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Abstract
This paper studies the relation between some extensions of the non-
associative Lambek Calculus NL and their interpretation in tree
models (free groupoids). We give various examples of sequents that
are valid in tree models, but not derivable in NL. We argue why tree
models may not be axiomatizable if we add finitely many derivation
rules to NL, and proceed to consider labeled calculi instead.

We define two labeled categorial calculi, and prove soundness and
completeness for interpretations that are ‘almost’ the intended one,
namely for tree models where some branches of some trees may be
resp. all branches of all trees must be infinitely extending. Extrap-
olating from the experiences in our quite simple systems, we briefly
discuss some problems involved with the introduction of labels in
categorial grammar, and argue that many of the basic questions are
not yet understood.
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1 Introduction

For a long time, the associative Lambek calculus has been the predominant
formalism in categorial grammar, and language models (free semigroups, string
models) its standard model-theoretic interpretation. Recent years however have
seen a proliferation of both alternative calculi and alternative interpretations.
The reasons for this development stem from both logic and linguistic origins.
In logic for instance Lambek’s calculus has found itself surrounded by a whole
landscape of of so-called substructural logics (cf. Došen & Schröder-Heister

[7]), and also connections with modal logic have been investigated (cf. van

Benthem [1]); in linguistics, it was realized that the Lambek calculus is not a
suitable device for studying phenomena like discontinuous constituency or head
dependency (cf. Moortgat [17]).

The aim of this paper is to contribute to both model theory and proof theory
of categorial grammar (with product) by studying a very simple example in
detail. In order to formulate the motivation for writing this paper more precisely,
let us start with a formal definition of this problem:

Definition 1 Given a set Pr of primitive types, the set Tp(Pr) of types is
formed by closing Pr under the binary connectives ◦ (‘times’), / (‘over’) and
\ (‘under’). A sequent is of the form X −→ A with X a term and A a type;
here the set of terms is defined as the closure of Tp(Pr) under the structural
connective (·, ·).

We are interested in the following semantics for this language. Consider a
set L of elements called leaves. Tree(L), the set of (ordered) trees over L, is
defined as follows: any leaf is a tree, and if s and t are trees, then so is (st). A
finite-tree model, or shortly: a fintree model is a pair M = ((Tree(L), V )
where V is an interpretation mapping basic types to subsets of Tree(L). V
can be extended to types and terms as follows:

V (A ◦B) = {(st) ∈ Tree(L) | s ∈ V (A), t ∈ V (B)}
V (A/B) = {s ∈ Tree(L) | (st) ∈ V (A) for all trees t with t ∈ V (B) }
V (A\B) = {s ∈ Tree(L) | (ts) ∈ V (B) for all trees t with t ∈ V (A) }
V (X,Y ) = {(st) ∈ Tree(L) | s ∈ V (X), t ∈ V (Y )}.

We usually denote s ∈ V (A) by M, s  A, or if no confusion arises, by s  A.
We also use terminology from modal logic, like ‘A is true at s’ for ‘s  A’. A
sequent X −→ A holds in a model M, notation: M |= X −→ A, if V (X) ⊆
V (A); it is valid in the class of finite-tree frames, notation: Tf |= X −→ A, if
it holds in every finite-tree model.

These models have occurred under various names in the literature, like brack-
eted strings, free groupoids, non-associative category hierarchies, etc. The cen-
tral problem of the paper can now be formulated concisely as follows.

2



Problem 1 Can we find a ‘nice’ calculus recursively enumerating all sequents
Γ for which Tf |= Γ?

Here ‘nice’ refers to properties like cut-elimination or decidability. Note that
Kandulski showed in [13] that the analogous problem for the the product-free
language allows a quite easy positive solution, cf. Theorem 3.

Let us hasten to remark that this problem itself will be too simple to be of
direct linguistic interest, althought it is obviously important from the perspective
of both linguistics and mathematics. It is interesting to note that there are some
recent developments that witness the relevance of Problem 1 for the linguistic
side of the categorial grammar framework. The example that we are referring
to is that of the treatment of discontinuous constituency in the framework of
categorial grammar. It would go a bit too far to discuss this phenomenon in
detail here, so we confine ourselves to a brief explanation.

To overcome the difficulties of the traditional Lambek calculus in handling
this phenomenon, extensions of the categorial language with new type con-
structors have been proposed, cf. Moortgat [17]. It turned out that these
new connectives do not find a natural surrounding in a string-based approach,
cf. Versmissen [30]. For instance, the associativity of the structural connective
in Lambek’s calculus seems to make it impossible to formulate a pair of natural
left and right operational rules for Moortgat’s infixation (↓) and extraction (↑)
operators. The basic problem seems to be that a string of words does not have a
unique point where a second string can be inserted. However, if we study finite-
tree models in which every node of a tree has a distinguished head daughter, we
can equip any tree with such a unique insertion point, viz. immediately before
or immediately after the head of the tree. In [21], Moortgat and Oehrle give a
nice inductive definition of a head wrapping operation on trees, thus providing
a unified categorial framework for headedness and discontinuous constituency.
Note that a solution to our Problem 1 would be a first step towards a proof
calculus for Moortgat & Oehrle’s system.

However, the above mentioned example is definitely not the only source
of inspiration for studying Problem 1. There are in fact two more kinds of
motivation.

The first one is a purely mathematical one, inspired by developments in
the model theory of categorial grammars. For a long time it has been one of
the outstanding open questions in this field whether the associative Lambek
calculus is not only sound but also complete with respect to the interpretation
in language models. Recently, this question has been answered affirmatively
by M. Pentus (cf. [26]). The obvious counterpart of this question is whether a
similar completeness result holds for the non-associative Lambek calculus NL
with respect to tree models (free groupoids). Now this problem has been solved
already a few years ago — in the negative, cf. Došen [8]), but this negative
answer now triggers the question whether we can extend NL with some simple
axioms and/or derivation rules in order to obtain completeness. Note that this
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really is an instance of our Problem 1.
The last kind of motivation takes us to an area of logical proof theory which

has has become rather active lately, viz. that of labeled deductive systems. The
basic idea of a labeled deductive system is that the structure of the ‘database’
of assumptions A1, . . . , An in a consequence relation

A1, . . . , An −→ B

is made explicit by labeling the types:

x1 : A1, . . . , xn : An −→ y : B.

This idea has been around in categorial grammar for some time already (cf. Busz-

kowski [2]), but seems to be taking off after Gabbay introduced his Labeled
Deductive Systems as a general framework for reasoning with labels (cf. Gabbay
[9]), and Oehrle suggested a multi-dimensional approach to formal linguistics
(cf. [24]), in which linguistic objects are represented as tuples, with each coor-
dinate providing information on a specific aspect like prosodic form or semantic
meaning. In a categorial grammar framework labels seem to be the perfect ve-
hicles to carry information other than the syntactic type, as was observed by
Moortgat (cf. [19]). Grosso modo, there is the following important distinction
to be made here as to the impact of the labels in the calculus.

If the labels just follow the proof, for instance in order to generate the
meaning of a sentence fragment, we are just confronting (a generalization of)
the well-known Curry-Howard isomorphism. On the other hand, in most of
the recently developed systems the labels play a far more active role. For in-
stance, Morrill & Solias [22] and Hepple [11] intend to solve precisely the
above-mentioned problem of discontinuous constituency by formulating, in the
equational theory of the label algebra, side conditions on the application of op-
erational rules. The logical aspects of such applications of Labeled Deductive
Systems are as yet largely unknown, although some first exercises have been
carried out, witness (besides the papers cited above), Chau [4], Kurtonina

[14], Roorda [27, 28].

The main aim of this paper is to take a few more steps in the area of
labeled categorial grammar; We will investigate some model-theoretical and
proof-theoretical properties of a few labeled calculi.

Overview In the next section we will approach our Problem from a naive
point of view. The basic idea in this section is to investigate whether a simple
extension of the non-associative Lambek calculus might yield the desired com-
pleteness result. First we will define a hierarchy of frame classes generalizing
the class of fintree models, for instance T (tree frames, i.e. where some trees
may have infinite branches) and T∞ (inftree frames, i.e. where all branches of
a tree are infinite). In the first part of the section we will review some nice
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completeness results for NL itself, but then we give various examples as to why
NL and some of its intuitive finite extensions will not be complete with respect
to any class of tree frames. We leave it as an open problem whether our classes
of tree frames allow a finite axiomatization in a ‘pure’ sequent calculus.

In section 3 we turn to labeled categorial grammars instead. For both the
classes T∞ and T we will develop sound and complete labeled calculi LC∞ and
LCt, LC∞ being nice in the sense that it allows a cut elimination theorem. Our
main problem, viz. whether the class of frames of finite trees has a (nice) com-
plete axiomatization, remains open. We finish with a short section discussing
some problems involved with the introduction of labels in categorial grammar,
our main conclusion being that the logical foundations of the area seem to be
unexplored as yet. We briefly return to the linguistic questions that brought
about the research reported on in this paper.

2 Incompleteness for calculi without labels

In this section we will start looking for a complete calculus for (fin)tree frames
by various ‘naive’ adaptations of the non-associative Lambek calculus NL. In
the first subsection we will give some positive results concerning NL, in the last
part of the section we will argue why this naive approach is unlikely to work.

2.1 The non-associative Lambek calculus

As we already mentioned in the introduction, the non-associative Lambek Cal-
culus seems to be the natural starting point to look for a complete calculus —
below we give a formal definition of this calculus NL. In the formulation of the
derivation rules, X[B] denotes a term X with a distinguished occurrence of the
type B; when used in the same rule, X[Y ] denotes the term X with the term
Y substituted for the distinguished occurrence of B. Outermost parenthesis of
terms will frequently be omitted.

Definition 2 The sequent derivation system of the non-associative Lambek Cal-
culus NL is given by the following logical axiom and logical rule:

A −→ A
[Id]

X −→ A Y [A] −→ B

Y [X] −→ B
[Cut]
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and the following operational rules for the three connectives:

X[B] −→ C Y −→ A

X[Y,A\B] −→ C
[\L]

(A,X) −→ B

X −→ A\B
[\R]

X[B] −→ C Y −→ A

X[B/A, Y ] −→ C
[/L]

(X,A) −→ B

X −→ B/A
[/R]

X[A,B] −→ C

X[A ◦B] −→ C
[◦L] X −→ A Y −→ B

(X,Y ) −→ A ◦B
[◦R]

Note that NL has no structural rules. Finally, notions like derivability and
theorems are defined as usual.

NL is the weakest logic in the landscape of so-called substructural logics,
cf. Došen [7] (at least, if one does not take systems like the head-dependency
calculus of Moortgat & Morrill [20] or Zielonka [31] into account). In fact
it can be seen as the pure system of residuation, cf. the algebraic inequalities
below:

A −→ C/B iff A ◦B −→ C iff B −→ A\C.

It is well-known that the above schema has a natural reading in the power set
algebra of relational structures. This gives an easy completeness result for NL,
but an interesting one, as it forms the basis for our further investigations in this
section.

Definition 3 A (relational) frame is a pair F = (W,R) with R a ternary
accessibility relation on W . Adding an interpretation V : Pr 7→ P(W ),
we obtain a (relational) model. Truth of types (and terms) is defined as
follows:

V (A ◦B) = {x ∈W | (∃yz) Rxyz, y ∈ V (A) & z ∈ V (B)}
V (A/B) = {y ∈W | (∀xz) Rxyz & z ∈ V (B) imply x ∈ V (A)}
V (A\B) = {z ∈W | (∀xy) Rxyz & y ∈ V (A) imply x ∈ V (B)}
V (Y, Z) = {x ∈W | (∃yz) Rxyz, y ∈ V (Y ) & z ∈ V (Z)}

The class of relational models is denoted by R.

The trivial but crucial connection with finite-tree models is that a finite-tree
frame becomes a relational frame by putting

Rstu ⇐⇒ s = (tu).

So, the following theorem states that NL is at least sound with respect to Tf

and complete with respect to a superclass of it:

Theorem 1 NL is sound and complete with respect to R.
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Proof.
Soundness is left to the reader. The rather easy proof of the completeness di-
rection goes by a canonical model construction. Let W be the set of deductively
closed sets of types (i.e. α ∈W iff A′ ∈ α whenever A ∈ α and NL ` A −→ A′);
the accessibility relation R is defined by

Rαβγ ⇐⇒ A ∈ α whenever B ∈ β,C ∈ γ and NL ` B ◦ C −→ A,

and the interpretation V by V (p) = {α | p ∈ α}. By induction to the complexity
of A it is proved that A ∈ α ⇐⇒ α  A. This implies that the canonical model
is a counter model for every non-theorem of NL. 2

So, to find a calculus for tree models, it might be a useful strategy to try
and bridge the gap between R and Tf . Let us define some new classes of frames:

Definition 4 A groupoid is a pair G = (G, ·) with · a binary operation on G.
As before with tree frames, we may see G as a special kind of relational frame
by putting Rstu ⇐⇒ s = tu. The class of groupoid frames is denoted by G. If
in a groupoid frame, x = yz, we call y a left and z a right daughter of x.

A tree frame is a groupoid frame satisfying unique splittability

(US) (Rwuv & Rwu′v′)⇒ (u = u′ & v = v′)

and acyclicity

(AC) for no distinct x0, . . . , xn do we have x0Ex1 . . . xn−1ExnEx0

where E is the relation defined by xEy iff x is a daughter of y, or y of x.
A tree frame is a fintree frame if it satisfies converse wellfoundedness

(CW ): there are no infinite paths x0Mx1Mx2M . . . where xMy if y is a daugh-
ter of x. A tree frame is an inftree frame if every node has daughters, i.e. if
it satisfies (S): ∀x∃yz (x = yz).

The classes of tree frames, fintree frames and inftree frames are denoted by
resp. T, Tf and T∞.

We leave it to the reader to verify that the class of fintree frames defined
above coincides with the class of finite-tree frames, up to isomorphism. In a
Venn-diagram we can depict these classes of relational frames as follows:
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Figure 1.
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Of course, these classes need not all have different theories — in fact, a conse-
quence of the following result is that a sequent is valid in all groupoids iff it is
valid in all relational frames:

Theorem 2 NL is sound and complete with respect to G.

The proof of this theorem is a straightforward adaptation of Theorem 2 in
Buszkowski [2]), viz. that the (associative) Lambek Calculus is complete with
respect to semigroup semantics. The basic idea in both proofs is to use an
intermediate labeled natural deduction system (cf. also Kandulski [13]).

R and G form the only pair of frame classes in our list with identical categorial
theories. In the next subsection we will give sequents separating the other
classes. All these examples witness the incompleteness of NL with respect to
(fin)tree semantics. Before moving to these negative results, let us mention a
few more positive facts concerning NL.

Note that the existence of two notably different frame classes having identical
theories is an indication of the weakness of a language. Dropping connectives
from the language may leave us with a formalism of even less discriminating
power. For instance, we have an interesting result for the language without
product:

Proposition 5 Let F,F′ be two groupoid frames such that F′ is a homomorphic
image of F. If ◦ does not occur in the sequent X −→ A, then

F |= X −→ A implies F′ |= X −→ A.

Proof.
We reason by contraposition: assume that X −→ A is not valid in F′. Then
there are an interpretation V ′ and a world w′ in F′ such that F′, V ′, w′ 
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X and F′, V ′, w′ 6|= A. As a representative example, let X be of the form
(A0, (A10, A11)); then there are worlds w′0, w

′
1, w

′
10 and w′11 such that w′ =

w′0 ·w′1, w′1 = w′10 ·w′11 and w′i  Ai. Now let w0, w10 and w11 in F be such that
fw0 = w′0, etc. Define w1 := w10 · w11 and w := w0 · w1, then by the fact that
f is a homomorphism, fw1 = w′1 and fw = w′.

Finally, define the following interpretation V on F:

V (p) := {x ∈W | fx ∈ V ′(p)}.

We now prove by induction on the complexity of /, \-types that

(∗) x  B ⇐⇒ fx  B.

The base step of (∗) is immediate by definition of V .
For the induction step, we only consider the case where B is of the form

C/D. First assume that x  C/D; to show that fx  C/D, let y′ be such that
y′  D. As f is surjective, y′ = fy for some y in F. The induction hypothesis
gives that D is true at this y. Then xy  C, so by the induction hypothesis
again, we find f(xy)  C. But f(xy) = fx · fy = fx · y′. As y′ was arbitrary,
this gives fx  C/D.

For the other direction, let x be such that fx  C/D. Take an arbitrary y in
W with y  D; then fy  D by the induction hypothesis. The truth definition
of / gives f(xy)  C, so by the induction hypothesis we get xy  C. This
implies x  C.

To finish the proof, (∗) gives that w  X while w 6 A. So F 6|= X −→ A. 2

The above proposition allows us to give a new proof of the following theorem.
It states that if we confine ourselves to the /, \-language, NL is strong enough
to capture the sequent logic of Tf :

Theorem 3 (Kandulski) NL(/, \) is sound and complete with respect to Tf .

Proof.
Although the original proof of this result (Theorem 1.1 in Kandulski [13]) is
quite easy, we enjoy showing it to be an immediate corollary of Theorem 2 and
Proposition 5. The key fact is that fintree frames precisely constitute the class
of free groupoids, whence every groupoid frame is a homomorphic image of a
(sufficiently large) fintree frame. 2

2.2 Tree models

In this subsection we will go into some detail as to why the non-associative
Lambek calculus is not complete with respect to tree models. The following
example was given by Došen in [8]: define the sequent

(Γ0) p, p\(q ◦ r) −→ p ◦ r.
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It will be clear that this sequent is not derivable in NL. However, it is valid in
T, as a simple but instructive argument shows:

Let M be a model based on a tree frame, and assume that t ∈
V (p, p\(q ◦ r)). Then t has daughters t0 and t1 such that t0  p and
t1  p\(q ◦ r). By the truth definition, t  q ◦ r, so by the truth
definition again, and the fact that t0 and t1 are uniquely determined
as the daughters of t, we find that t0  q and t1  r. But then we
have t  p ◦ r.

Clearly, the essential property used here is that of Unique Splittability (cf. Def-
inition 3).

Following a suggestion by Zielonka [32], we could try to capture the fact
that Γ0 should be derivable in the logic we are heading for, by adding the
following proof rule to NL:

X −→ A ◦B X −→ A′ ◦B′
X −→ A ◦B′

[S]

and indeed, it is easy to show that in the resulting calculus NLS , Γ0 is derivable.
Zielonka raises the question, whether NLS is complete with respect to tree
models. Unfortunately, we have to answer this question in the negative, viz. the
following sequent:

(Γ1) p\(q ◦ r), p −→ r ◦ p.

Γ1 is not an NLS-theorem:

An easy proof shows that NLS is sound with respect to the class
of R-frames satisfying (US). However, Γ1 is not valid in every US-
frame, as the following counter example (W,R, V ) witnesses: W =
{a, b, c}, R = {(a, b, c)} and V (p) = {c}, V (q) = V (r) = ∅. It is
immediate that b  p\(q ◦ r), so a ∈ V (p\(q ◦ r), p), while a 6 r ◦ p.

On the other hand, Γ1 is valid in T:

Let M be a model based on a tree frame, and assume that t ∈
V (p\(q◦r), p). Then t has daughters t0 and t1 such that t0  p\(q◦r)
and t1  p. Now the tree (t1t0) exists as well, and for this tree we
have (t1t0) ∈ V (p, p\(q ◦ r)). But we already showed that in this
situation, (t1  q and) t0  r. So we find that indeed t  r ◦ p.

The essential property of tree models that we used in this argument (besides
Unique Splittability) is the fact that the tree forming operation is a total func-
tion.
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Heading for a calculus complete with respect to tree models, we might follow
a naive idea and add the following proof rule to the calculus NLS :

(Y,X) −→ B ◦A
(X,Y ) −→ A ◦B

[F2]

It will be clear how to prove Γ1 from the resulting calculus NLSF2 :

p −→ p p\(q ◦ r) −→ p\(q ◦ r)
p, p\(q ◦ r) −→ p ◦ (p\(q ◦ r))

[◦R]
p −→ p q ◦ r −→ q ◦ r
p, p\(q ◦ r) −→ q ◦ r

[\L]

p, p\(q ◦ r) −→ p ◦ r
[S]

p\(q ◦ r), p −→ r ◦ p
[F2]

However, NLSF2 is not complete with respect to tree models. To see this, let us
look with a bit more care at the proof as to why Γ1 is valid in tree models. The
crucial observation was that the two daughters t0 and t1 of the ‘current’ tree t,
can be combined to form a new tree. However, the totality of the tree forming
operation implies that every two elements of the frame can be combined to form
a tree. This means that for instance, the sequent

(Γ′1) (p\(q ◦ r), s), p −→ (r ◦ s) ◦ p

is valid in tree frames too :

To show why this is so, one now combines t’s granddaughter t00

(for which t00  p\(q ◦ r)) with t’s daughter t1 (where p is true) to
a new tree (t1t00), and proceeds with the earlier argument.

On the other hand, Γ′1 is not derivable in NLSF2 :

One proves this by first showing NLSF2 to be sound with respect
to the class of frames satisfying (US) and (FC2): ∀xy(∃zRzxy ↔
∃zRzyx). Then one inspects the following ‘(US)&(FC2)-model’:
W = {a, b, c, (ab), (ba), (ab)c, (ba)c, c(ab), c(ba)}; R is defined in the
obvious way and V is given by V (p) = {c}, V (s) = {b} and V (q) =
V (r) = ∅. Then we find a  p\(q ◦ r), so (ab) ∈ V ((p\(q ◦ r), s)),
(ab)c ∈ V ((p\(q ◦ r), s), p) while (ab)c 6 (r ◦ s) ◦ p.

In the end, it seems that one would have to add infinitely many derivation
rules to the system before even coming to think of completeness1. Putting it

1We state it as an open problem whether the sequents valid in tree frames are axiomatizable
with a finite set of axioms and rules or not. We conjecture that the answer to this problem
is negative. It may turn out to be difficult to prove this conjecture, since the usual methods
to prove non-finite axiomatizability (like the use of ultra-products) do not seem to apply. We
suspect that every finite derivation system only captures valid sequents up to a certain depth
or bracket complexity (suitably defined), but we have not been able to formalize this idea.
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differently, the essential difficulty seems to be that the following proposition
holds for any tree t:

(∗) t  p\(q ◦ r) implies t  r,
provided that somewhere in the frame there is a tree s with s  p.

Unfortunately, the sequent format of the calculus does not seem to be adequate
to express this ‘somewhere’ concisely. There are several ways to try and solve
this problem; for instance, one might think of adding an explicit ‘somewhere’
operator to the language, like in recent approaches to modal logic, cf. Goranko

& Passy [10]. A disadvantage of this approach is that it does not fit nicely in
the particular resource-sensitive paradigm of NL. It might be a better idea to
go even further along the line of making information explicit that is already
present in the sequent’s antecedent. Note that if we evaluate a term (A,B) at
a tree t, we know exactly where A and B have to hold: at the left resp. right
daughter of t. So why not replace the antecedent (A,B) where this information
is implicit, by a database {a0 : A, a1 : B} where we have syntactic entities to
refer explicitly to these daughters? In this way, (∗) can at least be formulated
in the language, viz. as

{a : p\(q ◦ r), b : p} −→ a : r

This move takes us to the area of Labeled Deductive Systems (cf. Gabbay [9]),
and will be worked out in detail in the following section.

Let us finish this section by giving some sequents discriminating the other
frame classes of Fig. 1. To start with, the attentive reader may have noticed that
we have been speaking about tree semantics in this section rather than about
finite-tree frames. The reason for this is that even if we had found a calculus
that is sound and complete with respect to T, this system would not do the job
for Tf . For, consider the following sequent

(Γ2) p, p\((p ◦ >) ◦ >) −→ ⊥

which is valid in fintree frames, but not in every tree frame. (We use > and ⊥
to indicate that any type may be substituted; so, the ⊥ in the succedent says
that the antecedent cannot be true in any tree.)

To show that Tf |= Γ2, suppose that t is a tree in a fintree frame,
such that the antecedent X of Γ2 holds at t. Clearly t0  p and
t1  p\((p◦>)◦>), so by the truth definition, t  (p◦>)◦>. Unique
Splittability gives t0  p ◦ >, whence t0 has daughters t00 and t01.
Now we let the tree t00t1 take the place of t, observing that X is
true at t00t1. We find that t00 has daughters too ... An inductive
argument yields an infinite path t0, t00, t000, . . ., contradicting the
fact that t should be finite.

We leave it to the reader to give a counter example to the validity
of Γ2 in the class of arbitrary tree frames.
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Note that in all the earlier examples, the types in the succedent appeared
in the antecedent as well; however, the information used to prove that Tf |= Γ2

is far more implicit. Given this example, we fear that it may be hard to find
a sequent axiomatization for Tf , even in the labeled approach. Therefore, we
decided to aim a bit lower, viz. a calculus for T instead of one for Tf . Even this
problem turned out to be harder than expected. The problem is that in a tree
frame, leaves have a different behavior than trees with daughters. This is well
illustrated by the following sequent

(Γ3) q\(q ◦ ((p/q) ◦ (q\p)) −→ (p/q) ◦ (q\p)

which distinguishes inftree frames from tree frames.

To see why Γ3 is valid in an arbitrary inftree frame, assume
that for an inftree t, t  q\(q ◦ A), where A abbreviates the type
(p/q) ◦ (q\p). Now make a case distinction as to whether V (q) is
empty or not. If V (q) = ∅, then any tree s in the frame satisfies
s  p/q and s  q\p. In particular, the daughters of t do. So
t  (p/q) ◦ (q\p). If on the other hand V (q) has an element s, then
by a now familiar argument, t  q\(q ◦ A) implies t  A. Again, it
is left to the reader to give a counter example to the validity of Γ3

in the class of arbitrary tree frames.

So, inftree frames seem to be simpler to axiomatize because they are more
homogeneous. Therefore, we will first give a sound and complete labeled calculus
for the class T∞.

3 Labeled categorial grammar

In this section we will define two extensions LC∞ and LCt of the non-associative
Lambek calculus with a labeling discipline and show that these derivation sys-
tems are sound and complete for respectively the classes of inftree frames and
tree frames. For LC∞ we also give a cut elimination result.

3.1 LC∞: a complete labeled calculus for inftree frames

The basic idea of a labeled categorial calculus is that the structure of the
‘database’ of assumptions A1, . . . , An in a consequence relation

A1, . . . , An −→ B

is made explicit by labeling the types:

x1 : A1, . . . , xnAn −→ y : B.

13



The basic idea behind our labeling algebra is that somehow labels will refer
to trees in the model — this is our instantiation of Gabbay’s slogan ‘bringing
semantics into the syntax’. So let us start with defining the label algebra:

Definition 6 Assume that we have been given a set M of elements that we will
call markers. Let S be the set of strings over the alphabet {0, 1} (inductively
defined: S is the smallest set containing the empty string λ which contains the
strings s0 and s1 whenever it contains the string s). Elements of the set M ×S
are called atomic labels; the atomic label (a, s) is denoted as as, aλ as a. A
label over M is either an atomic label over M or it has the form (xy) where
x and y are labels over M . The set of labels over M is denoted as Lab(M).
As abbreviations2 we will use the functions l and r over Lab(M) defined as
follows:

l(as) = as0 l(xy) = x
r(as) = as1 r(xy) = y.

Intuitively, the labels of the form as denote the descendants of the tree
denoted by a; labels of the form (xy) will denote the tree arising by adjoining
the trees referred to by x and by y. Now we can give a definition of our labeled
language:

Definition 7 Let Pr be a set of primitive types, and M a set of markers.
Elements of the Cartesian product Lab(M) × Tp(Pr) are called formulas (in
M and Pr) and denoted as x : A where x ∈ Lab(M) and A ∈ Tp(Pr). A
sequent (in M and Pr) is a pair X −→ φ where φ is a formula and X a
finite set of formulas (in M and Pr).

Turning to the calculus, one of the first questions that we have to answer is
whether we want sequents of the form

x : A −→ y : A

to be theorems if x and y refer to the same trees in the model. Note that we have
to be careful here: what about the theoremhood of a : p −→ a0a1 : p? Although
we have not introduced a semantics for labeled sequents yet, it will be clear that
the answer to these questions depends on whether we want the tree referred to
by a to have daughters or not. As we have an inftree semantics in mind for
LC∞, we will accept such sequents as theorems. For the precise formulation of
the rule that takes care of these ‘label shifts’, we need some terminology:

Definition 8 Define the relation→l on Lab(M) by: as0as1 →l as. Let ≡ be the
congruence relation generated by →l, i.e. ≡ is the smallest equivalence relation
R containing →l such that ((xz), (yz)) ∈ R and ((zx), (zy)) ∈ R whenever
(x, y) ∈ R. We denote the congruence class of x by x̄.

2Note that l and r are not part of the label algebra; their introduction has the sole purpose
of providing a uniform way of referring to the left resp. right daughter of a label x (whether
x is atomic or not), thus enabling a concise formulation of for instance the left rule for ◦.
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Note that it is easy to show that ≡ is decidable.
As for the structural rules of the system, note that our databases are sets;

therefore, the rules of associativity, permutation and contraction are implicit.
The only rule that we need to add explicitly is Weakening (Monotonicity). The
operational rules will be discussed after the definition.

Definition 9 LC∞ is defined as follows. Its logical axioms are sequents of
the form

x : A −→ x : A.

Its logical rule is the [Cut]-rule given by

X −→ x : A Y, x : A −→ φ

X, Y −→ φ
[Cut]

Its label rule has the following form:

X −→ φ

(X −→ φ)[x← x′]
[≡]†

where (X −→ φ)[x ← x′] is the sequent X −→ φ with one occurrence of x
replaced by x′. The rule [≡] is only licensed if the side condition (†) is met that
x ≡ x′.

For every connective LC∞ has two operational rules:

X, l(x) : A, r(x) : B −→ φ

X, x : A ◦B −→ φ
[◦L]

X −→ l(x) : A Y −→ r(x) : B
X,Y −→ x : A ◦B [◦R]

X, yx : B −→ φ Y −→ y : A
X, x : A\B, Y −→ φ

[\L]
X, a : A −→ ax : B
X −→ x : A\B

[\R]∗

X,xy : B −→ φ Y −→ y : A
X, x : B/A, Y −→ φ

[/L]
X, a : A −→ xa : B
X −→ x : B/A

[/R]∗

In the rules marked with ∗, there is a side condition on the rule stating that the
marker a should not occur in x or X.

Finally, LC∞ has the structural rule of Weakening:

X −→ φ

X, Y −→ φ
[W ]

Most of these rules seem to be pretty obvious3. For instance, the side con-
dition in [\R] and [/R] (ensuring a totally hypothetical introduction of a : A)

3Note that it is a fairly easy exercise to turn the calculus into a classical one by adding
boolean type constructors and replacing the intuitionistic one-formula succedents with finite
sets of formulas. It seems that the three major results (soundness, cut elimination and com-
pleteness) that we are about to prove for LC∞, will still hold for this extended calculus.
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is quite familiar. However, there are some subtleties in the rule [◦L], as will be
discussed in the proof of soundness, and in the right rules for / and \, as we will
see in the next subsection. Let us first define what it means for an NL-sequent
(i.e. without labels) to be derivable in LC∞:

Definition 10 Let X be a term of NL (i.e. a tree over types); the formula
representation of X, notation: X•, is given by the usual inductive definition:
A• = A, (X,Y )• = (X•) ◦ (Y •).

Now let X −→ A be an NL-sequent. We say that X −→ A is LC∞-derivable,
notation: LC∞ ` X −→ A, if there is (for an arbitrary marker a) an LC∞-
derivation for the LC∞-sequent a : X• −→ a : A.

As an example, we show how the sequent Γ1 (discussed in the previous section)
can be derived:

a0 : r −→ a0 : r
a1 : q, a0 : r −→ a0 : r [W ]
a1a0 : q ◦ r −→ a0 : r [◦L] a1 : p −→ a1 : p

a0 : p\(q ◦ r), a1 : p −→ a0 : r, a1 : p
[\L]

a1 : p −→ a1 −→ a1

a0 : p\(q ◦ r) −→ a : r ◦ p
[◦R]

a : (p\(q ◦ r)) ◦ p −→ a : r ◦ p
[◦L]

Now we turn to the semantics of LC∞:

Theorem 4 LC∞ is sound and complete with respect to inftree semantics, i.e. for
any NL-sequent

LC∞ ` X −→ A ⇐⇒ T∞ |= X −→ A.

Proof.
Let us first consider soundness. Here we arrive at the subtlety involved in
the left rule for product. The point is that it allows us to define a sound
interpretation for arbitrary labeled sequents. Let M = (G, V ) be an inftree
model. An assignment to G is a map f : Lab(M) 7→ G satisfying f(x) =
f(lx) · f(rx). We leave it to the reader to verify that this implies that for any
assignment f , x ≡ y implies fx = fy.

Now we say that a labeled sequent X −→ y : b holds in M under f , notation:
M, f |= X −→ y : B, if

(∀x : A ∈ X fx  A) ⇒ fy  B.

Clearly then, for an NL-sequent X −→ A we have

M |= X −→ A iff M, f |= a : X• −→ a : A for all assignments f .

so to prove soundness it suffices to show that LC∞ ` X −→ y : B implies that
for any inftree model M and any assignment f , we have M, f |= X −→ y : B.
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We do this by a straightforward induction on LC∞-proofs. As an example, we
treat the induction step for [◦L].

Assume as an inductive hypothesis, that X, l(x) : A0, r(x) : A1 −→ y : B
holds at every inftree model, and let f be an assignment to an inftree model
M such that for all z : C in X, fz  C, and fx  A0 ◦ A1. The latter fact
implies that fx has daughters u0 and u1 such that ui  Ai. Now the crucial
point is that fl(x) · fr(x) = fx, so by Unique Splittability we find f(lx) = u0

and f(rx) = u1. But then the induction hypothesis gives fy  B.

The completeness direction is relatively easy, after we have introduced some
terminology: a description is a triple D = (M,P,N), where M is a set of
markers, and P and N are sets of formulas. Elements of P resp. N are called
positive resp. negative requirements. A description is called consistent if for no
finite Π ⊆ P and φ ∈ N we have a derivation ` Π −→ φ, complete if P ∪N is the
set of all formulas (in a given set M of markers and a given set Pr of primitive
types). A formula x : C is a ◦-defect of a description D if C is of the form A◦B
and x : C is in P , but we do not find both l(X) : A and r(x) : B in P . A formula
x : C is a /-defect of a description D if C is of the form A/B and x : C ∈ N , but
we do not have a y ∈ Lab(M) with both y : A ∈ P and (yx) : B ∈ N ; \-defects
are defined analogously. A description is called saturated if it does not have any
defects, perfect if it is consistent, complete and saturated.

Let D,D′ be two descriptions; D′ is an extension of D, notation: D ⊆ D′,
if M ⊆M ′, P ⊆ P ′ and N ⊆ N ′.

Perfect descriptions give rise to inftree models in a natural way: the trees
of the model will be the equivalence classes of Lab(M) under ≡; note that if
x ≡ y, the rule [≡] ensures that x : A ∈ P iff y : A ∈ P and likewise for N .
Therefore, the following definition is correct: for a perfect description D, the
groupoid model generated by D, notation: MD, is given as (G, V ) where G is
the quotient algebra of the labeling algebra over ≡, and V is given by

V (p) = {x̄ ∈ Lab(M) | x : p ∈ P}.

Now it is easy to prove by induction on the complexity of types, that for any
perfect description D and any formula x : C, we have

GD, x̄ |= C ⇐⇒ x : C ∈ Π. (1)

After these preliminaries, we can start to prove the completeness result.
We will show that any sequent which is not derivable in LC∞ can be falsisied
in an inftree model. Let X −→ φ be such a sequent. By definition then,
D0 = ({a}, {a : X•}, {a : φ}) is a consistent description. Suppose that we
can extend D0 to a perfect extension D, then it is easy to show by (1) that
MD 6|= X −→ A, as a ∈ V (X) − V (A). It is also immediate that MD is an
inftree model.

So the only thing left is to prove the following crucial extension lemma:

any consistent description can be extended to a perfect description. (2)
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To prove (2), one shows by a straightforward procedure that

1. If D is a consistent description with a defect δ, then D has a consistent
extension D′ of which δ is not a defect.

2. If D is a consistent description, and x ∈ Lab(M), then at least one of
(M,P,N ∪ {x : A}) or (M,P ∪ {x : A}, N) is consistent.

Then by a standard step-by-step method, one can extend any consistent de-
scription to a perfect one. This proves (2) and thus the theorem. 2

Finally, we show that the cut rule is not really needed in derivations of LC∞:

Theorem 5 Let X −→ φ be a theorem of LC∞. Then there is a cut-free deriva-
tion of X −→ φ.

Proof.
We will need the usual notions like derivations or proof trees, the depth of a
proof, the main formula in the application of a rule, and the cut formula in
the application of the [Cut]-rule. The statement that D is a derivation of the
sequent X −→ φ is denoted by: X D−→ φ.

Now as usual, the essential idea in the proof of the theorem is to concentrate
first on derivations in which the [Cut]-rule is applied only once. To be more
precise, we will prove the following claim:

If X D−→ φ, where D has only one cut,

then there is a cut-free derivation D′ with X
D′−→ φ.

(3)

After establishing this claim, we can prove the theorem by an easy induction on
the number of cuts in the proof of X −→ φ.

So let us set out to prove (3). Note that it is sufficient to confine ourselves
to treating derivations D which end in an application of [Cut]. Assume that the
daughters of D are D0 and D1, and that x : A is the cut formula, i.e. D has the
following form:

D0

X −→ x : A
D1

Y, x : A −→ y : B
X,Y −→ y : B

[Cut]

Then the degree of the cut is defined as the pair consisting of the number of
connectives occurring in (the type of) the cut formula and the sum of the depths
of D0 and D1; assume that we impose a lexicographical ordering on cut-degrees.
Now (3) is proved by induction on the cut-degree of D. For the inductive step,
we make the following case distinction:

18



I First, assume that the cut-formula is main in both D0 and D1. We distin-
guish cases as to whether a connective was introduced in the main formula, or
a new label:

[◦] In this case the derivation looks like

D00

X0 −→ l(x) : A0

D01

X1 −→ r(x) : A1

X0, X1 −→ x : A0 ◦A1
[◦R]

D1

Y, l(x) : A0, r(x) : A1 −→ y : B
Y, x : A0 ◦A1 −→ y : B

[◦L]

X0, X1, Y −→ y : B
[Cut]

and can be replaced by D′′ of the form

D00

X0 −→ l(x) : A0

D01

X1 −→ r(x) : A1

D1

Y, l(x) : A0, r(x) : A1 −→ y : B
Y, l(x) : A0, X1 −→ y : B

[Cut]

X0, X1, Y −→ y : B
[Cut]

Note that both cut formulas in D′′ have a smaller complexity than the orig-
inal one, so by the induction hypothesis the two cuts can be removed (one by
one).

[/] Here D has the following form:

D0

X, a : A1 −→ xa : A0

X −→ x : A0/A1
[/R]

D10

Y0, xy : A1 −→ y : B
D11

Y1 −→ y : A1

Y0, x : A0/A1, Y1 −→ y : B
[/L]

X,Y0, Y1 −→ y : B
[Cut]

We leave it to the reader to verify that there is a cut free derivation D′0 of
X, y : A1 −→ xy : A0. (Here one needs the side condition on [/R] that a does
not occur in X.)

So, if we replace D by

D11

Y1 −→ y : A1

D′0
X, y : A1 −→ xy : A0

X,Y1,−→ xy : A0
[Cut]

D10

Y0, xy : A1 −→ y : B
X,Y0, Y1 −→ y : B

[Cut]

we are dealing with a proof tree to which we can apply the inductive hypothesis
(twice, just like in the case above).
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[≡] Here we may replace

D0

X −→ x′ : A
X −→ x : A

[≡]

D1

Y, x′′ : A −→ y : B
Y, x : A −→ y : B

[≡]

Y,X −→ y : B
[Cut]

by
D0

X −→ x′ : A
X −→ x′′ : A

[≡]
D1

Y, x′′ : A −→ y : B
Y,X −→ y : B

[Cut]

where the application of [≡] is justified by the transitivity of ≡. The proof depth
of the cut has decreased, so the induction hypothesis applies.

II Now, assume that the cut formula is side formula in the last step of D0 or
D1. In this case, we will permute the [Cut]-rule upwards; again, the particular
action we take will depend on the last applied rule of the subtree in which the
cut formula was not main. As most of these cases are standard, we only give a
few examples:

• Suppose that the cut formula is side formula in the last step of D0, where
we applied the rule [W ]. Then the derivation D

D′0
X0 −→ x : A

X0, X1 −→ x : A
[W ]

D1

Y, x : A −→ y : B
X0, X1, Y −→ y : B

[Cut]

is replaced by

D′0
X0 −→ x : A

D1

Y, x : A −→ y : B
X0, Y −→ y : B

[Cut]

X0, X1, Y −→ y : B
[W ]

This proof has a smaller cut-degree than the original one (as the depth
of the left subtree has decreased), and can thus be replaced by a cut-free
derivation.

• If the last applied rule of D1 was [/R], and the cut formula was not the
main formula of this rule, D looks like

D0

X −→ x : A

D′1
Y, x : A, a : B1 −→ ya : B0

Y, x : A −→ y : B0/B1
[/R]

X,Y −→ y : B0/B1
[Cut]
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Note that we may replace the marker a by a marker b that does not appear
in X,Y, x, y, obtaining a derivation D′′1 for Y, x : A, b : B1 −→ yb : B0 of
the same depth as D′1. We can then show that the following derivation D′
may replace D:

D0

X −→ x : A
D′′1

Y, x : A, b : B1 −→ yb : B0

X,Y, b : B1 −→ yb : B0
[Cut]

X,Y −→ y : B0/B1
[/R]

Again we have found a derivation to which the inductive hypothesis ap-
plies. 2

It follows from the cut elimination theorem that any theorem X −→ φ has
a proof using only subtypes of the types occurring in X and φ. Note however
that this does not imply decidability of the calculus, as the rules [≡], [\L] and
/L] presume an infinite search space (for the left rules of the slashes, observe
that the label y of the premisse does not occur in the conclusion).

3.2 LCt: a complete labeled calculus for tree frames

In this subsection we will transform the system LC∞ into a calculus that works
for arbitrary tree frames. Obviously, it is crucial to avoid as theorems sequents
like

a : p −→ a0a1 : p

as their soundness would imply that every tree is branching. Clearly, we have
to change the rule [≡]:

X −→ φ

(X −→ φ)[x← x′]
[≡]

Let us concentrate on the case where we replace the label of the succedent, i.e. φ
is of the form x : A. We need to install a side condition permitting the rule only
when the atomic labels in x′ are ‘presupposed by’ the ones in X. To formalize
this condition, we set

Definition 11 Let as and br be two atomic labels; we call as presupposed by
br if a = b and s is an initial segment of r. For a set X of formulas, the label y
is presupposed by X, notation: X � y, if every atomic label in y is presupposed
by some atomic label in one of the labels of X.

We can now formulate a right rule [≡ R] as

X −→ x : A
X −→ x′ : A

[≡ R]$
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with the side condition ($) that X � x′. We have not been able to formulate
an appropriate left label rule, in the sense that the arising calculus allows a cut
elimination theorem. Therefore we confine ourselves to this one right rule.

Note however, that this change is not sufficient: here we arrive at one of
the subtleties mentioned in the previous subsection. The sequent Γ3, true only
in inftree frames (cf. section 2), would still be derivable, witness the derivation
below:

b : q −→ b : q

b : q −→ b : q a0b : p −→ a0b : p
b : q, a0 : p/q −→ a0b : p

[/L]

b : q, a0 : p/q, a1 : q\p −→ a0b : p
[W ]

b : q, a : A −→ a0b : p
[◦L]

ba : q ◦A −→ a0b : p
[◦L]

a : q\(q ◦A), b : q −→ a0b : p
[\L]

a : q\(q ◦A) −→ a0 : p/q
[/R] likewise

a : q\(q ◦A) −→ a1 : q\p
[\R]

a : q\(q ◦A) −→ a : (p/q) ◦ (q\p)
[◦R]

A close inspection of this derivation shows that the problem lies in the right rule
for /: where from {a : q\(q ◦A)} one cannot conclude semantically that the tree
referred to by a has daughters, this conclusion is justified from the database
{a : q\(q ◦A), b : q}. A solution is to replace [/R] and [\R] by

X, a : A −→ xa : B
X −→ x : B/A

[/R′]‡
resp.

X, a : A −→ ax : B
X −→ x : A\B

[\R′]‡

where we impose the side condition (‡) that x is presupposed by X.

Definition 12 The calculus LCt is defined just like LC∞, with the rules [/R]
and [\R] replaced by [/R′] and \R′], and [≡] by [≡ R].

We can now give the desired soundness and completeness results:

Theorem 6 LCt is sound and complete with respect to tree frames, i.e. for all
NL-sequents

LCt ` X −→ A ⇐⇒ T |= X −→ A.

Proof.
To prove soundness, we again introduce an interpretation for arbitrary sequents.
Here we have to be more careful in our formulation however.

Let X be a set of formulas. An X-assignment f is a partial map from labels
to elements of a tree model such that (i) f(x) is defined (notation: f(x) ↓)
for all atomic labels x occurring in X, and (ii) for all labels x: if f(lx)↓ and
f(rx)↓, then f(x)↓ and f(x) = f(lx)f(rx). Now we say that a labeled sequent
X −→ x : A holds in M under f , if f can be extended to an X-assignment
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g satisfying g(x)  A whenever f(u)  B for every u : B in X. With this
adaptation we can follow the strategy of the old proof and show soundness of
LCt for tree frames. We give one crucial example: the right rule for /.

Assume that X,x : A −→ xa : B holds in every tree model (i.e. under every
X,x : A-assignment), and that f is an X-assignment into a tree model M such
that M, f(u)  C for all u : C in X. The key observation is that x ∈ Dom(f),
as by our new side condition on [/R′], X presupposes x . Now distinguish two
cases: if V (A) = ∅, then B/A is true at every tree in M, so in particular
f(x)  A/B. But then indeed M, f |= X −→ x : B/A. If on the other hand
V (A) 6= ∅, take an arbitrary element s ∈ V (A). It is left to the reader to
verify that there is an extension gs of f such that gs(u) = f(u) if X � u, and
gs(a) = s (here we crucially use the fact that a is fresh). But then gs is an
X, a : A-assignment, so by the inductive hypothesis, gs(xa)  B. Observing
that gs(xa) = gs(x)gs(a) = f(x)s, we find f(x)  A/B, as s was arbitrary.

For the completeness direction we copy the proof of the previous section, only
indicating the places where changes have to be made. The main adaptation is
in the definition of a description; a description will here be a triple (L,P,N)
with L an upward closed set of labels, and P and N sets of formulas with labels
in L. (A set I of labels is upward closed if y ∈ I whenever there is an x such
that x ∈ I and x� y.)

Furthermore, we impose the ‘finite-presupposition’ constraint that every la-
bel in L is presupposed by a finite subset of P . In the definition of a complete
description, we now take labels in L into account only.

The universe of the groupoid model generated by a perfect description D
will now consist of equivalence classes over L. To show that the definition of
the interpretation map V is correct, it suffices to prove that for all x, y ∈ L such
that x ≡ y, x : A ∈ P implies y : A ∈ P . Here we need the new constraint that
there is a finite subset P0 of P such that P0 � y. For, the following derivation
ensures that x : A ∈ P ⇒ y : A ∈ P :

x : A −→ x : A
P0, x : A −→ x : A

[W ]

P0, x : A −→ y : A
[≡ R]

In the remainder of the proof, we only have to take care to drag the finite-
presupposition condition with us along the construction of the desired perfect
description; this is relatively straightforward. 2

4 Evaluation: labels in categorial grammar

Compared to other formalisms studied in the literature (cf. the references given
in the introduction), the labeled categorial calculi presented here are of a very
basic nature. We believe that it may be useful to put the problems that we

23



encountered here in a wider context, since these problems will by no means
vanish in more involved systems. Putting it bluntly, we have the feeling that the
introduction of labels in a categorial logic causes as many problems as it solves4.
One reason for this seems to be the following. Usually, the motivation for
converting an ordinary calculus into a labeled one, is a mismatch between syntax
and semantics. For instance, in the introduction we mentioned the problem
concerning Moortgat’s infixation and extraction operators, that allow a clear-cut
definition of a semantic interpretation, but for which operational derivation rules
cannot be expressed. Now, implementing Gabbay’s slogan ‘bringing semantics
into the syntax’, one runs the risk of importing this mismatch too...

Let us try to be a bit more precise. When labeling a categorial sequent
calculus, one finds a number of areas where radical changes are brought about:

language The most obvious change is that the new ‘declarative unit’ (to
use the LDS terminology) is no longer the pure type, but a type-with-a-label-
attached-to-it. There are two points to be made here. First, let us assume that
the labels will refer to elements of the intended interpretation. The problem is
that the intuitions rising from this intended interpretation may also be quite
confusing. For instance, suppose that the interpretation is some kind of free
algebra, like the fintree models in our example, or the language models for the
associative Lambek Calculus. Now, should the language have different kinds of
labels referring to generators (leaves), complex terms (trees with daughters) and
arbitrary elements (trees), respectively? Note that an affirmative answer may
lead to a very complicated syntax, while a negative answer may cause problems
for the soundness proof.

Second, in general the label set will have structure. It is not a trivial matter
as to how to represent this structure formally, and it may even become necessary
to add more kinds of ‘declarative units’ to the language; for instance in a (sub-
structural) modal calculus one may need symbols referring to the accessibility
relation.

calculus It is by no means a trivial task to arrive at a perspicuous formal
definition of a labeled calculus, even if (or perhaps precisely because) one is
guided by sound semantical considerations. The main issue of course is how to
receive the new bookkeeping forced by the introduction of the labels.

A relatively simple matter is formed by the structural rules of the calculus.
Where the old set of structural rules is more or less determined by the implicit
structuring of the database (antecedent), switching to an explicit representation
in general will take one to a different level in, or even outside the substructural
hierarchy.

4One should not read this statement as a denunciation of labeled categorial grammars. A
labeled approach can be a solution to problems, witness Moortgat [19], or Kurtonina [14].
And besides this, some of the problems introduced by labels are quite interesting, and solving
them might lead to a better understanding of the issues involved.
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Less clear is the problem how to adapt the existing axioms and derivation
rules to the new formalization — there may be venomenous subtleties here.
Obviously, this issue is crucially dependent on the system’s logical properties
that one wants to establish. In particular, it is a quite non-trivial matter how
to find and state proper side conditions for the operational rules. First of all, in
order to have a decidable set of rules, one should stay away from formulations
involving undecidable problems like the quasi-equational theory of semigroups
(the word problem). The main problem however seems to be to avoid undesir-
able side effects of a too naive implementation of semantical intuitions (cf. our
discussion preceding Definition 12).

Finally, one has to make clear whether the calculus needs label rules, i.e. rules
that only involve a re-labeling of the types (as an example, we mention our ≡-
rules). Note how tricky the matter may become here: small changes in the
labeling rules may have tremendous effects on the properties of the calculus
(like cut-elimination). Note too that the decidability problem pops up again.

logical properties Obviously, the motivation to introduce labels in a calculus
stems from the desire to obtain a system with some nice properties. Concerning
the logical properties, soundness seems to be the minimal constraint for a sys-
tem. Unfortunately, in some cases, it is quite difficult to give an interpretation
of a labeled sequent in the intended semantics. (In the case of LC∞ we were in
some sense ‘lucky’ with our semantics, cf. the soundness proof in Theorem 4.)
Note that even the notion of soundness may have various interpretations: in
our examples LC∞ and LCt, one might demand validity either for all labeled
theorems, or for (indirectly) derivable NL-sequents only.

At the moment, completeness seems to be out of reach for most systems,
and as for cut elimination, the symmetry of the old calculus may be disturbed
by the side conditions on the operational rules or the label rules.

Finally, decidability is no longer an easy consequence of a cut elimination
result: the complications involved with the label management may blow up the
size of the search space — one is likely to get mixed up with some non-trivial
unification problems.

In short, the logical surroundings of labeled categorial grammars differ in
almost all fundamental aspects from the substructural landscape that one has
some familiarity with. Although we are not implying that labels form a Trojan
horse for categorial grammars, it seems to us that the logical foundations of the
area of labeled categorial grammars are not established as yet. As to further
consequences of our findings for the linguistic side of categorial grammar, let
us reconsider Problem 1 of the Introduction. Of course, the fact that we were
not able to find a positive solution to it does not imply that no such solution
exist. Nevertheless, we conjecture that a sound and complete calculus (labeled
or not) for the class of fintree frames will be quite involved. This means that,
at least for the moment, one has to live with calculi that are incomplete, like
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LCt, or work in the categorial language without the product, for which the simple
non-associative Lambek Calculus is complete. Concerning the example of dis-
continuous constituency, it is interesting to mention the approach in Morrill

[23], in which the problem of finding a unique inserting point in a string or tree
is circumvented by the introduction of a primitive wrapping operator.
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