there must be a unique intersection point, say h. Note that
H = 〈S0, S1, S2〉 = 〈S0, 〈S1, S2〉〉 = S0 • (S1 •S2) (cf. Fact 2.1, parts (5) and (4), respectively).
Now define S12 to be the subspace S1 • S2, and let ∼12 be the corresponding relation; that
is, p ∼12 q iff p and q are collinear with some s ∈ S12. Observe that it follows from (9) in the
proof of the previous Lemma that ∼12 is the relational composition of ∼1 and ∼2.

Since h ∈ H = S0 • (S1 • S2) it follows, again from (9), that p ∼0 | ∼12 q. Together with
the observation that ∼12=∼1 | ∼2 this proves (13). J

Claim 2. For each i, the equivalence class of ∼i is infinite.

Proof of Claim. Let E be an ∼i-equivalence class. We now distinguish cases as to the
reason why G is infinite. If G is of infinite order, consider a point p from E and the line psi
for some point si ∈ Si. Note that si is the only point on this line which belongs to H, by
Fact 2.1(6). All other points of the line psi belong to the ∼i-equivalence class E, and as there
are infinitely many of these points, E is infinite.

If, on the other hand, the dimension of G is infinite, we reason as follows. Take an arbitrary
point p of E and consider the set B of all lines connecting p to some point in Si. Observe
that two distinct lines in B cannot intersect in any point other than p. It is thus obvious
that the function mapping a line in B to the (unique!) point where the line intersects Si, is
a bijection from B onto Si. In particular, this shows B to be infinite, since Si is infinite by
our proviso on Mi. But since any line must contain at least three points, we may choose on
each line in B a point which is distinct from p and not in Si. The collection of these points
forms then an infinite subset of E. Hence, E itself must be infinite. J

How can we prove the Lemma from these Claims? To start with, the proof of the previous
Lemma establishes that DT is a complete and atomic representable Df3. And second, by
Claim 1, DT is simple. It thus follows from Fact 2.3(3) that DT is isomorphic to some full
set Df3, say, B. Suppose that B is based on the sets {Yi : i < 3}. It is not difficult to see that
each Yi must be infinite. For, if DT and B are isomorphic, then so must be their underlying
relational structures (AT ,∼i)i<3 and (

∏
i<3 Yi,≡i). But then it follows from Claim 2 that

each ≡i-equivalence class is infinite; from this it is immediate that each Yi is infinite as well.
Now recall thatA is a countably based three-dimensional diagonal-free cylindric set algebra;

suppose its base system is {Ui : i < 3}, where each Ui is countable. Hence, for each i < 3,
|Ui| ≤ |Yi| since Yi is infinite. Then we may apply Fact 2.3(4) and conclude that A can be
embedded in B, and therefore, in DT , by isomorphism. qed

In order to put the above two lemmas to work we now specify a translation mapping
Df 3-equations to universal formulas in the language of slender Lyndon algebras.

Definition 3.5 Let h, si, (i < 3), be distinguished variables in the language of slender Lyndon
algebras. The translation ·, mapping Df 3-terms to SL-terms, is defined by the following term
induction:

x = x · −h
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−σ = −σ · −h

σ · τ = σ · τ
ciσ = (σ; si) · −h

Furthermore, define the following ‘subspace-equation’

subspace(σ) = σ;σ ≈ σ,

and the ‘tripod-formula’

tripod(h, s0, s1, s2) = h 6≈ 1 ∧
∧

0≤i<3

(si 6≈ 0) ∧
∧

0≤i<3

(si ≺ h) ∧
∧

0≤i,j<3,i6=j
(si · sj ≈ 0) ∧

∧ subspace(h) ∧
∧

0≤i<3

subspace(si) ∧

∧ s0 · (s1; s2) ≈ 0 ∧ (s0; s1); s2 ≈ h.

Finally, we take the translation tr(σ ≈ τ) of a Df 3-equation σ ≈ τ to be the formula

tr(σ ≈ τ) = tripod(h, s0, s1, s2)→ σ ≈ τ .

Observe that the translation of a Df3-equation is a boolean combination of SL-equations
and thus a universal formula. The precise meaning of the translation will be discussed in the
proof of Lemma 3.6 below.

Recall that RDf3 denotes the class of representable diagonal-free cylindric algebras, and
S(G) denote the class of slender Lyndon algebras associated with a class G of geometries.

Lemma 3.6 Let G be a class of projective geometries which contains an infinite projective
geometry of dimension at least three. Then for any pair of Df 3-terms σ and τ ,

RDf3 |= σ ≈ τ iff S(G) |= tr(σ ≈ τ).

Proof. Two main observations underpin our proof of this Lemma. Let G = (P,L, I) be
a geometry and consider subsets H, S0, S1 and S2 of P . Assume that H, S0, S1 and S2

interpret the variables h, s0, s1 and s2, respectively. Our first observation is that

tripod(H,S0, S1, S2) holds in S(G) iff (H,S0, S1, S2) is a tripod of G.(14)

And second, if we assume that T = (H,S0, S1, S2) is a tripod in G, we have for any term σ:

σDT (Q1 ∩AT , . . . , Qn ∩AT ) = σ S(G)(Q1, . . . , Qn,H, S0, S1, S2),(15)

for all Q1, . . . , Qn ∈ ℘(P ). The details of this proof are immediate by the definitions and
therefore left to the reader — the crucial case of the inductive step follows from the observation
that

CiQ = (Si •Q) ∩AT ,

as a direct proof reveals.
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The proof of (14) is straightforward as well, but let us briefly discuss the contributions of
the respective conjuncts. The important thing to remember is that the operation symbol ; is
interpreted as the operation •, and that for subspaces X and Y , X • Y denotes the subspace
spanned by X and Y , cf. Fact 2.1(4).

Now the first conjuncts of the tripod-formula obviously have the following meaning:

h 6≈ 1 H is a proper subset of P ,∧
0≤i<3(si 6≈ 0) each Si is non-empty,∧
0≤i<3(si ≺ h) each Si is a proper subset of H,∧
0≤i,j<3,i6=j(si · sj ≈ 0) S0, S1 and S2 are mutually disjoint,

The conjuncts subspace(h) and
∧

0≤i<3subspace(si) state that H, S0, S1 and S2 are subspaces
of the geometry; this follows from the observation that for any subset X of P

X is a subspace of G iff X = X •X.

Then, the formula (s0; s1); s2 ≈ h denotes that H is spanned by S0, S1 and S2. Finally, given
the disjointness of S0, S1 and S2, the conjunct s0 · (s1; s2) ≈ 0 holds in S(G) if and only if
there are no three collinear points from S0, S1 and S2, respectively. This proves (14).

In order to prove the Lemma, first suppose that the formula tr(σ ≈ τ) is not valid in
the class S(G). Then there is some geometry G in G such that tr(σ ≈ τ) does not hold in
S(G); that is, there are H,S0, S1, S2, ~Q such that tripod(H,S0, S1, S2) holds in S(G) while
σ S(G)( ~Q,H, S0, S1, S2) 6= τ S(G)( ~Q,H, S0, S1, S2). It follows from (14) that T = (H,S0, S1, S2)
is a tripod in G; thus, by Lemma 3.3 DT is a representable diagonal-free cylindric algebra of
dimension 3. With the help of (15) we may also infer that σDT (Q1 ∩ AT , . . . , Qn ∩ AT ) 6=
τ DT (Q1 ∩AT , . . . , Qn ∩AT ). But then we have shown that the equation σ ≈ τ is not valid in
the class of representable Df3’s.

For the opposite direction, assume that the equation σ ≈ τ is not valid in the class of
representable Df3’s. By Fact 2.3(5) we may assume that the equation can be refuted in some
diagonal-free cylindric set algebra A with unit V = Y0×Y1×Y2 for some non-empty, countable
sets Yi, i < 3. By Lemma 3.4, this algebra A can be embedded in the structure DG,T , where
G is any infinite geometry in S(G) of dimension at least three, and T = (H,S0, S1, S2) is an
appropriate tripod in G. It follows that we can also refute σ ≈ τ in DT , so σDT ( ~Q) 6= τ DT ( ~Q)
for some ~Q ⊆ AT . By (14), tripod(H,S0, S1, S2) holds in S(G) since (H,S0, S1, S2) is a tripod
in G. Applying (15), we get σ S(G)( ~Q,H, S0, S1, S2) 6= τ S(G)( ~Q,H, S0, S1, S2). So tr(σ ≈ τ)
does not hold in S(G). qed

We are now in a position to bring these Lemmas together and prove our main technical
result.

Proof of Theorem 3.1. Suppose G is a class of geometries which contains an infinite
geometry of dimension d ≥ 3. Let σ ≈ τ be a Df 3-equation. By the previous Lemma, σ ≈ τ
is valid in the class of representable Df3’s iff tr(σ ≈ τ) is valid in the class of Lyndon algebras
over G. We already say that the translation tr turns Df 3-equations into universal formulas
in the language of slender Lyndon algebras. Now it is relatively simple to show that S(G) is

17



a discriminator class: the unary discriminator term is x; 1. (All that is required is to show
that for every non-empty set Q of points in a geometry G = (P,L, I) we have Q •P = P , and
this is straightforward.) Hence, by Fact 2.2 this means that there is a recursive procedure
of rewriting universal formulas into equivalent equations of slender Lyndon algebras. So
the equational theory of representable Df3’s reduces to the equational theory of S(G). By a
result of R. Maddux, the first-mentioned theory is undecidable, cf. [Maddux 1980]; hence, the
equational theory of S(G) is undecidable as well. qed

Finally, as we mentioned in the introduction to this paper, S. Givant pointed out to us
that he could obtain the following strengthenings of our Theorem 1:

1. If G is a class of projective geometries such that for each natural number n there is a
geometry in G of size at least n and dimension at least three, then the equational theory
of LG is undecidable.

2. If an arbitrary class of relation algebraas contains, for each positive integer n, a Lyndon
algebra of dimension at least n, then the equational theory of the class is undecidable.

The proof of the first statement is analogous to the proof of our Theorem 1; Givant proves
and uses an undecidability result for classes of Df3’s such that for each natural number n, the
class contains a set algebra with base sets each of size at least n. The proof of the second
statement uses ideas developed in [Andréka, Givant & Németi 1997].
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