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Abstract.
Treating the existential quantification ∃vi as a diamond 3i and the identity vi = vj as a constant
δij , we study restricted versions of first order logic as if they were modal formalisms. This approach
is closely related to algebraic logic, as the Kripke frames of our system have the type of the atom
structures of cylindric algebras; the full cylindric set algebras are the complex algebras of the
intended multi-dimensional frames called cubes.

The main contribution of the paper is a characterization of these cube frames for the finite-

dimensional case and as a consequence of the special form of this characterization, a completeness

theorem for this class. These results lead to finite, though unorthodox derivation systems for

several related formalisms, e.g. for the valid n-variable first order formulas, for type-free valid

formulas and for the equational theory of the Representable Cylindric Algebras. The result for

type-free valid formulas indicates a positive solution to problem 4.16 of Henkin, Monk & Tarski

[16].
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1 Introduction

In this paper we develop a modal formalism called cylindric modal logic we investigate its basic
semantics and axiomatics. The motivation for introducing this formalism is twofold: first, it forms an
interesting bridge over the gap between propositional formalisms and first-order logic. And second,
the modal tools developed in studying cylindric modal logic will be applied to analyze some problems
in algebraic logic.

To start with the first point, let us consider (multi-)modal logic; here correspondence theory (cf. van
Benthem [7]) studies the relation between modal and classical formalisms as languages for the same
class of Kripke structures. The usual direction in correspondence theory is to start with a variable-free
operator-language, and then search for a fragment of first-order logic which is expressively equivalent
to it. The aim that we set ourselves here is the converse: to devise and study a modal formalism
which is equally expressive as first-order logic itself. In fact, in this paper we will show how the
above-mentioned gap vanishes if we implement the following idea:

we can restrict the syntax of first-order logic in such a way that it behaves like a proposi-
tional modal logic.

Obviously, the central idea in the ‘modalization’ of first-order logic is to look at quantifiers as if they
were modal operators. Indeed, several authors have observed the resemblance between quantifiers and
modal (S5-)operators; some references are listed in Kuhn [19].

Let us start with syntax: we will define a language that has two readings, both as a restricted
version of first-order logic, and as a multi-modal logic. Suppose that we have a language of first-order
logic with the constraints that there are α many variables (with α an arbitrary but fixed ordinal),
and that the only admissible atomic formulas are of the form vi = vj or Rl(v0v1 . . . vi . . .)i<α — the
motivation for adopting this particular restriction will be given below. For α < ω, we get a logic
with finitely many variables. Such logics have been studied in the literature, for purely logical reasons
(Henkin [15], Henkin, Monk & Tarski [16], Tarski-Givant [41], Sain [37], Monk [24]) or because of their
relation with temporal logics in computer science (Gabbay [12], Immerman-Kozen [17], Venema [43]).
For α ≥ ω the logic is sometimes called the finitary logic of infinitary relations, cf. Sain [34]. Note
that as their order is fixed, the variables in atomic relational formulas do not provide any information.
We may leave them out, writing Rl for Rl(v0 . . . vi . . .)i<α. This restricted first-order logic becomes
cylindric modal logic if we replace the identity vi = vj with the modal constant δij , and the existential
quantification ∃vi with the diamond 3i. In order not to confuse the reader with too much notation, we
will use modal notation and terminology mainly, occasionally referring to the first-order interpretation
for motivations or clarifications.

Definition 1.1 Let α be an arbitrary but fixed ordinal with 2 ≤ α. CMLα is the modal similarity type
having constants δij for i, j < α and diamonds 3i for i < α. For a set of propositional variables Q,
the set of α-dimensional cylindric modal formulas in Q, or for short, α-formulas (in Q), is built up
as usual: the atomic formulas are the (modal or boolean) constants and the propositional variables,
and a formula is either atomic or of the form ¬φ, φ ∨ ψ or 3iφ, where φ, ψ are formulas. We use
standard abbreviations like ∧, → and 2i.

Turning to semantics, we will give the basic declarative statement in first-order logic, viz.

M |= φ[u]

the modal reading ‘φ holds in M at the possible world u’. Here the assignment u to variables of
elements of the domain can be identified with the α-tuple (u(v0), . . . , u(vi), . . .)i<α, for a fixed ordinal
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α. Clearly then the intended semantics of our modal language has a multi-dimensional character: the
universe of a model for CMLα is of the form αU (all α-tuples over some base set U). Note that the
interpretation functions of first-order logic, indicating for which tuples a predicate holds, will turn up
as modal valuations, i.e. maps assigning a set of possible worlds to each propositional variable.

Now let us formulate the essential clauses of the truth definition for restricted first-order logic as
follows:

M |= vi = vj [x] ⇐⇒ x ∈ Dij ,
M |= ∃viφ [x] ⇐⇒ ∃y(x ≡i y & M |= φ [y]).

with Dij being the set of α-tuples with identical i- and j-coordinates, and x ≡i y holding between
two α-tuples iff x and y differ at most in their i-th coordinate. The crucial observation, and in fact
the basic observation underlying our whole enterprise, is that this truth definition is in fact of a modal
nature: we may see Dij and ≡i as unary resp. binary accessibility relations on the α-dimensional
universe.

Note however that any modal similarity type comes automatically with a (Kripke) semantics con-
sisting of abstract relational frames, i.e. structures having an arbitrary (n+1)-ary accessibility relation
for every (n-ary) modal operator. Thus we obtain two kinds of semantics for restricted first-order
logic/ cylindric modal logic; of these, the truly α-dimensional frames or cubes1 form a subclass of the
relational α-frames:

Definition 1.2 An α-frame is a structure F = (W,Ti, Eij)i,j<α with every Ti ⊆ W ×W and every
Eij ⊆ W . An α-model is a pair M = (F, V ) with F an α-frame and V a valuation, i.e. a map
assigning a subset of the universe of F to each propositional variable in the language.

The (ordinary, i.e. unrestricted) first-order language used to describe these structures, having
monadic predicates Eij and dyadic predicates Ti, i, j < α, is denoted by Fα.

Truth of a formula φ at a world w in the model M is defined by the usual induction, e.g.

M, w 
 p ⇐⇒ w ∈ V (p),
M, w 
 δij ⇐⇒ w ∈ Eij ,
M, w 
 3iψ ⇐⇒ there is a v with wTiv and M, v 
 ψ.

If no confusion arises concerning the model involved, we may abbreviate M, w 
 φ by w 
 φ.
Now let U be some set; the α-frame Cα(U) = (αU,≡i, Dij)i,j<α, with

Dij = {x ∈ αU | xi = xj},
≡i = {(x, y) ∈ αU × αU | for all j 6= i, xj = yj },

is called the α-cube (or square, in case α = 2) over U . The class of α-cubes is denoted by Cα.
Validity of a formula or set of formulas in a model/frame/class of frames is defined and denoted

as usual, e.g.

Cn |= φ ⇐⇒ for all frames F in Cn, all valuations V on F and all worlds w in F: F, V, w 
 φ.

Note that with this definition, a restricted first-order formula is valid (in the usual sense of model
theory, i.e. valid in every appropriate structure) iff its cylindric modal version is cube-valid, i.e. valid
in the class of cubes.

The modal perspective on first-order logic has two important sides: first, it gives us an alterna-
tive, rather more general, semantics for first-order logic: restricted first-order formulas can now be
interpreted at arbitrary α-frames. And second, the modal approach allows us to analyze problems

1The name ‘cubes’ for the intended frames is taken from a paper [29] by Prijatelj who studies related structures
modeling natural language phenomena.
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concerning restricted first-order logic by modal means, i.e. using results and techniques developed in
the theory of modal logic.

The choice we made in adapting the syntax of first-order logic may seem to be rather arbitrary2;
its motivation takes us to the second aim of the paper, viz. the application of insights and results
obtained in the theory of modal logic to the field of algebraic logic. For an overview of the algebraic
approach towards logic we refer to Németi [27].

The framework that we are working in is the duality theory between Relational Kripke Frames and
Boolean Algebras with Operators, cf. Goldblatt [14]. Our guideline is that

the algebras of polyadic relations can be found as the modal algebras of our system.

In particular, the design of Cylindric Modal Logic is such that the modal algebras of our system have the
type of Cylindric Algebras (cf. Henkin, Monk & Tarski [16]); the cubes are the atom structures of the full
cylindric set algebras. In order not to confuse the reader by introducing too many formalisms at once,
we delay the discussion of the precise connection between Cylindric Modal Logic and Cylindric Algebras
to subsection 4.2. Let it suffice here to mention that modulo some trivial syntactic translations, the
cylindric modal theory of the α-cubes can be identified with the equational theory of the Representable
Cylindric Algebras of dimension α.

Overview
Let us now move on to indicate the main themes and results of the paper. The next section is devoted
to characterization results. First we show that the class of zigzagmorphic images of disjoint unions
of squares is definable by a finite set of cylindric modal formulas. Then we give a characterization of
the class of finite-dimensional cubes in the first-order frame language Fα. This definition is special in
the sense that it allows a modal so-called ±-characterization of the class of disjoint unions of cubes.
±-Characterizations have a positive and a negative part, in the style of Venema [44]. In section 3 we
treat axiomatizations of cube validity: first we give a finite axiomatization of the class of squares. Then
we prove that the ±-characterization of section 2 can be turned into an axiomatization of cube validity,
for arbitrary dimensions. This axiomatization will be unorthodox in the sense that the negative part
of the ±-characterization will return as a so-called non-ξ rule in the axiomatization. In section 4, this
modal completeness result will first be applied in other, related fields of logic. We obtain complete
axiomatizations for the valid schemas of first-order logic and for typeless validity. Note that the latter
result indicates a possible solution to Problem 4.16 of Henkin, Monk & Tarski [16]. Then we turn
to algebraic logic, defining a finite derivation system which recursively enumerates the equational
theory of the class of Representable Cylindric Algebras. We finish the section with a negative result
concerning interpolation, stating that no sufficiently strong, finite orthodox axiom system of restricted
first order logic has Craig’s Interpolation Property. Finally, we give a short evaluation of the paper’s
approach, and mention some recent developments and questions for further research.
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2 Cylindric Modal Logic: characterization results

In this section, we are interested in the question of how to give a (syntactic) characterization of the
cubes among the α-frames. In principle, one would aim for a positive modal characterization, i.e. a
set Γ of modal α-formulas such that for any α-frame F, F |= Γ iff F is a cube. However, such a set
Γ cannot be found; a simple reason for this is that Cα is not closed under taking disjoint unions or
zigzag morphic images, while modally definable classes are. For readers unfamiliar with these notions,
we give the definitions here.3

Definition 2.1 Let F and F′ be two α-frames, then a map f : W 7→ W ′ is a zigzag morphism4 iff
it satisfies the following properties, for all i, j < α:

(1) f is a homomorphism, i.e. Eiju only if E′ijfu and Tiuv only if T ′ifufv, for all i, j < α,
(2) Eiju if E′ijfu,
(3) If T ′ifuv

′ then there is a v ∈W such that Tiuv and fv = v′.
If such an f is onto, we will call F′ a zigzagmorphic image of F.

Let {Fk | k ∈ K} be a family of frames. If the universes Wj are mutually disjoint, the disjoint
union Σj∈JFj is defined as the frame F = (W,Ti, Eij)i,j<α with W , Ti and Eij being the unions of
the W k, T ki and Ekij respectively; if some of the universes overlap we take the disjoint union of some
canonically defined family of mutually disjoined isomorphic copies of the Fi’s.

For a class K of frames, let Hf (K) resp. Pf (K) denote the classes of zigzagmorphic images resp. dis-
joint unions of K-frames.

To give a simple example of a zigzagmorphism, consider the map f : Z × Z 7→ Z given by
f(x, y) = y − x (Z is the set of integers). It is straightforward to verify that f is a surjective
zigzagmorphism from C2(Z) onto the 2-frame Z′ over Z defined by T0 = T1 = Z × Z, E00 = E11 = Z
and E01 = E10 = {0}. By the preservation of modal validity under taking zigzagmorphic images it
follows that the cylindric modal theory of the squares is valid in Z′, while clearly Z′ is not a square.

So, if we confine ourselves to positive characterizations, the highest we can aim for is a definition
of the class of zigzagmorphic images of disjoint unions of cubes. For the two-dimensional case we can
achieve this aim, as we shall now see. As the formulas characterizing HfPf C2 also play an essential
role for higher dimensions, we give a definition for arbitrary α:

Definition 2.2 Consider the following pairs of α-formulas and Fα-formulas:
(CM1i) p→ 3ip (N1i) ∀xTixx
(CM2i) p→ 2i3ip (N2i) ∀xy(Tixy → Tiyx)
(CM3i) 3i3ip→ 3ip (N3i) ∀xyz((Tixy ∧ Tiyz)→ Tixz)
(CM4ij) 3i3jp→ 3j3ip (N4ij) ∀xz(∃y(Tixy ∧ Tjyz)→ ∃u(Tjxu ∧ Tiuz))
(CM5i) δii (N5i) ∀xEiix
(CM6ij) 3i(δij ∧ p)→ 2i(δij → p)) (N6ij) ∀xyz((Tixy ∧ Eijy ∧ Tixz ∧ Eijz)→ y = z)
(CM7ijk) δij ↔ 3k(δik ∧ δkj) (N7ijk) ∀x(Eijx↔ ∃y(Tkxy ∧ Eiky ∧ Ekjy))
(CM8ij) (δij ∧3i(¬p ∧3jp)) (N8ij) ∀xz(Eijx ∧ (∃yTixy ∧ Tjyz ∧ y 6= z)

→ 3j(¬δij ∧3ip) → ∃u(¬Eiju ∧ Tjxu ∧ Tiuz))
For finite α we set CM1 ≡

∧
i CM1i, etc., taking CM4 ≡

∧
i,j CM4ij, CM6 ≡

∧
i 6=j CM6ij, CM7

≡
∧
i,j,k CM7ijk and CM8 ≡

∧
i 6=j CM8ij. If α ≥ ω, we let CM1, . . . , CM8 be the corresponding

equation schemata.
An α-frame F is called cylindric5 if F |= CM1 . . . CM7, hypercylindric if CM1 . . . CM8 are

valid in it. The class of (hyper)cylindric frames is denoted by CFα (HCFα).
3It may be helpful for algebraists to note that zigzag morphisms and disjoint unions are the frame equivalents of

complete subalgebras resp. direct products.
4This notion is called a bounded morphism in Goldblatt [14].
5For a motivation of this terminology see subsection 4.2.
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So, N1i, N2i and N3i express that Ti is respectively reflexive, symmetric and transitive; together
they state that Ti is an equivalence relation. N6ij then means that in every Ti-equivalence class there
is at most one element on the diagonal Eij (i 6= j). By N5j and N7jji one can show that every
Ti-equivalence class contains at least one element on the diagonal Eij . Taking these observations
together, we find that every world in a cylindric frame has a unique Ti-successor on the Eij-diagonal.

The meaning of N4 and N8 is best made clear by the following pictures:

N4ij

z
q

y
q

x
q

u
q

Tj

Ti

Ti

Tj

N8ij

z
q

y
q

x ∈ Eij
q

u 6∈ Eij
q

Eij

�
�

�
��

Tj , 6=

Ti

Ti

Tj

The reason why we did not confine ourselves to the modal formulas, but defined Fα-formulas as
well, is that in the characterization theorems below, our working language will be Fα. Note that we
are allowed to do so, because the formulas given in Definition 2.2 are pairwise equivalent:

Lemma 2.3 Let F be an α-frame. Then for l = 1, . . . , 8 and i, j, k < α:

F |= CMli(j(k)) ⇐⇒ F |= Nli(j(k)).

Proof.
This lemma is a straightforward consequence of the correspondence part of the Sahlqvist theorem;
cf. Sahlqvist [33], Venema [44] for more details. For readers unfamiliar with Sahlqvist’s theorem, we
will treat the equivalence for l = 8 as an example:
For ⇐, assume that F |= N8ij , and that F, V, x 
 δij ∧ 3i(¬p ∧ 3jp) for some valuation V . By the
latter fact, there are y, z with Tixy, Tjyz and y 
 ¬p, z 
 p. Hence y must be different from z, so by
x 
 δij and our assumption, we find a u with u 
 ¬δij , Tjxu and Tiuz. By z 
 p we get u 
 3ip, so
we find x 
 3j(¬δij ∧3ip), which is what we were after.
For ⇒, suppose that F |= CM8ij , and let y 6= z be given such that Eijx, Tixy and Tjyz. Now
consider a valuation V on F, with V (p) = {z}. Unraveling the truth definition, we can show that
F, V, x 
 δij ∧3i(¬p∧3jp), so by F |= CM8ij , we find F, V, x 
 3j(¬δij ∧3ip). The truth definition
gives us a u with Tjxu, ¬Eiju and u 
 3ip. By the fact that z is the only world where p holds, this
means Tiuz. But then we have proved that F |= N8ij . 2

Now we can state and prove our first characterization result, for α = 2; it states that the hyper-
cylindric 2-frames are precisely the disjoint unions of zigzag morphic images of squares:

Theorem 2.4

HCF2 = HfPf C2.

Proof.
Clearly every square is hypercylindric, so HfPf C2 ⊆ HCF2.
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For the other direction, let F = (W,T0, T1, E) be a hypercylindric 2-frame6; observe that the compo-
sition T0|T1 of T0 and T1 is an equivalence relation. Call a frame F connected if this relation T0|T1 is
total, nice if F is connected and hypercylindric. It is an easy observation that every hypercylindric
frame is a disjoint union of nice frames, so it suffices to show that

every nice frame is a zigzagmorphic image of a square.

So, let F = (W,T0, T1, E) be a nice frame. Define λ as the maximum of |W | and ω. We will
define a chain (fξ)ξ<λ of potential zigzag morphisms (i.e. maps satisfying conditions (1) and (2) of
Definition 2.1) such that the union fλ of this chain is the desired zigzag. Every map fξ should be seen
as an approximation7 of fλ.

Look at the set of potential defects P = λ× λ×W × {0, 1}. Call the quadruple (β, γ, v, k) ∈ P a
defect of a homomorphism f : ξ × ξ 7→ W (where ξ < λ), if it defies one of the zigzag conditions in
clause 3 of Definition 2.1, e.g. for k = 1: (β, γ) ∈ ξ × ξ and T1f(β, γ)v while there is no γ′ ∈ ξ such
that f(β, γ′) = v; f is called perfect if it has no defects, i.e. if f is a zigzag morphism. Assume that
P is well-ordered; then we may speak of the first defect of an imperfect potential zigzag morphism
f : ξ × ξ 7→W . By the following claim such a map has an extension lacking this defect:

Claim.
Let f : ξ × ξ 7→W be a potential zigzag morphism, (β, γ, v, k) a defect of f . Then there is a potential
zigzagmorphism g ⊃ f , g : (ξ + 1)× (ξ + 1) 7→W such that (β, γ, v, k) is not a defect of g.

Proof of Claim. Without loss of generality we assume that β = γ = 0 and k = 1. We first set

g(ζ, η) = f(ζ, η) for ζ, η < ξ,
g(0, ξ) = v,

viz. the left picture below (where we denote g(ζ, θ) by gζθ).
Next we are concerned with the g(η, ξ), 0 < η < ξ. By assumption we have v 6= f(0, η), and as f

is a potential zigzag morphism we get a situation as in the right picture. By F |= N801 and Eg(η, η),
F has a vη 6∈ E with T0vvη and T1vηg(η, η). We define

g(η, ξ) = vη,

and set g(ξ, ξ) as the unique diagonal T0-successor of any/all of the g(η, ξ).
It is straightforward to verify that with this definition the part of g defined up till now satisfies both
conditions (1) and (2).

6It is straightforward to verify that in a hypercylindric frame we have Eii = W and Eij = Eji (cf. (1) below); thus
in our denotation of a hypercylindric 2-frame we suppress E00 and E11 and understand E = E01 = E10.

7The step-by-step method applied here has a long history in logic. It has been applied in model theory since the
twenties, and it is well-known from both modal logic (cf. Burgess [11] and algebraic logic (cf. Henkin-Monk-Tarski

[16]).
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g0η
q

v
q

gηη ∈ E
q

vη 6∈ E
q

�
�

�
�

T1, 6=

T0

T0

T1

For the definition of g(ξ, η) (η < ξ), we use the same trick as above to ensure g(ξ, η) 6∈ E: as g(ξ, ξ)
is in E and g(η, ξ) is not, they cannot be identical. So g(ξ, η) can be defined as any non-diagonal
T0-successor of g(η, η) which is a T1-successor of g(ξ, ξ) (such a g(ξ, η) exists by N810). This proves
the claim.

Assuming that we have a canonical way to define a map f ′ which lacks the first defect of a potential
zigzagmorphism f , we now define a chain of maps as follows:

f0 = {((0, 0), u)} for some u on the diagonal of F,

fξ+1 =
{
fξ
(fξ)′

if fξ is perfect,
otherwise,

fθ =
⋃
ξ<θ fξ if θ ≤ λ is a limit ordinal.

It is now straightforward to verify that fλ has the desired properties: first of all it is a potential
zigzag morphism as all the maps in the chain are. Suppose that fλ is not a zigzagmorphism, then
there are quadruples in P witnessing this shortcoming. Let π = (β, γ, v, k) be the first of these in the
well-ordering of P , suppose its ordinal number is η. Take θ = max(β + 1, γ + 1), then π is a defect of
fθ. It need not be its first one, but there can be at most η problems before π that are more urgent. So
π must be the first defect of fθ+η, whence it can not be a defect of fθ+η+1 = (fθ+η)′. But this gives a
contradiction, since fθ+η+1 ⊆ fλ. So fλ is a zigzag.
Finally, the proof that fλ is surjective is straightforward by the connectedness of F. 2

We now turn to the case where α is an arbitrary, finite ordinal n. If we confine ourselves to positive
characterizations, then a nice result like Theorem 2.4 cannot be obtained: it is a fairly straightforward
consequence of results by Monk [23] (resp. Andréka [1]) that there is no finite (resp. ‘simple’ infinite) set
of modal formulas that characterize the class HfPf Cn for n > 2. Therefore, we look for a different kind
of characterization, viz. a ±-characterization. In some sense, the result that we find in Theorem 2.11
is better than the one in Theorem 2.4, since it concerns the disjoint unions of cubes instead of the
zigzagmorphic images of disjoint unions of cubes. The main part of the proof of Theorem 2.11 lies in
a first-order characterization of the cubes to be given now. First we need some auxiliary definitions
and notation concerning hypercylindric frames:

Definition 2.5 For an arbitrary hypercylindric n-frame F = (W,Ti, Eij)i,j<α, define fij(u), Hn
i , Hn

and Rn as follows: fij(u) is the unique v such that Tiuv and Eijv. Hn (resp. Hn
i , i < α) is the

composition of all the T -relations, resp. all the T -relations minus Ti, i.e.

Hn = T0 | T1 | . . . | Tn−1.
Hn
i = T0 | T1 | . . . | Ti−1 | Ti+1 | . . . | Tn−1,
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For a world u in F, the set Hn
i (u) = {v | F |= Hn

i uv} is called the i-hyperplane through u. Rn is given
by

Rn = {(u, v) ∈W ×W | F |= ∃w
∨
i 6=j

(Tifjiuw ∧ ¬Eijw ∧Hn
i wv)}.

Note that in a hypercylindric frame all Hn
(i)-relations are equivalence relations, and that it does

not matter in which way we compose the Tj to define them. Note too that the i-hyperplanes are the
equivalence classes of Hn

i . An intuitive way to understand the definition of Rn is by the following
figure depicting the case where T0f10uw ∧ ¬E01w ∧Hn

0 wv:

f10u
q

u
q

w
q
q
q
v

�
�
�
�
�
��

E01

T1
p p p p p p p p pT2 | . . . | Tn−1

T0

T1

Here v lies in the hyperplane through w and ‘orthogonal’ to the ‘line’ T0. The key observation is that
if this picture is part of a cube, then the 0-th coordinate of u and v are different.

Now we reach the main theorem of this section. It states that the cubes are, modulo isomorphism,
precisely the hypercylindric frames where Rn is the inequality relation:

Definition 2.6 An n-frame is connected if the relation Hn is total, i.e. for all u, v in F we have
F |= Hnuv, and Rn-proper if F |= ∀xy(xRny ↔ x 6= y).

Theorem 2.7 An n-frame is isomorphic to a cube iff it is hypercylindric and Rn-proper.

Proof.
First some notational conventions: as we understand that n is fixed throughout the proof, we drop the
superscript n when referring to the relations Hn, Hn

i or Rn; we will also find it convenient frequently
to use infix notation for binary relations, i.e. uHv instead Huv.
⇒ It suffices to show that cubes are hypercylindric, and that (∗) R is the inequality relation in a

cube. The first claim we leave to the reader; for (∗) we first discuss the meaning of fij and Hi in a
cube. Let u, v ∈ nU ; then

v = fiju ⇐⇒ vi = uj & vk = uk for all k 6= i,
Hiuv ⇐⇒ ui = vi,

as an easy proof shows. Note that by the equivalence above, the term ‘hyperplane’ obtains its natural
mathematical meaning.

The idea behind the proof of (∗) is that two n-tuples are different iff they differ in at least one
coordinate: first assume that u 6= v. Without loss of generality we may assume that u0 6= v0. Let
w be the tuple (v0, u0, u2, . . . , un−1). Then we immediately have H0wv and ¬E10w. As f10u =
(u0, u0, u2, . . . , un−1), we also find T0f10uw. But then we have obtained Ruv by definition of R.

9



For the other direction, assume that Ruv. Without loss of generality we may assume (take i = 1
and j = 0 in the definition of R) that there is a w with T0f10uw, ¬E10w and H0wv. By T0f10uw we
find w1 = u0 (and wi = ui for 1 < i < n); H0wv implies w0 = v0; so ¬E10w gives v0 = w0 6= w1 = u0.
But then u 6= v.

⇐ Before we prove the direction from right to left, we develop some basic theory concerning hy-
percylindric frames. To start with, there are some elementary facts that we need throughout the
proof. These include: obvious properties like the fact that all Ti, Hi and H are equivalence relations;
reformulations of the axioms, like N7ijk : Eijx → Ekjfki; validities like uTiv → uHjv if i 6= j or
uHv → ∃w(uTiwHiv); etc. Such simple facts may be used without warning, or with a reference to
elementary hypercylindric theory. We provide short proofs of the following claims:

HCF |= Eijx↔ Ejix. (1)

For, assume Eijx; by N5i and N7iij , there is a y with Tjxy, Eijy and Ejiy. By N6ij , x = y, so Ejix.

HCF |= Eiju→ fkiu = fkju. (2)

For, assume Eiju; by N7ijk and (1), there is a y with Tkuy, Ekiy and Ekjy; it follows from elementary
hypercylindric theory that y = fkiu and y = fkju.

HCF |= uTiv → fjkuTifjkv. (3)

First consider the special case where v = fiku. By uTivTjfjkv and N4, there is a w with uTjwTifjkv.
By Eikv, N7ikj and (1), fjkv is in Eji and in Eik, so by N7jki (from right to left), Ejkw. Thus by
definition of fjk, w = fjku.

Now for arbitrary u, v with uTiv, the special case gives fjkuTifjkfiku and fjkvTifjkfikv; however,
uTiv implies fiku = fikv by elementary hypercylindric theory, so fjkuTifjkv follows immediately.

HCF |= (Rnuv ∨ u = v)↔ Huv. (4)

The implication from left to right is straightforward; for the other direction, assume that Huv and
u 6= v in a hypercylindric frame F. By definition of H, there are x0, x1, . . . , xn such that u =
x0T0x1T1x2 . . . xn−1Tn−1xn = v. Let i be the smallest index such that xi 6= xi+1; it follows that there
is an x, viz. xi+1 such that uTixHiv and u 6= x. Take a j with j 6= i. By N8ji, there is a w with
¬Ejiw and fjiuTiwTjx, cf.

u
q

x
q

fjiu ∈ Eji
q

w 6∈ Eji
q

�
�

�
�

Ti, 6=

Tj

Tj

Ti

It follows that wHix, so by xHiv we find that wHiv. But then Ruv, by definition of R.
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An immediate consequence of (4) is that

hypercylindric Rn-proper frames are connected. (5)

The following property is further on referred to as the disjoint hyperplanes-property of Rn-proper
frames. In a slightly different wording, it states that two different points on a ‘line’ (u 6= v and Tiuv)
belong to disjoint hyperplanes orthogonal to the ‘line’ Ti.

If F is hypercylindric and Rn-proper, then F |= (uTiv ∧ uHiv)→ u = v. (6)

Without loss of generality we may assume that i = 0. We will derive a contradiction from the
assumption that in a Rn-proper frame there are u, v with uT0v, uH0v and u 6= v. From uT0v and
u 6= v, N810 yields a w with f10uT0w, vT1w and ¬E10w; uH0v and vT1w imply uH0w. So we have
found a w with f10uT0w, ¬E10w and uH0w; in other words: Ruu. This gives the desired contradiction
u 6= u.

Now turning to the representation theorem itself, let us start with giving the intuitive idea. Consider
the cube C over a set U ; the key observation in the proof is that we may identify the i-th coordinate
of a an n-tuple x in C with the i-hyperplane through x. So the basic idea will be to represent a world
x in a Rn-proper frame as the n-tuple (H0(x), . . . ,Hn−1(x)). The problem is that if i 6= j, the sets
of i- resp j-hyperplanes are different, while there can only be one base set U . The solution to this
problem is to relate these disjoint sets of hyperplanes: in a cubic frame again, we can find the second
coördinate of a world u = (u0, u1, . . . , un−1) not only by considering the one-hyperplane H1(u), but
also by looking at the zero-hyperplane of (u1, u1, . . . , un−1) = f01(u). Therefore we may and will
concentrate on 0-hyperplanes.

Let F = (W, Ti , Eij)i,j<n be a hypercylindric Rn-proper n-frame; set

U is the set of the 0-hyperplanes of F.

Define the representation map h : W 7→ nU by

h(u) = (H0(u),H0(f01u), . . . ,H0(f0,n−1u)).

We will also write h(u) = (h0(u), . . . , hn−1(u)), so hi(u) denotes H0(f0iu).

Claim 1. h is injective.

Proof. Let u and u′ be different worlds in F. As F is connected by (5), there must be worlds u0, . . . , un
such that u = u0T0u1 . . . un−1Tn−1un = u′. As u0 6= un there must be a first i with ui 6= ui+1.
Distinguish cases:

(a) i = 0: we have ¬H0uu1 by (6), so H0(u) 6= H0(u′) and hence h(u) 6= h(u′).
(b) i > 0. Define v = ui+1; then we have uTiv, u 6= v. By N8 then there is a w with vT0wTif0iu

and w 6∈ E0i, viz.

q
u

q
v

q
f0iu

q
w

q
f0iv

T0

T0 T0

6=, Ti Ti

�
�
�
�
�
�
�
�

E0i

�
�

�
�
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We obtain wT0f0iv and w 6= f0iv. So by disjoint hyperplanes (6), H0(f0iv) 6= H0(w), while
H0(w) = H0(f0iu). But vTi+1 | . . . | Tn−1u

′ implies, by several applications of (3), that f0ivTi+1 | . . . |
Tn−1f0iu

′, so H0(f0iv) = H0(f0iu
′).

Putting these facts together, we obtain H0(f0iu) 6= H0(f0iu
′), so h(u) 6= h(u′). This proves claim

1.

Claim 2. h is a homomorphism.

Proof.
For the diagonals: if u ∈ Eij , then f0iu = f0ju by (2), so hi(u) = hj(u) by definition of h.

For the cylinders: assume that uTiu′; we have to show that hj(u) = hj(u′) for j 6= i. Distinguish
cases:

If i = 0, then for j 6= 0 we have f0ju = f0ju
′ by elementary hypercylindric theory, so hj(u) = hj(u′).

If i 6= 0, then uH0u
′, so h0(u) = h0(u′). For j 6∈ {0, i} we find f0juTif0ju

′ by (3), so H0f0juf0ju
′;

this gives hj(u) = hj(u′) by definition. This proves claim 2.

Claim 3. h−1 is a homomorphism.

Proof.
For the diagonal, assume that hi(u) = hj(u); we have to show that f0iu ∈ Eij . By assumption,
f0iuH0f0ju; by definition of the projection functions f0j and f0i we also have f0iuT0f0ju. So by
disjoint hyperplanes (6) we get f0iu = f0ju. Applying N7ij0 from right to left, we find Eijf0iu.

For the cylinders, assume h(u)Tih(u′), i.e. hj(u) = hj(u′) for j 6= i. Distinguish cases:
If i = 0, then by connectedness (5) there is a v with uT0vH0u

′. We will show that v = u′, which
immediately gives the desired uT0u

′.
By uT0v and claim 2 we have hj(u) = hj(v) for j 6= 0, so by the assumption, hj(v) = hj(u′) for

j 6= 0. But we have h0(v) = h0(u′) as well, as vH0u
′. So h(v) = h(u′) and thus by injectivity of h it

follows that v = u′.
For the case where i 6= 0, we may assume without loss of generality that i = 1. By connectedness,

there is a v with uT1vH1u
′. Here too we will prove that v = u′, by showing that for all j we

have hj(v) = hj(u′), and then use injectivity. For j 6= 0, 1 uT1v implies f0juT1f0jv by (2); this
gives H0f0juf0jv, so by definition of h, hj(u) = hj(v); by assumption hj(u) = hj(u′), so we find
hj(v) = hj(u′). For j = 0 we have a similar story: uT1v implies h0(v) = h0(u′). Finally, for j = 1, note
that H1vu

′ implies the existence of elements x2, x3, . . . xn−1 such that vT0x2T2x3T3 . . . xn−1Tn−1u
′.

Then claim 2 implies that the images under h of v0, x2, . . . , xn−1 and u′ have the same first coordinate:
h1(v) = h1(u′). This proves claim 3.

Claim 4. h is surjective.

Proof.
We will prove that every a ∈ nU is the image under h of a world in F, by induction on the number k
of coordinates differing from a0.

For k = 0, let G be the 0-hyperplane in F such that a = (G, . . . , G). We leave it to the reader to
verify that there is an element u in G such that E0iu for all i. Clearly this u satisfies u = f0iu for all
i, so a = h(u).

For k > 0, assume (without loss of generality) that a = (G,G1, G2, . . . , Gk, G, . . . , G). By the
induction hypothesis, a′ = (G,G,G2, . . . , Gk, G, . . . , G) is the h-image of some u′ in F. By claim 3,
u′ ∈ E01, and by connectedness, there is a v ∈ G1 with u′T0v. F |= N4 implies the existence of a u
with u′T1uT0f10v, viz.
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u′
q

u
q

v
q

f10v
q

�
�

�
�
�
�
�
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�
�
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�
�

E01
T1

T0

T0

T1

Now we verify that hi(u) = ai, for all i. For i 6= 1: by claim (2), uT1u
′ implies hi(u) = hi(u′) =

(a′)i = ai. For i = 1: f01u = f10v holds by definition of u, so h1(u) = H0(f01u) = H(f10v) = H0(v) =
G1 = a1. So h(u) = a. This proves claim 4.

Thus we have proved that h is an isomorphism between F and the n-cube over U . 2

We would like to thank H. Andréka, I. Németi and I. Sain for bringing theorem 3.2.5 of Henkin,

Monk & Tarski [16] to our attention. Via some (non-elementary) duality theory relating Boolean
Algebras with Operators and Relational (Kripke) Frames, one can derive our characterization result 2.7
from this theorem, and vice versa.

The definition of Rn looks rather involved, so the reader may wonder why we did not choose a
simpler formulation to define Cn. The reason for this is that the particular formulation allows us to
give a nice kind of characterization of the class Pf Cn of disjoint unions of cubes.

Definition 2.8 Let K be a class of α-frames, and ξ an α-formula. K−ξ is the class of frames in K
such that for every world w in F there is a valuation V satisfying F, V, w 
 ¬ξ. If K is of the form
FrΣ, (i.e. for a frame F we have F ∈ K iff every formula of Σ is valid in F), then we call the pair (Σ, ξ)
a ±-characterization of K−ξ, and we say that K−ξ is ±-definable.

As an example, the reader could check that in ordinary modal logic, the class K−(p→3p) consists of
precisely the irreflexive K-frames. The crucial step in the proof consists of showing that a world w in
a frame F is irreflexive only if the valuation Vw given by Vw(p) = {w}, satisfies F, Vw, w 
 ¬(p→ 3p).
±-Characterizations, and in particular axiomatizations of ±-definable classes are studied in Venema

[44], to which we refer for more details. Let us motivate the concept here by saying that under certain
constraints, ±-definable classes behave very nicely with respect to axiomatizability, allowing quite
natural, though slightly unorthodox axiomatizations, as we will see in the next section. One of these
constraints is that a certain modal operator called the difference operator, is definable over the class.
The difference operator is a special diamond in the sense that it has a designated accessibility relation,
viz. the inequality relation ( 6=).

Definition 2.9 Define the following abbreviated operator Dn:

Dnφ =
∨
j 6=i

3j(δij ∧3i(¬δij ∧30 . . .3i−13i+1 . . .3n−1φ)),

Note that Dn is defined to make the relation Rn act as its accessibility relation, i.e. for any α-model
we have

M, u 
 Dnφ ⇐⇒ there is a v with Rnuv and M, v 
 φ.
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By Theorem 2.7 this implies that over the class of cubes Dn indeed behaves like the difference operator:

M, u 
 Dnφ ⇐⇒ there is a v with u 6= v and M, v 
 φ.

We are now ready to state and prove the characterization result of the class Pf Cn. First define

Definition 2.10 Let β(p) be the formula p→ Dnp.

Theorem 2.11 HCFn,−β = Pf Cn.

Proof.
Let F be a hypercylindric frame. By Sahlqvist’s theorem, we have for every u in F that

Rnuu ⇐⇒ for all valuations V : F, V, u 
 β. (7)

So HCFn,−β consists of all the hypercylindric frames where Rn is irreflexive.
Now to prove the theorem, let F be a cube; by Theorem 2.7 it follows that in F, Rn is the inequality

relation, so Rn is clearly irreflexive. But then Rn must also be irreflexive in a disjoint union of cubes,
so Pf Cn ⊆ HCFn,−β .

For the other direction, we first apply some standard theory of modal logic yielding that every
hypercylindric frame is isomorphic to the disjoint union of its connected subframes. Note that a
connected subframe of a hypercylindric frame is hypercylindric itself. So, it suffices to prove that
every connected frame in HCFn,−β is isomorphic to a cube. Let F be such a frame. By (7), Rn is
irreflexive, so by (4) and the fact that H is total on F, Rn is indeed the inequality relation on F. Then
by Theorem 2.7 F is isomorphic to a cube. 2

3 Cylindric Modal Logic: Axiomatics

In this section we will show how the characterization results of the previous section lead to complete
axiomatizations for the modal theory of the cubes. As these axiomatizations are slightly unorthodox,
at the end of the section we give a worked example how to use them to actually derive theorems.

We already mentioned that the kind of characterization that we gave for Pf Cn in Theorem 2.7 lends
itself for an unorthodox kind of axiomatization. Before giving the formal definitions of our derivation
systems, let us discuss the basic idea behind the unorthodox derivation rule that we will use.

Let us consider the modal theory Θ of a given ±-definable class K = FrΣ,−ξ. We will show that if a
formula ψ is satisfiable in K, then so is ψ ∧ ¬ξ, provided that ψ and ξ do not share any propositional
variables. For, suppose that there is a frame F in K, a valuation V and a world w such that F, V, w 
 ψ.
By our assumption that K was±-characterized by (Σ, ξ), there is a valuation V1 such that F, V1, w 
 ¬ξ.
Now taking the valuation V ′ given by

V ′(p) =
{
V (p) if p occurs in ψ,
V1(p) otherwise,

we obtain F, V ′, w 
 ψ ∧ ¬ξ, whence ψ ∧ ¬ξ is satisfiable in K. The strategy is now to turn this
semantic intuition into a syntactic devise, by a contraposition and formalization of the above remark;
one might just as well have said that: if ¬ξ(~p) → ¬ψ is in Θ, and none of the ~p occur in ψ, then
¬ψ ∈ Θ. In fact, what we have done here is to formulate a derivation rule, the non-ξ rule:

(NξR) ` ¬ξ(~p)→ φ ⇒ ` φ, if ~p 6∈ φ.

14



The idea to let non-ξ rules ‘axiomatize’ non-ξ properties, originates with Gabbay [12]. Whether adding
a non-ξ rule to a complete axiomatization for a class K yields a complete axiomatization of the class
K−ξ, is the main problem8 concerning the non-ξ rules. Nevertheless, given certain constraints on the
similarity type of the language and the syntactic form of the axioms, a positive general result was
obtained in Venema [44]. This result can and will be applied here.

Definition 3.1 Let Aα be the derivation system having as its axioms
(CT ) all propositional tautologies
(DB2i) 2i(p→ q)→ (2ip→ 2iq)
(CM) CM1, . . . , CM8.

and as its derivation rules, Modus Ponens, Universal Generalization or Substitution:
(MP ) ` φ,` φ→ ψ ⇒ ψ,
(UG2i) ` φ ⇒ ` 2iφ,
(SUB) ` φ ⇒ σ(φ), for any substitution σ of formulas for propositional variables in φ.

For finite dimensions, A+
n is the derivation system An extended with the Irreflexivity Rule for

Dn:

(IRDn) ` ¬β(p)→ φ ⇒ ` φ, if p 6∈ φ.

A+
ω is defined as the system Aω extended with the schema of rules {IRDn | n < ω}. For α > ω we add

besides this set, the following schema:

{` φ ⇒ ` φτ | τ : α 7→ α is a bijection},

where φτ is the formula obtained from φ by substituting 3τ(i) and δτ(i)τ(j) for every occurrence of 3i

resp δij.
A derivation in one of these systems is defined as a finite sequence φ0, . . . , φn such that every φi

is either an axiom or obtainable from φ0, . . . , φi−1 by a derivation rule. A theorem of is any formula
that can appear as the last item of a derivation. Theoremhood of a formula φ in the system A

(+)
α is

denoted by `(+)
α φ.

In the sequel, we will frequently use the following result, stating that Aα is sound and complete
with respect to hypercylindric frames:

Theorem 3.2 Let α be an arbitrary ordinal and φ an α-formula. Then

`α φ ⇐⇒ HCFα |= φ.

Proof.
This follows by the Sahlqvist form of the axioms, cf. Sahlqvist [33], Sambin-Vaccaro [38] for more
details. 2

As an immediate consequence, we have a finite axiomatization of the cylindric modal theory of the
squares:

Theorem 3.3 COMPLETENESS FOR SQUARE VALIDITY
Let φ a 2-formula. Then

`2 φ ⇐⇒ C2 |= φ.

8Note that in modal logic, this question need not always have an affirmative answer: characterizations of frame
classes lead not automatically to complete axiomatizations.
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Proof.
Immediate by Theorem 2.4, Theorem 3.2 and the preservation result of modal validity under taking
zigzagmorphic images and disjoint unions. 2

For the general case, we need the unorthodox rules:

Theorem 3.4 COMPLETENESS FOR CUBE VALIDITY
Let α be an arbitrary ordinal and φ an α-formula. Then

`+
α φ ⇐⇒ Cα |= φ.

Proof.
We leave it to the reader to prove soundness. For completeness, we first treat the finite-dimensional
case α = n. Actually, this case is a straightforward corollary of Theorem 8.2 in [44] and the ±-
characterization result 2.7. There is a technical problem however: the mentioned theorem applies to
similarity types where the difference operator is a primitive operator, while in our system Dn is a
defined operator.

Therefore, our proof strategy is as follows: first (i) we extend the language CMLn with the difference
operator D as a primitive symbol. We also extend A+

n to a derivation system EA+
n . This extended

derivation system is in such a form that theorem 8.2 is directly applicable to it (ii). We thus obtain
a completeness result for EA+

n with respect to a certain class K of frames, which we will show (iii) to
be identifiable with Cα. Finally (iv), we show that EA+

n is conservative over A+
n .

(i) Let us start with defining the language X, which is an extension of CMLn with a new unary
operator D. We abbreviate Dφ = ¬D¬φ. Note that in the Kripke semantics for this language, the
frames are the α-frames augmented with a binary accessibility relation RD for D. Only in the intended
semantics, RD is the inequality relation.

The derivation system EA+
n is obtained by adding the following axioms and rules to A+

n :
(DBD) D(p→ q)→ (Dp→ Dq)
(D1) p→ DDp
(D2) DDp→ (p ∨Dp)
(D3) 3ip→ (p ∨Dp)
(UGD) ` φ ⇒ ` Dφ
(IRD) ` (p ∧ ¬Dp)→ φ ⇒ ` φ, provided that p does not occur in φ.

(ii) Note that all axioms of this system are in Sahlqvist tense form (cf. [44]), that all diamonds are
self-conjugate, and that D has indeed all the axioms and the rule IRD needed to make it the difference
operator. Therefore, Theorem 8.2 of Venema [44] yields that EA+

n is sound and complete with respect
to the class Kn of frames F such that (1) the accessibility relation RD of D is really the inequality
relation, (2) all axioms of EA+

n are valid in F and (3) the ‘accessibility’ relation RDn of Dn is irreflexive.
(iii) In other words, Kn is the class of frames F = (W,Ti, Eij , RD)i,j<α with (W,Ti, Eij)i,j<α in
HCFn,−β and F |= ∀xy(RDxy ↔ x 6= y). But this means that for any CMLn-formula φ (i.e. an X-
formula in which D does not occur), we have Kn |= φ iff Pf Cn |= φ. And as we have Pf Cn |= φ iff
Cn |= φ, EA+

n is complete with respect to the cube-theory of the cylindric modal fragment of X.
(iv) Finally, to show that EA+

n is conservative over A+
n , we first define an embedding translation (·)−:

p− = p,
(Dφ)− = Dnφ

−,
(φ ∧ ψ)− = φ− ∧ ψ−,
(3iφ)− = 3iφ

−,
(¬φ)−w = ¬φ−.

16



The essential claim is that for all EA+
n -formulas φ we have

EA+
n ` φ ⇐⇒ A+

n ` φ−. (8)

The direction from right to left is trivial; the other direction is proved by induction on derivations in
EA+

n .
For the basic step, let φ be an axiom of EA+

n . The only non-trivial cases are where φ is one of
the D-axioms (including the distribution axiom for D). By the completeness theorem 3.2 and the fact
that A+

n is an extension of An, it suffices to show that HCFn |= φ−. We omit the rather trivial proof
for the distribution axiom. For the axioms D1 – D3, we apply Sahlqvist’s Theorem again: it suffices
to show that the Sahlqvist correspondents (in Fα) of D1− – D3− hold in HCFn:

HCFn |= ∀xy(Rnxy → Rnyx)
HCFn |= ∀xyz((Rnxy ∧Rnyz)→ (x = z ∨Rnxz))
HCFn |= ∀xy(Tixy → (x = y ∨Rnxy)).

(∗)

Now the proofs of (∗) are all straightforward consequences of the fact that Hn is an equivalence
relation, and of

HCFn |= (Rnuv ∨ u = v)↔ Hnuv. (4)

which was established in the proof of Theorem 2.7.
For the induction step we need to consider one case only, viz. the necessitation rule for D. By

successive applications of UG2i and the A(+)
n -derivable rules ‘` φ⇒ ` δij → φ’ and ‘` φ⇒ ` ¬δij →

φ’, it is straightforward to derive `+
n ¬Dn¬φ from `+

n φ. This proves (8), and finishes the proof for
the finite-dimensional case.

For infinite dimensions, we only treat the case where α = ω. Let φ be an ω-formula such that
Cω |= φ. As there are only finitely many symbols occurring in φ, there is an n < ω such that φ is an
n-formula. A relatively simple argument shows that for all ordinals β, γ:

β < γ ⇒ for all β-formulas ψ: Cβ |= ψ ⇐⇒ Cγ |= ψ,

so we have Cn |= φ. By completeness of the finite-dimensional case we find `+
n φ; now `+

ω φ follows as
A+
ω is an extension of A+

n . 2

Note that modulo the isomorphism on the formula algebra (i.e. replacing each propositional variable
pk by the predicate symbol Rk, each constant δij by the identity vi = vj and each diamond 3i by the
existential quantification ∃vi), Theorem 3.4 is a completeness result for restricted first order logic as
well.

In the remainder of this section we will show that the completeness proof for `+
α is more than just

an abstract proof for the existence of a derivation system: one can actually work in it. In particular,
we will give a cube-valid 3-formula φ for which we will prove that it is derivable in A+

3 , while it is not
derivable in A3.9 The material in this part contains many essential contributions by H. Andréka, I. Sain
and I. Németi. The first example of a derivation using (the algebraic version of) the Dn-irreflexivity
rule was given by I. Sain [6].

First we define some further abbreviations:

2φ = 202122φe
ij φ = 3i(δij ∧ φ)

9The existence of such a formula follows from the fact that C3 is not finitely axiomatizable by an orthodox system,
i.e. a derivation system where MP , UG and SUB are the only derivation rules. This is the modal version of the famous
non-finite axiomatizability result of the equational theory of the variety of Representable Cylindric Algebras, due to
Monk.
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Note that in a hypercylindric 3-frame, we may pretend that the relation H resp. the function fij
are the accessiblity relation of 2, resp. the accessiblity function of eij :

M, u 
 2φ ⇐⇒ for every v in W : if Huv then M, v 
 φ,
M, u 
 eij φ ⇐⇒ M, fiju 
 φ.

Note too that in a connected hypercylindric frame, H is total, whence 2 is the universal modality,
i.e. 2φ holds at a world u iff φ holds everywhere in the model.

Now consider the following CML3-formulas:

γ′ = (3132r ∧ e01 3132r ∧ e02 3132r)→ (δ01 ∨ δ02 ∨ δ12)
γ = 2 γ′

ψi = 2(ri → r) ∧2(30r → 30ri)
ψ′ = 2((r0 → ¬r1) ∧ (r1 → ¬r2) ∧ (r2 → ¬r0))
ψ = r0 ∧ ψ0 ∧ ψ1 ∧ ψ2 ∧ ψ′
ρ = γ ∧ ψ

Proposition 3.5 Let ρ be as defined above. Then
(i) C3 |= ¬ρ,
(ii) A3 6` ¬ρ,
(iii) A+

3 ` ¬ρ.

Proof.
(i) The basic intuition behind the definition of ρ is the following. Let Ri resp. R denote V (ri)
resp. V (r). In a 3-cubic model, γ expresses that the domain of R, (i.e. the set {s ∈ U | (s, t, u) ∈ R
for some t, u ∈ U}) has at most two elements; ψ states that R contains three disjoints parts R0, R1, R2

in such a way that the domain of R contains at least three elements. So ρ is not satisfiable in a cube.
To give more details, let M = (3U, V ) be a 3-cubic model, and suppose M, (s0, t, u) 
 ψ. By

M, (s0, t, u) 
 r0 and M |= ψ0 we obtain M, (s0, t, u) 
 r. Then by M |= ψ1 ∧ ψ2 there are s1, s2 such
that for i = 0, 1, 2 : M, (si, t, u) 
 ri ∧ r; so s0, s1 and s2 are mutually distinct by M |= ψ′. (This
means that the domain of R contains at least three elements.)

So for the triple ~s = (s0, s1, s2) we have ~s 
 ¬(δ01 ∨ δ02 ∨ δ12).
We also have

~s 
 3132r,
~s 
 e01 3132r (as (s1, s1, s2) 
 3132r)
~s 
 e02 3132r (as (s2, s1, s2) 
 3132r)

So ~s 
 ¬γ′ whence M, (s0, t, u) 
 ¬γ. But then ρ is not satisfiable in a cube.
(ii) Our second aim is to show that ¬ρ is not derivable without the IRD3-rule. Note that by the
completeness result for hypercylindric frames, it suffices to show that (†) HCF3 6|= ¬ρ. We leave this
part of the proof to the interested reader; it is not very difficult to prove (†) by algebraic means, using
the well-known technique of splitting in cylindric algebras, cf. Henkin, Monk & Tarski [16].
(iii) We conclude the proof by showing that ¬ρ is derivable if we have the new derivation rule at our
disposal. We will not give the actual derivation, which would hardly give any insights; our task will
be to prove

HCF3 |= (p ∧ ¬D3p)→ ¬ρ. (9)

After establishing this, we reason as follows: by Theorem 3.2, A3 ` (p ∧ ¬D3p) → ¬ρ, so by one
application of the D3-irreflexivity rule: A+

3 ` ¬ρ.
Below we frequently need the following fact on hypercylindric frames:

HCF |= Tkxy → (Eijx↔ Eijy), if k 6∈ {i, j}. (10)
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To prove (10), let F be a hypercylindric frame, x and y in F, k 6∈ {i, j}. Assume that Tkxy and
Eijx. By N7ijk (from left to right) there is a z (actually, z = fkix) such that Tkxz, Eikz and Ekjz. As
Tk is an equivalence relation, we have Tkyz, so by using N7ijk again, but now in the other direction,
we get Eijy. This suffices to prove (10).

To prove (9), let F be hypercylindric, V and a such that F, V, a 
 ρ. It suffices to prove that that
a 
 p→ D3p and to establish this, we will show that a is R3-reflexive, i.e. R3aa. The reader is advised
to follow the proof with a glance at the pictures below.
(I) As a 
 ψ, there are b, c in F with aT0b, aT0c, a 
 r0 ∧ ¬r1 ∧ ¬r2, b 
 ¬r0 ∧ r1 ∧ ¬r2 and
c 
 ¬r0 ∧ ¬r1 ∧ r2.
(II) Actually, all we need to remember is that a, b and c are distinct elements of the ‘line’ T0 and that
r holds at a, b and c.

We will show that M |= γ causes the 0-hyperplanes through a and b to coincide.
(III) Let s = f10a, d = f20b, i.e. E01s, aT1s and E02d, bT2d.
(IV) By F |= N810, aT0c, a 6= c and the definition of s, there is a u with ¬E01u and sT0uT1c. Likewise,
there is an e satisfying and ¬E02e and dT0eT2c.
(V) By F |= N4, cT2e and cT1u there is a z with eT1zT2u. By (10), ¬E01u and uT2z give ¬E01z.
Likewise we obtain ¬E02z.
(VI) By N4 again, there are x, y with dT1yT0z and sT2xT0z, viz.

q
a
q
b c
q

d
q

e
q

s
q

u
q
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q

y
q

z
q
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��
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��
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By (10), E01s and T2xs imply E10x. Likewise, E02d and T1bd imply E02y.
We will prove that the 0-hyperplanes through a and b intersect by showing x = y.

(VII) So we have that

a 
 r ⇒ s 
 31r ⇒ x 
 δ01 ∧3231r
b 
 r ⇒ d 
 32r ⇒ y 
 δ02 ∧3132r
c 
 r ⇒ e 
 32r ⇒ z 
 3132r

 ⇒ z 
 e013132r ∧ e023132r ∧3132r

Now by the fact that z 
 γ′ (here we use the assumption a 
 γ) we obtain z 
 δ01 ∨ δ02 ∨ δ12.
Then by (V) z 
 δ12.
(VIII) Now E12z and zT0y give E12y by (10), so with E02y and N7 we get E01y. We already had
E01x, so by xT0y and F |= N6 we obtain x = y.
(IX) By F |= N8, a 6= b, T0ab and the definition of s, there is a w with ¬E01w and sT0wT1b, viz.

q
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q
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q
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q
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(X) Now wT2y = xT2sT1a implies wH0a, so we obtain (recall that s = f10a)

f10aT0w, ¬E10w and wH0a,

which gives R3aa by definition of R3. 2

4 Applications to other logics and to algebraic logic.

In this section we discuss a number of formalisms which are closely related to cylindric modal logic, and
for which the results obtained in the previous sections have nice applications. In the first subsection
we treat type-free logic and schema validity of first order logic, and in the second, the connections with
the algebraic theory of cylindric algebras; finally, we prove a result on interpolation and amalgamation
properties.

4.1 Applications to other logics.

First we discuss typeless or type-free logic, which arises out of abstracting away from the ranks of
relation symbols in ordinary first-order logic. Typeless logic is studied in e.g. Henkin-Monk-Tarski
[16], Andréka-Gergely-Németi [2], Simon [39]. The syntax of typeless logic is identical to that of
restricted first-order logic of dimension ω:

Definition 4.1 The language Ltf of type-free or typeless logic is defined as follows, given a set of
predicate symbols. An atomic formula is either an identity vi = vj or a predicate symbol Rl, and a
non-atomic typeless formulas is of the form ¬φ, φ ∨ ψ or ∃viφ, where φ and ψ are typeless formulas.

A type for Ltf is a map ρ : ω 7→ ω assigning to each relation symbol Rl a finite rank ρ(l). The
ρ-instantiation φρ of a type-free formula φ is the first-order formula obtained from φ by replacing all
atomic (type-free) subformulas Rl by the ρ-typed Rl(v0 . . . vρ(l)−1).

This idea of giving types to Lrω-formulas lies behind the model theory of typeless logic too:

Definition 4.2 A model for Ltf is a pair M = (U, V ) such that there exists a type ρ with the property
that M is a structure for the restricted first-order logic of similarity type ρ (or equivalently, V is a
function mapping every relation symbol Rl to a ρ(l)-ary relation on U).

A typeless formula φ is type-free valid in M, notation: M |=tf φ, if M is of type ρ and φρ is
valid in M in the usual classical sense; φ is type-free valid, notation: |=tf φ, if φ is valid in all
models for Ltf .

So a formula is type-free valid if it is valid in any model, no matter how we type the relation symbols
of φ. A simple example: of the two typed instances Pv0v1 → ∀v2Pv0v1 and Pv0v1v2 → ∀v2Pv0v1v2

of the typeless formula P → ∀v2P , the first is valid, but the second is not. Therefore P → ∀v2P is
not a type-free valid formula.

Note that type-free validity is equivalent to ω-validity:

Lemma 4.3 Let φ be an ω-formula. Then

|=tf φ ⇐⇒ Cω |= φ′,

where φ′ is the cylindric modal formula obtained by replacing all occurrences of vi = vj and ∃vi by δij
resp. 3i.
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Proof.
In a rather straightforward manner we can convert a typeless model M into a model M′ over a ω-cube
and vice versa, such that ¬φ is satisfiable in M iff ¬φ′ is satisfiable in M′. The theorem then follows
immediately. 2

Now the following completeness result for type-free validity is immediate:

Definition 4.4 Let A+
tf be the following derivation system for typeless formulas. Its axiom schemas

are:
(CT ) all propositional tautologies
(DB) ∀vi(φ→ ψ)↔ (∀viφ→ ∀viψ)
(CR1) φ→ ∃viφ
(CR2) φ→ ∀vi∃viφ
(CR3) ∃vi∃viφ→ ∃viφ
(CR4) ∃vi∃vjφ→ ∃vj∃viφ
(CR5) vi = vi
(CR6) ∃vi(vi = vj ∧ φ)→ ∀vi(vi = vj → φ))
(CR7) vi = vj ↔ ∃vk(vi = vk ∧ vk = vj)
(CR8) (vi = vj ∧ ∃vi(¬φ ∧ ∃vjφ))→ ∃vj(vi 6= vj ∧ ∃viφ).

The derivation rules of A+
tf are MP , SUB and UG (here: φ / ∀viφ) and the schema of rules {IRtfDn |

n ≤ ω}, where IRtfDn is the appropriate version of IRDn , i.e.

(IRtfDn) ` (P ∧ ¬Dtf
n (P ))→ φ ⇒ ` φ, if P 6∈ φ.

Here Dtf
n is the following abbreviation in Ltf :

Dnφ =
∨
j 6=i

∃vj(vi = vj ∧ ∃vi(vi 6= vj ∧ ∃v0 . . .∃vi−1∃vi+1 . . .∃vn−1φ)).

The theorem below indicates a possible solution to Problem 4.16 of Henkin-Monk-Tarski [16], as
A+
tf is a proof calculus for type-free valid formulas which involves only type-free valid formulas.

Theorem 4.5 COMPLETENESS FOR TYPELESS LOGIC.
Let φ be a typeless formula. Then

`+
tf φ ⇐⇒ |=tf φ.

Proof.
Immediate by Lemma 4.3 and Theorem 3.4. 2

It is interesting to note the following: independently of our result, András Simon found a proof
calculus for typeless validity (and thus, for the related notions), in which another kind of unorthodox
derivation rule appears (cf. Simon [39]). Simon’s methods seem to be complementary with ours in
that he concentrates on infinite dimensional while we on finite dimensional cylindric algebras (cf. also
the next subsection).

The second concept we (briefly) mention is that of schema validity, cf. Németi [26], Rybakov [32].
Formula schemas are used widely in logic, e.g. in axiomatizations of first-order logics: an example of
such a formula schema is φ→ ∃viφ. Formally we set:

Definition 4.6 Let Qfm be a set of formula variables (i.e. variables ranging over formulas), and
assume that we have a set {vi | i ∈ ω} of individual variables. Formula schemas are defined by
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induction: (i) φ is a schema if φ ∈ Qfm, (ii) vi = vj is a schema for i, j < ω, (iii) ∃viσ, ¬σ, σ ∨ ξ
are schemas if i ∈ ω and σ, ξ are schemas. An instance of a schema σ is any first-order formula we
obtain by uniformly substituting first-order formulas for the formula variables in σ. A formula schema
σ is valid if every instance of it is valid as a first-order formula.

By Proposition 0.3 in Németi [26], schema validity is yet another variant of ω-validity or typeless
validity: if we replace the formula variables with predicate symbols, a schema is valid iff the resulting
type-free formula is typeless valid. Using this connection between typeless validity and schema validity,
we see that the completeness theorem for typeless logic also yields a completeness theorem for the valid
schemas of first-order logic. We leave the details to the interested reader.

4.2 Applications to algebraic logic.

Now we turn to the algebraization of the above logics (for the general idea of algebraizations we refer to
Blok & Pigozzi [10] or Andréka, Németi & Sain [5]). We start with cylindric set algebras of dimension
α. These are for restricted first-order logic what Boolean set algebras are for propositional logic; they
are also the ‘intended’ modal algebras of CML.

Let us approach algebraic logic from the model-theoretic point of view: in this case one is interested
in such operations on the power set algebra of models as are defined by the semantic truth definition
of the connectives in the language. Consider for instance the case of restricted first-order logic; let for
a model M, φM denote the set of n-tuples where φ holds. Then

(∃viφ)M = {u ∈n U | ∃t [u ≡i t & t ∈ φM]},
(vi = vj)M = Dij ,
(¬φ)M = −φM (= αU \ φM),
etc.

where ≡i and Dij are as defined in Definition 1.2. This inspires the following definition. (We denote
the power set operation by P.)

Definition 4.7 Let U be some unspecified set, α an ordinal and i < α. The i-th cylindrification
on P(αU) is the following operation Ci on P(αU):

Ci(X) = {u ∈ αU | v ∈ X, for some v with u ≡i v}.

The α-dimensional full cylindric set algebra on U is the structure

Csα(U) = (P(αU),∪,−, Ci, Dij)i,j<α.

As usual, the idea is now to abstract away from this concrete case of set-theoretically defined
algebras.

Definition 4.8 A cylindric type algebra of dimension α is a Boolean Algebra with Operators,
i.e. an algebra of the form A = (A,+,−, ci, dij)i,j<α with (A,+,−) a Boolean Algebra, dij a constant
and ci a normal, additive unary operator, for all i, j < α. Within this class we define the following
classes of algebras: FCSα is the class of full α-dimensional cylindric set algebras over some set U .
The class RCAα of representable cylindric algebras of dimension α is defined as ISP(FCSα),
i.e. isomorphic copies of subalgebras of products of full cylindric set algebras.

The algebraic language used to describe these algebras is denoted by Lα, and by Equ(K) we denote
the set of Lα-equations that are valid in the class of algebras K.
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It is not difficult to see that RCAα consists of those algebras where elements represent ‘real’ α-ary
relations. Tarski showed that RCAα is closed under homomorphic images, i.e. it is the variety generated
by FCSα.

The connection with cylindric modal logic lies in the fact that cylindric type algebras of dimension
α are the complex algebras of α-frames; complex algebras form one of the fundamental structural opera-
tions in the duality theory of relational frames and Boolean Algebras with Operators (cf. Goldblatt[14]).
To explain what a complex algebra is, consider a relational frame F = (W,Ri)i∈I . With each n+1-ary
relation Ri we associate an n-ary operation fRi on the power set P(W ):

fRi(X1, . . . , Xn) = {x0 | ∃x1 . . . xn(Rix0x1 . . . xn &
∧

1≤i≤n

xi ∈ Xi)}.

The complex algebra CmF of F is given as

CmF = (P(W ),∪,−, fRi)i∈I .

For a class K of frames, we denote by CmK the class of complex algebras of frames in K. Now the
essential observation is that the full cylindric set algebras are the complex algebras of the cubes:
Lemma 4.9

CmCα = FCSα.

Turning to axiomatics, the meaning of Lemma 4.9 is that finding complete derivation systems for
cube-validity of modal formulas and for the ‘true’ cylindric equations (i.e. the equations valid in FCSα)
are really two halves of the same nut. First we have to give a syntactic translation from CML-formulas
to Lα-terms:

Definition 4.10 Let φ be an α-formula. The corresponding Lα-term φt of φ is defined by the following
induction:

(pl)t = xl
(δij)t = dij
(¬φ)t = −φt

(φ ∨ ψ)t = φt + ψt

(3iφ)t = ciφ
t.

The exact connection between validity of α-formulas and Lα-equations is given by the following
lemma, of which the proof is trivial.

Lemma 4.11 Let φ be an α-formula and K a class of α-frames; then

K |= φ ⇐⇒ CmK |= φt = 1.

The algebraic side of the above-mentioned nut has already been studied for some decennia. As
a first approximation of the variety of representable cylindric algebras, Tarski proposed the finitely
based variety of Cylindric Algebras (cf. the monograph Henkin, Monk & Tarski [16] for an extensive
overview). We suggest to narrow down this class with one more axiom:

Definition 4.12 Consider the following Lα-equations:
(C1i) ci0 = 0
(C2i) x ≤ cix
(C3i) ci(x · ciy) ≤ cix · ciy
(C4ij cicjx ≤ cjcix
(C5i) dii = 1
(C6ij) ci(dij · x) · ci(dij · −x)) = 0
(C7ijk) dij = ck(dik · dkj)
(C8ij) dij · ci(−x · cjx) ≤ cj(−dij · cix)
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For finite α we set C1 ≡
∧
i C1i, etc., taking C4 ≡

∧
i,j C4ij, C6 ≡

∧
i 6=j C6ij, C7 ≡

∧
i,j,k C7ijk and

C8 ≡
∧
i 6=j C8ij. If α ≥ ω, we let C1, . . . , C8 be the corresponding equation schemata.

An α-cylindric type algebra A is a cylindric algebra of dimension α (short: a CAα), if A |=
C0, . . . , C7. The class of these algebras is denoted by CAα. The class of hypercylindric algebras is
denoted by HCAα and consists of those cylindric algebras where C8 holds.

It was realized very early in the development of cylindric algebraic theory that C0, . . . , C7 do
not suffice to axiomatize RCAα, and one can also show that for α > 2, adding C8 is not sufficient.
Indeed, though Equ(RCAα) is known to be recursively enumerable, it was shown by Monk in [23] that
for α > 2, no finite schema of equations can generate Equ(RCAα), if one allows only the ordinary
algebraic derivation rules; in the same article he gave a complete system with infinitely many axioms.
Recently, Andréka [1] gave a very strong generalization of the negative result by Monk. Roughly
speaking, she proved that if Σ is a set of universally quantified formulas axiomatizing the class RCAα,
α > 2, then for all natural numbers n, and all ordinals i < α, there are infinitely many axioms
η ∈ Σ such that η contains at least min(n, α) operation symbols, more than n variables and a diagonal
constant with index i. On the other hand, in [4] Andréka and Németi defined a finite schema of axioms
and rules generating Equ(RCAα), but this system has an axiom which is not in equational form.

Let us see now how the results obtained in the previous sections can be applied in the theory of
cylindric algebras. First of all, an easy result (which also explains some of our terminology concerning
α-frames) is that the (hyper)cylindric algebras are the complex algebras of (hyper)cylindric frames:

Lemma 4.13 .
(i) CAα = Cm(CFα).

(ii) HCAα = Cm(HCFα).

Proof.
Immediate by the definitions and Lemma 4.11. 2

As a corollary to this result, we can prove that RCA2 is finitely based:

Theorem 4.14

HCA2 = RCA2.

Proof.
It suffices to show that HCA2 and RCA2 validate the same equations of the form t = 1 (for t a
Lα-term). Consider such an equation, and let φ be the CML2-formula such that φt = t. Then

HCA2 |= t = 1 ⇐⇒ HCF2 |= φ
⇐⇒ C2 |= φ
⇐⇒ FCS2 |= t = 1
⇐⇒ RCA2 |= t = 1

where the first equivalence is by Lemma 4.13 and Lemma 4.11, the second by Theorem 2.4 and the
preservation result of modal validity under taking zigzagmorphic images and disjoint unions; the third
equivalence is again by Lemma 4.13 and Lemma 4.11 and the last one is by definition of RCA2. 2

It has been known for a long time that RCA2 is finitely axiomatizable, cf. [16]. By a result of
Henkin and Tarski, a cylindric algebra is representable iff the Henkin equations

cj(x · y · ci(x · −y) ≤ ci(cjx · −dij) (C8′ij)
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hold in it (i 6= j). It follows from Theorem 4.14 that over the class CA, the Henkin equations can be
simplified to C8ij :

dij · ci(−x · cjx) ≤ cj(−dij · cix) (C8ij)

This result can also be proved directly, by using Sahlqvist correspondence theory; for details we refer
the reader to de Rijke & Venema [31].

Finally, by ‘algebraizing’ the axiomatization `+
α of the previous section, we find a finite derivation

system for the ‘true’ cylindric equations:

Definition 4.15 First define the following Ln-counterpart of the difference operator:

dn(x) =
∨
j 6=i

cj(dij · ci(−dij · c0 . . . ci−1ci+1 . . . cn−1x)).

Definition 4.16 For an arbitrary ordinal α, let Σα be the smallest set of Lα-equations containing
C0,. . . , C8, which is closed under (1) ordinary algebraic deduction, (2) the following closure operations,
for any n with n ≤ min(ω, α):

y · −dn(y) ≤ t(x0, . . . , xn−1) / t(x0, . . . , xn−1) = 1
if y does not occur among the ~x.

and (3) for α > ω, the rule
ητ / η,

where ητ is the formula obtained from η by substituting cτ(i) and dτ(i)τ(j) for every occurrence of ci
resp dij.

Theorem 4.17 ENUMERATING ‘TRUE’ CYLINDRIC EQUATIONS
For every ordinal α:

Σα = Equ(RCAα)

Proof.
Clearly Σα is the algebraic version of A+

α (in the sense that `+
α φ iff φt = 1 ∈ Σα), so the theorem is

immediate by Theorem 3.4, Lemma 4.9 and the fact that RCAα is the variety generated by FCSα. 2

4.3 Interpolation and Amalgamation

In Venema [44] we showed that the admissibility of a non-ξ rule over a logic Λ is related to the
interpolation property of Λ. In a perhaps unexpected way, this connection can be used, together with
the results of this paper, to prove results about interpolation of axiom systems for e.g. formalisms with
finitely many variables. First some definitions:

Definition 4.18 A derivation system Λ has the Craig Interpolation Property (CIP) if, whenever
Λ ` φ→ ψ for some formulas φ and ψ, there is a formula χ in the common language of φ and ψ such
that Λ ` φ→ χ and Λ ` χ→ ψ. This formula χ is called an interpolant of φ and ψ.

For the formalisms treated in this paper, interpolation properties have been studied quite inten-
sively, cf. Sain [37] for a recent overview. The following theorem states that for the predicate calculus
with finitely many variables/finite-dimensional cylindric modal logic, no Hilbert style derivation sys-
tem can have the Craig Interpolation Property if the system is an extension with finitely many axioms
of the ‘hypercylindric’ logic An (cf. Definition 3.1). In fact, it states something slightly stronger:
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Theorem 4.19 Assume n > 2 and let Λ be a logic extending An by a set of axioms which (1) are
valid in Cn and (2) use only finitely many propositional variables. Then Λ does not have CIP.

Proof.
To derive a contradiction, suppose that Λ is a logic extending An in the way indicated above and that
Λ does have the CIP.

Call a CMLn-formula closed if it does not contain any propositional variables (only constants). Let
Λ′ be the logic extending Λ with the following axioms: all closed formulas that are n-valid, and let Λ+

be the derivation system extending Λ′ with the Dn-irreflexivity rule. To start with, it is not hard to
prove that

Λ′ has the CIP too. (11)

and that
Λ+ is sound and complete with respect to Cn. (12)

Now we show that
for closed formulas, Λ+ is conservative over Λ′. (13)

For, let γ be closed such that Λ+ ` γ. By soundness of Λ+, γ is n-valid, so Λ′ ` γ by definition.
Next we prove that the irreflexivity rule for Dn is admissible in Λ′, i.e.

If Λ′ ` (p ∧ ¬Dnp)→ φ and p does not occur in φ, then Λ′ ` φ. (14)

Suppose that Λ′ ` (p∧¬Dnp)→ φ, with p not occurring in φ. By (11) there must be an interpolant
γ. As the formulas p ∧ ¬Dnp and φ have no proposition letters in common, γ must be closed. By
Λ′ ` (p ∧ ¬Dnp)→ γ we get Λ+ ` γ, so Λ′ ` γ by (13). But then Λ′ ` φ by Λ′ ` γ → φ.

However, (14) and (12) would imply that Λ′ is a sound and complete axiom system for n-cube
validity; but then its algebraic counterpart, which is a totally orthodox axiom system, would be a
complete enumeration of the equations valid in RCAn, while it has only finitely many axioms containing
variables. This contradicts the strong non-finite axiomatizability result by Andréka [1], which is
mentioned in subsection 4.2 2

It is also interesting to mention the algebraic version of the previous theorem. First we need a
definition of the algebraic counterpart of the interpolation property:

Definition 4.20 A class K of algebras is said to have the amalgamation property (AP ), if for any
A, B1, B2 in K with A ⊆ Bi, there are C in K and embeddings fi : Bi� C such that f1 � A = f2 � A.

Theorem 4.21 Let K be a finitely based variety with RCAn ⊆ K ⊆ HCAn. Then K does not have AP .

Proof.
Pigozzi showed in [28] that, for any logic Λ, Λ has CIP iff VΛ has AP , where VΛ is the class of algebras
where the set of equations {φt = 1 | Λ ` φ} is valid. Our result is therefore immediate by the previous
theorem. 2

5 Evaluation

In this section we briefly discuss the contribution of the paper with respect to the famous non-finitely
axiomatizability results in algebraic logic. As we have mentioned before, it was generally assumed
to follow from results by Monk and Andréka that the cylindric modal theory of the cubes cannot be
axiomatized by a finite (Monk [23]) or indeed simple (Andréka [1]) set of axioms. The results in this
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paper show that the validity of this assumption depends on the kind of axiomatization one has in mind.
If one allows unorthodox derivation rules like the irreflexivity rule for Dn, finite derivation systems are
no longer out of reach: by adding rules that are non- standard from the traditional algebraic viewpoint,
existing finite (and incomplete) axiomatizations can be turned into (finite) complete derivation systems.
From this perspective, several remarks should be made, and various questions emerge:

1. To start with, we should mention that independently of our results, A. Simon found a proof
calculus for typeless validity (and thus, for the related notions), in which another kind of un-
orthodox derivation rule appears (cf. Simon [39]). Simon’s method seems to be complementary
with ours in that he concentrates on infinite dimensional while we on finite dimensional cylindric
algebras.

2. The results concerning these unorthodox axiomatizations raise the philosophical question, what
the criteria are for a natural, or acceptable axiomatization. The answer to this question will
depend on the reasons one has to search for axiomatizations of a given class of structures. We
feel that in the present context, the main function of an axiom system is to provide, in a compact
and transparent way, information about a class of structures which is defined in a set-theoretical
way (like the cubes or the cylindric set algebras). In this sense, we feel justified in saying
that with the system An (axiomatizing the hypercylindric frames) one has enough axioms; the
characterization results of section 2 express that, to jump from the hypercylindric frames to the
(disjoint unions of) cubes, the only property needed is irreflexivity of the accessibility relation
of the defined difference operator. So, if it turns out that this information cannot be provided
by finitely many axioms, it should be done by a rule.

3. While the non-β rule has a clear interpretation in the modal context, its algebraic meaning seems
to be less clear: note that the derivation system Σα (cf. 4.16) is a straightforward translation
of the modal axiomatization. For some recent developments, in which non-ξ rules are linked up
with so-called existential varieties (i.e. classes of algebras axiomatized by universal and universal-
existential (∀∃) axioms, we refer the reader to Mikulás [22] or Venema [45].

4. It is interesting to note that, as usual in algebraic logic, the results about cylindric algebras
can be translated to relation algebras as well, though not trivially so. In fact, the idea to use
special derivation rules inspired by modal logic, to encompass non-finite axiomatizability results
in algebraic logic, was applied to the theory of relation algebras first, witness Venema [42]. It
is intriguing that the rules used in the relation algebraic and the cylindric algebraic context can
be made to look very similar: the property bridging the gap between the finitely based variety
RA and the intended class FRA of full relation set algebras, is irreflexivity of the ‘accessibility
relation’ of some defined difference operator. For details we refer to Venema [43].

5. The relations ≡i and Dij are only two examples of natural accessibility relations on cubes. For
instance, in Venema [45] we treat the similarity type (i.e. set of modal operators of a given rank)
CMML of cylindric mirror modal logic. CMML is an extension of CML with diamonds ⊗ij
(i, j > α) having the following interpretation in cube models:

C, V, u 
 ⊗ijφ if C, V,mij(u) 
 φ,

where mij is the ‘i, j-mirror’ map defined by

v = mij(u) ⇐⇒ vi = uj , vj = ui & vk = uk for k 6= i, j.

(The motivation behind this similarity type is that not only quantification, but also substitution
of variables can be treated as a modal operator.)
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Now consider the following problem: is there a modal similarity type of operators having a (first-
order definable/permutation invariant/. . . ) semantics over the cubes, such that cube validity
becomes axiomatizable by an orthodox system having finitely many axioms (or axiom schemas
in the infinite-dimensional case)?

This problem is (part of) the modal counterpart of the so-called finitization quest in algebraic
logic, cf. Biró [9], Maddux [21], Németi [27], Sain [35], Simon [40]. The outcome of these
investigations seems to be that in a context of a definable D-operator, no natural extension
of the similarity type allows a finite axiomatization, while there are some positive solutions
for similarity types in which the D-operator cannot be defined. This leads us to formulate the
conjecture (which would, if true, generalize results from relation algebras and cylindric algebras),
that in sufficiently rich similarity types, definability of the D-operator is a sufficient reason for
non-finite axiomatizability. To be a bit more precise: call a modal similarity type hereditarily
non-finitely axiomatizable over a class K of relational frames, if for no reasonable10 extension S′

of S, the S′-logic of K allows a finite orthodox axiomatization. Our conjecture is then

If S is a modal similarity type, and K a class of relational frames for S such that (i)
the S-logic of K is not axiomatizable by a finite orthodox derivation system and (ii)
over K, the difference operator is term-definable in S, then S is hereditary non-finite
axiomatizable over K.

6. Note that definability of the D-operator is not a necessary condition for (hereditary) non-finite
axiomatizability, as the following case shows. Let the diagonal-free reduct Df of CML be the
similarity type CML without the diagonal constants δij . This similarity type corresponds to
the diagonal-free algebras of Henkin, Monk & Tarski [16], and to restricted first order logic
without identity. Then over the class of cube frames, the difference operator is not definable,
while the diagonal-free theory of the cubes is not finitely axiomatizable.

In this perspective, it is interesting to note, that recently, Sz. Mikulás showed that Gabbay-style
rules can be applied to Df as well (cf. Mikulás [22]). His results show that also without a
definable D-operator, one can encompass negative results concerning finite axiomatizability by
introducing unorthodox derivation rules.
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