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Abstract

We study the dynamics of information change, using modal logic as a vehicle. Our semantic
perspective is that of a supermodel in which a state represents some agent’s information, and
the accessibility relations are those of increasing and decreasing knowledge. We concentrate
on two specific settings in which an information state consists of all valuations that are models
for some propositional formula, or theory, respectively; treating such a set of valuations as an
epistemic S5-model, allows us to interpret epistemic formulas in it in the standard fashion.
For the validities of one of these two supermodels we provide a Hilbert-style derivation system;
our main technical result shows this derivation system to be sound and complete.

1 Introduction

Agents in a dynamic world have to deal with changing information. The information they have
about the world may change as a result of performing observations, communication with other
agents, or through nonmonotonic reasoning (where an agent makes certain plausible assumptions).
The most basic kinds of change are increase and decrease of knowledge, and in a sense all changes
in information can be seen as combinations of these basic kinds. In this paper, we study changing
knowledge, using modal logic as a vehicle. In our models, the worlds represent information states,
and there is one modal accessibility relation representing increase of knowledge. This relation is
used to interpret two modal operators 3u and 3d. The formula 3uϕ informally means: “It is
possible to increase your knowledge to a state where ϕ holds” (update), and 3dϕ means: “It is
possible to decrease your knowledge to a state where ϕ holds” (downdate).

Many further choices have to be made in formalizing these intuitions of an information state.
We will take propositional logic as the basic logic in which the information of an agent is expressed.
In order to describe what the agent knows and does not know, we add a knowledge operator K.
This again suggests a modal approach, and we use S5 for this purpose. As our information
states we take what are probably the simplest models for S5, namely, sets of valuations. Via
the standard modal semantics for epistemic logic, every such S5-model naturally determines a
collection of known facts.

Our ‘supermodels’ group together such information states; the accessibility relation in such
supermodels connects two states if the agent knows more in one state than in the other. Still
many choices remain: do we use a finite (propositional) language or an infinite one, do we allow
an agent to possess an inherently infinite amount of knowledge or not, are there further constraints
on the accessibility relation, etc. It turns out that many of these choices really affect the logic we
obtain.

There is by now extensive literature on formal models of information change, and in particular,
on modal approaches. For a survey, the reader is referred to Chapter 10 in [1]. Our system is
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closely related to the update semantics of [8]; the main difference is that in our proposal we do
not model the specific piece of information inducing the change in the agent’s knowledge.

Our formalism is inspired by the temporal epistemic logic MTEL of [4] which was used to
study temporal aspects of information change, and applications to nonmonotonic reasoning. A
connection with the latter field lies in Halpern and Moses’ logic of “only knowing”, cf. [5]. This
logic aims to answer questions like: “What do I know and what do I not know, if I only know p?”
(for instance, if you only know p, you do not know q). In our ‘supermodels’, the agent only knows
ϕ in an information state that satisfies Kϕ in such a minimal way that any decrease in information
leads to a state where Kϕ no longer holds; the formula for this is Kϕ∧2d¬Kϕ. We shall see that
a faithful translation of Halpern and Moses’ consequence relation in our logic exists. The problem
with their consequence relation is that it is hard to axiomatize directly (as yet, no-one has come
up with a direct axiomatization), as is the case for many nonmonotonic logics. Via a translation
into a (monotonic) logic with an axiomatization, proofs for this logic can be carried out. Such an
approach was taken by Levesque ([7]), who introduced a modal operator O, where Oϕ means that
the agent only knows ϕ. We will discuss the connection between his formalism and ours at the
end of section 2.

In Halpern and Moses’ logic the consequence relation is defined in terms of a preference re-
lation on S5-models, which prefers models with less knowledge to models with more knowledge.
Consequences of a formula ϕ are those formulas true in all most preferred models of ϕ. As such,
it falls into the more general scheme of preferential logics studied in Artificial Intelligence (see
[6]). In our supermodels, the preference relation is in fact the modal accessibility relation (of
decreasing knowledge). The idea of studying (and axiomatizing) preferential logics by considering
the preference relation as an accessibility relation in a large model, has been used in [2]. In that
paper, Boutilier gives axiomatizations which are sound with respect to certain classes of prefer-
ential models. The difference with our approach is twofold: in the first place, our states are not
propositional valuations, but S5-models. This reflects a difference in focus: we concentrate on
the dynamics of knowledge. In the second place, we are interested in special kinds of preference
relations, namely those that reflect an increase or decrease in knowledge; hence, our preference
relation is completely determined by the states.

2 The supermodels

In our formalization of information change we take a layered approach. On the base level, we are
dealing with a propositional logic in which the agent’s information is expressed. On top of that we
have an epistemic language; since we restrict ourselves to the single agent case in this paper, we
add one single knowledge operator K to the base language; the informal reading of Kα is that the
agent knows α. The top level language is then obtained by adding two more operators 3d and 3u

to this epistemic language; 3dϕ (3uϕ) is to be read as “it is possible to decrease (increase) your
knowledge to a state where ϕ holds”. Furthermore, we should mention that as building blocks of
the top level language we take subjective formulas, in which every propositional formula is in the
scope of a K-operator.

Definition 2.1 (syntax) We fix a set V of propositional variables p0, p1, . . . , q, r, . . . L0 is the
base language of classical propositional logic over this set.

At the intermediate level, L1 denotes the epistemic language over V. An epistemic formula
is subjective if every propositional variable occurs in the scope of a knowledge operator.

Finally, our top language L2 is defined as the set of formulas obtained by closing the set of
subjective formulas under the boolean connectives and the unary modal operators (‘diamonds’) 3d

and 3u. L2d consists of all L2-formulas in which the operator 3u does not occur. We use the
‘only’ operator O as the following abbreviation: Oϕ = ϕ ∧2d¬ϕ.



The (meta-)variables α, β, γ, . . . will be used to range over formulas in the base language;
for the epistemic formulas we use µ, ν, ρ, . . . ; and for L2-formulas we use ϕ, ψ, χ, . . . Note that
3d(p ∧Kq) is not a well-formed L2-formula, since p ∧Kq is not subjective.

Let us briefly discuss the intuitive meaning of the formula OKα. It says that the agent knows
α, but in a sort of maximal sense: it no longer knows α after losing any piece of knowledge. This
indicates that the agent has no extra knowledge that it might lose, apart from α. In other words,
the agent only knows α. Thus we see that

OKα is our formalization of only knowing α.

Let us now turn to a formal definition of the semantics for these languages. First we consider
L0 and L1.

Definition 2.2 Let V denote the set of valuations, that is, mappings from V to {0, 1}; elements
of V will also be called worlds. As variables ranging over valuations we use w, v, u, . . . We
assume familiarity with the classical propositional truth definition; truth of a formula α under a
valuation w (in a set q of valuations) is denoted as w |= α (q |= α, respectively). Given a set ∆
of propositional formulas, define Mod(∆) as the set of valuations w such that w |= ∆.

A model is any non-empty subset of V; the set of all models is denoted by M+. Later on,
when we will view models as constituents of bigger entities, we will also use the term information
state for a model.

Truth of an epistemic formula µ in a model m at a world w, denoted by m, w 
 µ, is defined
by a standard recursive definition. For instance, the clause for K is that m, w 
 Kµ iff m, v 
 µ
for all v ∈ m. An epistemic formula is true in a model m if it is true at every world in that
model.

In other words, the kind of models for the epistemic language that we are considering are the
simplest S5-models. As we mentioned in the introduction, our basic idea is to gather various
models into one ‘supermodel’ which also imposes an information ordering on the models. Let <

denote the following information ordering on models:

m < n iff n ⊂ m.

Here ⊂ denotes strict set inclusion. The underlying idea of this definition is that n contains more
information than m if n consists of less worlds than m. Now the relation < is indeed an information
ordering: if m < n then at n the agent possesses at least as much information as at m, in the sense
that n 
 Kα whenever m 
 Kα. We will now give three alternative options for the definition of
the supermodel.

Definition 2.3 A set of valuations m is called closed if m = Mod(Γ) for some set Γ of proposi-
tional formulas, clopen if it is of the form Mod(γ) for some propositional formula γ. The sets of
closed and clopen models are denoted by M and Mf , respectively. Finally, the supermodels S+,
S and Sf are defined by: S+ = (M+,<), S = (M,<) and Sf = (Mf ,<), respectively.

Given a closed model m, we let ∆m denote the diagram of m, that is, the set of classical
formulas holding at m — this gives m = Mod(∆m). For a clopen m, δm denotes some (canonically
chosen) formula such that m = Mod(δm).

Now given these models, we define the notion of truth of an L2-formula at an information
state as follows (as an example we take S)

S,m 
 µ if m 
 µ
S,m 
 ¬ϕ if S,m 6
 ϕ
S,m 
 ϕ ∧ ψ if S,m 
 ϕ and S,m 
 ψ
S,m 
 3dϕ if S, n 
 ϕ for some n ∈ S with n < m
S,m 
 3uϕ if S, n 
 ϕ for some n ∈ S with m < n.



A formula ϕ is valid in S, denoted as S 
 ϕ, if S,m 
 ϕ for all m ∈M (and analogously for S+

and Sf ).

We believe the supermodels S and Sf to have some advantages over S+. The main one is that
in S+, the fact that m < n not necessarily implies that the agent has strictly more knowledge in
n than in m. Consider for instance the case where n = V and m = V \ {w} for some valuation w.
It is not difficult to prove that for all propositional formulas α, m |= α iff n |= α (using the fact
that V is infinite). This gives that m 
 µ iff n 
 µ for all epistemic formulas µ. But m is properly
included in n! This problem cannot occur with closed sets: it is rather easy to show that a model
m is closed if and only if it contains all valuations w such that w |= {α | m |= α}. In fact, both Sf
and S behave nicely in this respect, as the following Proposition shows.

Proposition 2.4 1. If m is closed, then m 
 Kα iff ∆m ` α.

2. If m is clopen, then m 
 Kα iff δm ` α.

3. For closed models m and n, m < n iff ∆m ⊂ ∆n.

4. For clopen models m and n, m < n iff ` δn → δm and 6` δm → δn.

It follows immediately from Proposition 2.4 that a clopen model m is the only state in the
clopen supermodel where the formula OKδm holds. From this perspective we can say that every
state of the clopen model has a name. More precisely, we can prove that for any propositional
formula α and m ∈Mf it holds that Sf ,m 
 OKα iff m = Mod(α). The motivation for choosing
either S or Sf will come from the intuitions concerning knowledge that one wants to model. It
might be more realistic to allow only information states in which the agent has a (unbounded)
finite amount of knowledge; in that case, Sf seems to be the natural choice. If one finds it more
natural to allow the agent to possess an (inherently) infinite amount of knowledge, one should
obviously opt for S.

Finally, we believe it is simply very interesting to see how these choices affect the properties
of the models, and in particular, the properties of the induced logics. As an example, we consider
the nature of the ordering relation; one can show that < and = are discrete on S+ and dense on
Sf , while only = is discrete on S, and < is neither dense nor discrete. Perhaps surprisingly, this
difference between the models S and Sf is not reflected in the logic, at least, not if we restrict
ourselves to downdate-formulas. Note that this implies that the behaviour of only knowing does
not depend on a choice between S and Sf as our supermodel.

Proposition 2.5 Let ϕ be a formula in L2d. Then for any clopen state n: S, n 
 ϕ iff Sf , n 
 ϕ,
and S 
 ϕ iff Sf 
 ϕ.

In the introduction, we mentioned the fact that all changes in information can be seen as a
combination of decrease (throw away the old information) and increase (add the new information).
In our supermodels (taking Sf as an example), this is indeed the case: if µ is a subjective epistemic
(L1) formula that is S5-satisfiable, then from any state we can reach a state where µ is the case by
(possibly) performing a downdate, (possibly) followed by an update. The reader can check that
in fact, any subjective epistemic formula µ is S5-sastisfiable iff Sf 
 µ ∨ 3dµ ∨ 3uµ ∨ 3d3uµ.
The proof system we will present in the next section axiomatizes validity in Sf ; by our previous
observation then, we have a proof system for non-validity in S5. (The restriction to subjective
formulas is not severe, since a non-subjective formula µ is S5-satisfiable if and only if Mµ is
satisfiable.)

In the remainder of this section, we will briefly consider the relation between our approach and
two others. We start with Halpern & Moses’ logic of ‘only knowing’ ([5]).

Let µ be an S5-formula. A model m is a maximal model of µ if m 
 µ and there exists no
model n with m ⊂ n and n 
 µ. A formula µ is called honest if it possesses a unique maximal



model. For an honest µ, define µ |∼ ν if ν is true in the unique maximal model of µ. We have the
following result.

Proposition 2.6 Let µ be an honest formula, and ν any S5-formula. Then

µ |∼ ν iff Sf 
 OKµ→ Kν

Also, we can characterize honesty in Sf .

Proposition 2.7 Let µ ∈ L1, then µ is honest iff for any ϕ ∈ L2 (or even ϕ ∈ L1), either
Sf 
 OKµ→ ϕ or Sf 
 OKµ→ ¬ϕ, iff there exists an α ∈ L0 such that Sf 
 OKµ↔ OKα.

Proposition 2.6 means we can use the proof system for Sf of Section 3 to prove all entailments
in Halpern & Moses’ logic. But this is not a new accomplishment. In [7], Levesque introduces a
modal logic with an operator O, where Oα means the agent only knows α. An axiom system for
this logic is given, which can be used to prove entailments in the logic of Halpern and Moses. We
will now briefly review Levesque’s logic.

The Kripke models he considers are closed sets of valuations, so they are just the elements of
our M . A modal operator B has almost the same semantics as our K operator, the difference
being that B is a belief operator satisfying only the K45 axioms. There is a second modal operator,
N , where Nα intuitively means that “α at most is believed to be false” (dual to the intuition that
Bα means that “α is at least believed to be true”). Finally, Oα is defined as Bα ∧N¬α.

The differences with our formalism are twofold. First, Levesque’s language is static since it
cannot express any change in the agent’s knowledge. And second, Levesque needs an extra
operator N for his axiomatization, the meaning of which in nested cases is not very intuitive.
Nevertheless, we can show that in our formalism, we can express Levesque’s operator Oα by our
formula OKα.

3 A proof system

In this section, we will present a Hilbert-style proof system for validities of Sf . Before we present
the axioms and rules, we first need to distinguish a special class of formulas. Define the class DP
of downward persistent formulas as follows:

DP ::= M(α) | DP ∨ DP | DP ∧ DP |M(DP)

where α is any propositional formula, and Mµ is an abbreviation of ¬K¬µ. The name ‘downward
persistent’ is explained by a result in [4] stating these formulas are the only subjective formulas
(up to S5-equivalence) for which it holds that n < m & m 
 µ⇒ n 
 µ.

We are now ready to give the proof system. The expression `CL α denotes the fact that α is
provable in classical propositional logic.

Definition 3.1 The proof system IC (for information change) consists of the following axioms,
besides the classical tautologies and the modal distribution axioms:
A1 Kµ→ µ
A2 Kµ→ KKµ
A3 ¬Kµ→ K¬Kµ
CV ϕ→ 2u3dϕ

ϕ→ 2d3uϕ
DP µ→ 2dµ whenever µ is in DP
SF (Kα ∧Kβ)→ 3d(Kα ∧ ¬Kβ) provided that 6`CL α→ β
OD (Kα ∧3dKα)→ 3dOKα
OU (OKβ ∧ ¬Kα)→ 3uOKα whenever `CL α→ β
4 3d3dϕ→ 3dϕ



Its derivation rules are Modus Ponens, Necessitation for all boxes, and the rule OE of O-
Elimination:

{OKα→ ϕ | α ∈ L0(Vϕ ∪ {p})}
ϕ

Here α ranges over the finite set of classical formulas that can be built using the propositional
variables in ϕ and one new letter p, modulo equivalence.

The axioms SF and OU depend on propositional provability. Since this is decidable, the set of
axioms of IC is recursive.

Given the system IC, the notions of derivation, proof, theorem, consistency and the like are
standard. The system IC axiomatizes validity in Sf :

Theorem 3.2 (Soundness and Completeness) For every L2-formula ϕ:

Sf 
 ϕ ⇐⇒ `IC ϕ.

We will proceed with an informal discussion of the axioms and rules.
The axioms A1 through A3 are standard axioms for S5. As we are only considering subjective

formulas, one could replace A1 by the axiom ¬K⊥ (the resulting system is often called KD45).
The CV axioms (‘converse’) express the fact that < and = are each other’s converses. The axiom
DP (‘downward persistence’) expresses that possibility is preserved when the agent’s information
decreases. The axiom SF (‘selective forgetting’) states that when the agent knows something (β),
then it can perform a downdate to forget it. Any knowledge it previously held (α) can be retained,
provided it does not imply β. The axiom OD (‘O-down’) expresses the fact that when Kα holds
in a state, it is either a maximal model of Kα (OKα holds in it), or such a state can be reached
by a downdate. Now let us consider axiom OU (‘O-up’). If `CL α → β, then α contains more
information than β. If an agent only knows β (and not α; this is the case whenever 6`CL β → α),
then it may perform an update to a state where all it knows is α. The last rule, OE is perhaps
the most complicated. It states that in order to prove a formula ϕ, it is sufficient to prove that
ϕ is true in a number of named states. These states differ in the knowledge they have about the
propositional variables mentioned in ϕ, but also with respect to any extra knowledge. This ‘extra’
knowledge only requires mentioning one propositional variable not occurring in ϕ.

4 Conclusions

We studied the dynamics of information change by proposing a modal logic of increasing and
decreasing information; this logic is the logic of a specific ‘super model’ in which the states them-
selves are models of an epistemic language. In defining this particular set-up there were a lot of
different choices to be made, in many different aspects. A few of these choices and the influence
they have on the emerging set of validities, have been discussed in some detail.

Our approach, in which a modal logic (3u,3d) is placed ‘on top of’ another modal logic (S5),
fits in the recent trend of ‘combining logics’ (see [3]). Combinations of logics are often (almost)
orthogonal, in the sense that there is limited interaction between the two logics (this is the case
in for instance [4]). In our logic, however, the two logics are very strongly tied; in fact, our logic is
based on a single modal model (Sf ), in which the accessibility relation of increasing information
is completely determined by the states, which are themselves S5-models.

It was shown that the logic of only knowing of Halpern and Moses [5] can be embedded in our
logic, which means we can use our proof system to derive validities of their logic. The preference
ordering of Halpern and Moses is the modal accessibility relation in our logic (a similar idea is
used in [2]). There are strong connections between our system and the one of Levesque [7], a logic
which also embeds the logic of only knowing.



For one particular kind of super model we have defined a proof system which is sound and
complete.

One of our future interests concerns the logic MTEL [4], which can be seen as a temporalization
of Halpern and Moses’ logic. Entailment of both default logic and autoepistemic logic can be
embedded in MTEL. A proof system for MTEL would thus give a system in which both derivations
for default logic and for autoepistemic logic could be carried out. We hope to be able to apply
similar methods (viewing the preference relation of MTEL as a modal accessibility relation) to
arrive at such a proof system.
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