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abstract. Generalizing an example from (Fine 1975) and inspired
by a theorem in (Jónsson 1994), we prove that any modal formula
of the form π(p ∨ q) ↔ π(p) ∨ π(q) (with π(p) a positive formula)
is canonical. We also prove that any such formula is strongly sound
and complete with respect to an elementary class of frames, definable
by a first order formula which can be read off from π.

1 Introduction

For quite a while now, modal logicians have been interested in the relation
between first order logic and canonical modal formulas; recall that the latter
are formulas that are valid on the underlying frame of the canonical model.
Some very interesting connections have been discovered, but there are also
some intriguing open problems. Examples of important results are Fine’s
Theorem (Fine 1975) that the modal logic of an elementary class of frames
is canonical, and Sahlqvist’s Theorem (Sahlqvist 1975) identifying a class
of modal formulas each of which is canonical and corresponds to a first
order formula which can be read off from the modal formula. Probably the
most important open problem in the area is whether any canonical modal
logic is quasi-elementary, that is, complete with respect to some elementary
frame class.

Besides the mentioned result, Fine’s paper also contains a counterexam-
ple to the conjecture that canonical formulas are always elementary. Fine
showed that the formula

(F ) 32p→ 32(p ∧ q) ∨32(p ∧ ¬q)

is canonical, while its class of frames is not even closed under elementary
equivalence. Nevertheless, he proved that the logic K.F is complete with
respect to the class of frames satisfying the formula

(F ′) ∀xy (xRy → ∃z (Rxz ∧ ∀uv ((Rzu ∧Rzv)→ (u = v ∧Ryv)))).
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Jónsson (1994) provides a different (algebraic) proof for the canonicity
of F . Given a formula ϕ(p), let Add(ϕ) (‘additivity of ϕ’) be the formula

Add(ϕ) ≡ ϕ(p ∨ q)↔ ϕ(p) ∨ ϕ(q).

It is easy to see that Add(32p) is equivalent to F . Now Jónsson proves
that if ϕ is a so-called stable formula, then Add(ϕ) is canonical (Theorem
6.1 in (Jónsson 1994)). (We will say more about stable formulas in the
next section). This is an interesting result which naturally leads to further
questions. For instance, is there a syntactically definable class of formulas
for which the formula Add(ϕ) is canonical?And second, are such formulas
always pseudo-elementary?

Following Jónsson, in this paper we also look at Fine’s example from a
more general perspective, but we take the connection with first order logic
into account as well. The formula F provides an example of what we will
call canonical pseudo-correspondence.

Definition 1.1 Let ϕ be a modal formula and α a first order sentence. We
say that ϕ and α are canonical pseudo-correspondents if the following hold:

1. if g is a descriptive general frame for ϕ, then α holds on the under-
lying (Kripke) frame of g,

2. if F is a frame satisfying α then F |= ϕ.

This definition is generalized to sets of formulas in the obvious way.

Observe that it follows immediately from the definition that if ϕ and α
are canonical pseudo-correspondents, then the logic K.ϕ is canonical and
strongly sound and complete with respect to the class of frames satisfying α.
Another immediate consequence of this definition is that canonical pseudo-
correspondents are (ordinary) correspondents over the class of finite frames.

The main result of this paper (Theorem 1 below) states that for any
positive formula π(p), the formula Add(π) has a canonical pseudo-corre-
spondent C(π) that can be effectively obtained from π (precise definitions
will be given in the next section). The basic observation underlying the
proof of this result is that the axiom Add(π) forces the existence in the
canonical frame of points with certain properties (in the case of F ′: the
‘special’ successor z of x).

My original motivation for studying this topic was related to this obser-
vation, but came from the opposite direction. Suppose that we are trying
to axiomatize an elementary frame class definable by some first order sen-
tences that have no ordinary canonical correspondent. In such a case it
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would be nice if we could at least find canonical pseudo-correspondents.
Since our theorem applies in the opposite direction, and only refers to a
rather restricted class of modal formulas, it will not be of immediate use
for this purpose. For instance, in the second part of the paper we will
show that there is no single canonical pseudo-correspondent for the first
order formula ∀x∃y (Rxy ∧ Ryy). On the other hand, in this case there is
an infinite set of modal axioms doing the job — these results follow from
(Hughes 1989). In general, we hope that a more general theory of canonical
pseudo-correspondence could bring a better understanding of the connec-
tion between canonicity and first order logic.

2 Additivity

In this section we state and prove the main result of the paper. Although
we work in the basic modal language with one unary diamond 3, it is
easy to see that all our results carry over to polymodal modal languages,
possibly with polyadic operators. We first formulate and prove our result,
we then give two examples and we finish with a brief comparison of our
result to that of Jónsson.

A formula π(p) in this language is positive if every occurrence of p is in
the scope of an even number of negation symbols; without loss of generality
we assume that a positive formula is built up from propositional variables,
> and ⊥, by applying 3, 2, ∧ and ∨. For a formula π(p), we let π̄, the
dual of π, denote the formula that is obtained from π by simultaneously
replacing ∨ with ∧, 3 with 2, and vice versa. Obviously, the dual of a
positive formula is positive, and it holds that π̄(p) is equivalent to ¬π(¬p).

We assume familiarity with the standard translation of a modal formula;
STx(ϕ) denotes the standard translation of ϕ, with x as the single free
variable. Let α and β(x) be formulas in the first order frame language, and
P a monadic predicate of the first order model language (corresponding to
the propositional variable p); then α[λv.β(v)/P ] denotes the formula that
is obtained from α by replacing each subformula of the form Pu (u some
variable) by β(u).

For a positive formula π(p), ρπ(x, y) denotes the formula

ρπ(x, y) ≡ STx(π)[λv.y = v/P ].

Finally, let C(π) be the first order sentence

C(π) ≡ ∀x (STx(π)[λv.v 6= v/P ] ∨ STx(π̄)[λv.ρπ(x, v)/P ]).

The intuition behind these formulas will become clear in the proofs below,
examples will be given later on.
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We are now ready to formulate the main result of this paper.

Theorem 1 Let π(p) be a positive formula. Then the formula Add(π)
canonically pseudo-corresponds to C(π).

As a corollary we have that the logic K.Add(π) (that is, the extension of
the basic modal logic K with the axiom Add(π)), is canonical and strongly
sound and complete with respect to the class of frames satisfying C(π).
Also, it follows that over the class of finite frames, the formulas C(π) and
Add(π) are equivalent.

Note that Theorem 1 only applies to formulas π using one variable.
It will become clear below that the proof method may be of use as well
for formulas in which more variables occur, but I have not been able to
formulate a general result in this direction. In particular, I could not prove
that additivity of a positive formula π(p, q) in both p and q is a canonical
property.

Theorem 1 follows immediately from the Propositions 2.1 and 2.2 below.

Proposition 2.1 Let π(p) be a positive formula, and let g be a descriptive
general frame for Add(π). Then C(π) holds on the underlying (Kripke)
frame of g.

Proof. Let F = (W,R) be a frame and A a collection of subsets of W
such that g = (W,R,A) is a general frame on which Add(π) is valid.

It is useful to see formulas in p as operations on the power set of W ,
defined as follows. For a subset X ⊆W , let VX denote the valuation given
by VX(p) = X. Then we see the modal formula ϕ(p) as the following
operation on P(W ):

ϕ(X) = {s | F, VX , s  ϕ(p)}.

(Of course, we could also have given an inductive definition for this opera-
tion.)

We define Rπ as the extension of the formula ρπ; that is,

Rπ := {(s, t) ∈W 2 | F |= ρπ(s, t)}.(1)

It follows immediately from the definitions and the correspondence
property of the standard translation on the level of models that

for all states s, t: Rπst iff s ∈ π({t}).(2)

The basic idea underlying the proof of Proposition 2.1 is to pretend that
π(p) is in fact a formula of the kind 3πp, where 3π is a second diamond in
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the language, having Rπ as its accessibility relation. Note that we cannot
derive the formula ¬π(⊥) from the axiom Add(π); hence, in general 3π will
not be a normal modality. That Rπ behaves like an accessibility relation
for π(p) is reflected by the following:

for all states s, t in W : Rπst iff s ∈ π(a) for all admissible a with t ∈ a.(3)

For the direction from left to right, assume that s and t are states such
that Rst, and that a is admissible subset with t ∈ a. We have to show that
s ∈ π(a). But this is immediate from (2) and the fact that π is positive
and hence, monotone: π(a) ⊆ π(b) whenever a ⊆ b.

For the other direction, recall that g is a descriptive frame; in particular,
we have that singletons are closed sets in the induced topology: t =

⋂
t∈a a.

But then the Intersection Lemma in (Sambin and Vaccaro 1989) implies
that

π({t}) =
⋂
t∈a

π(a).

This proves (3). In accordance with our ‘diamond perspective’ on π(p), we
now introduce a new operation on the power set of W :

3πX := {s ∈W | Rπsx for some x ∈ X}.

The dual operation of 3π is denoted by 2π. Our next observation is that

for all b ∈ A: π(b) = π(∅) ∪3π(b).(4)

(This clearly reveals the diamond character of π(p), modulo normality).
The inclusion ‘⊆’ is proved in a standard way: assume that s ∈ π(b) \

π(∅); we have to show that s ∈ 3π(b). In other words, we have to prove
the existence of a state t in b such that Rπst. Define B to be the set
B := {a ∈ A | s ∈ π̄(a)}. From s 6∈ π(∅) it follows that s ∈ π̄(W ), so
B is not empty. Using the fact that π̄(c ∩ d) = π̄(c) ∩ π̄(d) it is easy to
show that B is closed under taking intersections. We claim that the set
B ∪ {b} has the finite intersection property. For otherwise we may assume
that b ∩ a = ∅ for some a ∈ A with s ∈ π̄(a). But if b ∩ a = ∅, then b is a
subset of the complement ac of a, whence π(b) ⊆ π(ac) by monotonicity of
π. This gives π(b) ∩ π̄(a) = ∅, contradicting the fact that s ∈ π(b) ∩ π̄(a).

Now let U be any ultrafilter (in the Boolean algebra of admissible sets)
extending B∪{b}. It is immediate that for any admissible a, a ∈ U implies
s ∈ π(a). But since g is descriptive there is some t in W with {t} =

⋂
U .

It follows from (3) that Rπst and from b ∈ U that t ∈ b.
For the other inclusion, first assume that s ∈ π(∅). It then follows by

monotonicity of π that s ∈ π(a) for any set a, and in particular, s ∈ π(a).
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On the other hand, if there is some state t with Rπst and t ∈ b, the result
follows from (3). This proves (4).

Now fix some element s ∈W . It follows from (4) that

for all b ∈ A: s 6∈ 3πb only if s ∈ π(∅) or s 6∈ π(b).

Since A is closed under complementation, by our definition of π̄ this is
equivalent to

for all a ∈ A: s ∈ 2πa only if s ∈ π(∅) ∪ π̄(a).(5)

Let Rπ[s] denote the set of ‘Rπ-successors’ of s; that is, Rπ[s] := {t ∈ W |
Rπst}. Then (5) can be rewritten to

Rπ[s] ⊂ a only if s ∈ π(∅) ∪ π̄(a),

which in its turn is equivalent to

s ∈ π(∅) ∪
⋂

Rπ [s]⊆a

π̄(a).

Now the crucial observation is that the set Rπ[s] is closed in the topology
induced by the general frame: it follows from (3) that Rπ[s] =

⋂
s∈π̄(a) a.

Hence, by the fact that π̄ is a positive formula, it follows again from the
Intersection Lemma in (Sambin and Vaccaro 1989) that⋂

Rπ [s]⊆a

π̄(a) = π̄(Rπ[s]).

But then, putting the previous two observation together we obtain that

s ∈ π(∅) ∪ π̄(Rπ[s]).(6)

Since s was arbitrary, we have that (6) in fact holds for all s in F. But this
forms an elementary condition which is expressed by the first order formula
C(π). qed

Proposition 2.2 Let π(p) be a positive formula, and suppose that F is a
frame satisfying C(π). Then F |= Add(π).

Proof. Assume that F |= C(π). The easiest way to prove this Proposition
is to pretend again that F is a frame for a language with, besides 3, a second
diamond 3π having the relation Rπ (defined as in (1)) as its accessibility
relation. For, observe that the formula C(π) is the Sahlqvist correspondent
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of the formula π(p)→ π(⊥) ∨3πp (a short proof for this equivalence goes
via the earlier mentioned fact that C(π) is equivalent with the condition
that (6) holds for all s in F).

Now assume that for some valuation V and state s, we have F, V, s 
π(p ∨ q). If F, V, s  π(⊥) then F, V, s  π(p) because of monotonicity.
Otherwise, there must be a state t with Rπst and F, V, t  p ∨ q. From
Rπst it follows, as in (2), that s ∈ π({t}), while by the second fact we
must have either F, V, t  p or F, V, t  q. Now we use monotonicity of π
again, in the first case to show that F, V, s  π(p), in the second case that
F, V, s  π(q). qed

Let us now consider two examples.

Example 2.3 Let π be the formula 32p. Then Add(π) is equivalent to
Fine’s formula F . A simple calculation reveals that ρπ(x, y) is the formula

ρπ(x, y) ≡ ∃z0 (Rxz0 ∧ ∀z1 (Rz0z1 → z1 = y)).

Since the dual of 32p is the formula 23p, some more involved calculations
show that the first order condition ‘pseudo-corresponding’ to Add(π) is the
formula

∀x [ ∃x0 (Rxx0 ∧ ∀x1(Rx0x1 → x1 6= x1)) ∨

∀x0 (Rxx0 → ∃x1(Rx0x1 ∧ ρπ(x, x1))) ],

giving, after replacing ρπ(x, x1) with its definition and performing some
simplifications:

∀x [ ∃x0 (Rxx0 ∧ ¬∃x1Rx0x1) ∨

∀x0 (Rxx0 → ∃x1(Rx0x1 ∧ ∃z0 (Rxz0 ∧ ∀z1 (Rz0z1 → z1 = x1)))) ],

We leave it to the reader to verify that this formula is indeed equivalent to
the first order formula F ′ mentioned in the introduction.

Example 2.4 Now let π be the formula 23p, whence Add(π) is the for-
mula 23(p ∨ q)↔ 23p ∨23q, and ρπ(x, y) the first order formula

ρπ(x, y) ≡ ∀z0 (Rxz0 → ∃z1 (Rz0z1 ∧ z1 = y)),

or shorter:
ρπ(x, y) ≡ ∀z0 (Rxz0 → Rz0y).

The dual of π is the formula 32p, so the first order pseudo-correspondent
of Add(π) is the formula

∀x [ ∀x0 (Rxx0 → ∃x1(Rx0x1 ∧ x1 6= x1)) ∨

∃x0 (Rxx0 ∧ ∀x1(Rx0x1 → ρπ(x, x1))) ],
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which is equivalent to

∀x [ ∀x0 (Rxx0 → ¬∃x1Rx0x1) ∨

∃x0 (Rxx0 ∧ ∀x1(Rx0x1 → ∀z0 (Rxz0 → Rz0x1))) ].

Note that Add(π) is equivalent to the Sahlqvist formula

32p ∧32q → 32(p ∧ q).

The elementary condition corresponding to this formula is given by the first
order formula

∀xy0y1 [ (Rxy0 ∧Rxy1)→ ∃z0 (Rxz0 ∧ ∀z1 (Rz0z1 → (Ry0z1 ∧Ry1z1))) ]

This condition is strictly weaker than the first order pseudo-correspondent
C(π) of Add(π)!

To finish off the section, we compare our Theorem 1 with the earlier
mentioned result in (Jónsson 1994) stating that Add(()π) is canonical if π
is stable. Let us first explain the notion of stability, which plays a crucial
role in the algebraic approach towards canonicity. Since not every reader
of this paper may be familiar with this algebraic perspective, we rephrase
the notion in terms of general frames.

Earlier in this section we already mentioned that given a frame F =
(W,R), we can see a formula ϕ(p) as an operation on the power set of W :

ϕ(X) = {s | F, VX , s  ϕ(p)}.

Now, if g = (F, A) is a descriptive frame on F, we can associate a second
kind of operation ϕ+ with ϕ, defined (in stages) as follows. First, we define,
for a closed set c ⊆W :

ϕ′(c) =
⋂
{ϕ(a) | c ⊆ a ∈ A}.

Then, for an arbitrary set X ⊆W , define

ϕ+(X) =
⋃
{ϕ′(c) | X ⊇ c, c closed}.

Now a formula is called stable if it is monotone and satisfies ϕ = ϕ+ on
every descriptive frame. (In fact, Jónsson defines the notion of stability for
formulas in arbitrary many variables, but his Theorem 6.1 only refers to
unary formulas). Stability is thus a semantic concept, and one may wonder
what the relation is between stable and positive formulas.
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First, it follows from monotonicity that every stable formula is equiv-
alent to a positive one. In the other direction, Jónsson proves (see the
Theorems 5.7 and 4.4) that formulas built up from ⊥, >, 2np (n ≥ 0) by
applying 3, ∧ and ∨ are stable. On the other hand, not every positive
formula is stable, as the following example shows. The property that moti-
vates the definition of stability is that formula ϕ↔ ψ is canonical if ϕ and
ψ are stable formulas. Now consider the positive formulas ϕ = 32p∧23p
and ψ = 23p. The formula ϕ ↔ ψ is equivalent to McKinsey’s axiom
23p→ 32p which was proved not to be canonical in (Goldblatt 1991).

Thus, Theorem 1 can be seen as a strengthening of Jónsson’s result
(apart from the connection with first-order logic, which is not mentioned
in Jónsson’s article). I do not know whether there is a syntactic character-
ization of the class of stable formulas.

3 Reflexive successors

In this section we show that is not straightforward to apply the notion of
pseudo-correspondence in order to axiomatize a given class of frames. As
an example we treat the class RS of frames in which every state has a
reflexive successor. RS is the standard example of a class that is closed
under taking disjoint unions, generated subframes and bounded morphic
images, but does not reflect ultrafilter extensions.

Since RS is defined by an elementary condition, it follows from Fine’s
Theorem that the logic ΛRS is canonical. It would be interesting if there
were a modal formula canonically pseudo-corresponding to the first order
formula ∀z∃y (Rxy ∧ Ryy). That this is not the case follows from the
fact that the modal logic of the class RS is not finitely axiomatizable,
cf. Theorem 10 in (Hughes 1989).

Nevertheless, in order to axiomatize the classRS, we may still apply the
method of using formulas that force the canonical frame to contain points
with certain nice properties; the difference is that forRS we need an infinite
collection of axioms. Our logic K.Ξ below can be seen as a variation of the
system KMT proved to be complete by Hughes (Theorem 1).

Definition 3.1 For i ∈ {0, 1} and ϕ a formula, we define

±iϕ =
{

ϕ if i = 1,
¬ϕ if i = 0.

Let |σ| denote the length of a finite string σ of 0s and 1s. Now we define
the following formulas.

πσ :=
∧
i<n

±σipi
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ξσ := 3(πσ ∧3πσ),

ξn =
∨
|σ|=n

ξσ.

Finally, let K.Ξ be the basic modal logic K extended with the axioms {ξn |
n ∈ ω}.

We adopt the convention that a conjunction
∧
i∈∅ ϕi is the formula >,

so ξ0 denotes the formula 3(> ∧3>). The idea underlying the axiom set
Ξ is the following. The formula ξn(ϕ0, . . . , ϕn−1) holds in a point s iff it
has a successor t with a successor u such that each formula ϕi (i < n)
has the same truth value in t as in u. This means that in the canonical
model for K.Ξ, each maximal consistent set Σ will have a successor ∆ with
a successor Θ such that for each formula ϕ, ϕ has the has the same truth
value in ∆ as in Θ; then by the truth lemma this implies that ∆ and Θ
must be identical.

Theorem 2 K.Ξ is strongly sound and complete with respect to the class
RS.

Proof. We give a direct proof for this Theorem, via the canonical model
method: it suffices to show that the canonical frame F = (W,R) is in RS.
Hence, let Σ be an arbitrary maximal K.Ξ-consistent set (an mcs). We
have to prove the existence of an mcs ∆ such that RΣ∆ and R∆∆.

Enumerate the formulas of the language > = ϕ0, ϕ1, . . . , and let π′σ
be the formula πσ(ϕ0, . . . , ϕn−1); that is, substitute uniformly ϕi for pi in
πσ. We use analogous convention for ξ′σ and ξ′n. Observe that ξ′n, being a
substitution instance of an axiom, belongs to Σ.

Now let B be the infinite binary tree of finite sequences of 0s and 1s.
Paint a node σ of B black if the formula ξ′σ belongs to Σ. It follows from
ξ′n ∈ Σ that for each n there is at least one node σ of length n such that ψσ
belongs to Σ, and from ` ξσ∗i → ξσ that the collection of black sequences
is closed under taking initial segments.

It thus follows that the black nodes form an infinite subtree of B. By
Königs Lemma this subtree must contain an infinite branch β ∈ {0, 1}ω.
Define

∆ = {±β(i)ϕi | i ∈ ω}.
It is straightforward to prove that ∆ is the required reflexive successor of
Σ. qed

In terms of canonical pseudocanonicity, a slight generalization of the
above proof (working with arbitrary descriptive general frames instead of
with the canonical frame) shows that Ξ and ∀x∃y (Rxy∧Ryy) are canonical
pseudo-correspondents.

10



References

Fine, K. 1975. Some Connections between Elementary and Modal Logic. In
Kanger 1975, 15–31.

Goldblatt, R. 1991. The McKinsey axiom is not canonical. Journal of Symbolic
Logic 56:554–562.

Hughes, G.E. 1989. Every world can see a reflexive world. Studia Logica 49:175–
181.

Jónsson, B. 1994. On the canonicity of Sahlqvist identities. Studia Logica 53:473–
491.

Kanger, S. (ed.). 1975. Proceedings of the Third Scandinavian Logic Symposium.
Uppsala 1973. Amsterdam. North-Holland.

Sahlqvist, H.1̇975. Completeness and Correspondence in the First and Second
Order Semantics for Modal Logic. In Kanger 1975, 110–143.

Sambin, G., and V. Vaccaro. 1989. A Topological Proof of Sahlqvist’s Theorem.
Journal of Symbolic Logic 54:992–999.

11


