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Abstract.
This paper contributes to the theory of hybrid substructural logics, i.e. weak logics

given by a Gentzen-style proof theory in which there are constraints on the application
of some structural rules. In particular, we address the question how to add an operator
to the Lambek Calculus in order to give it a restricted access to the rule of Permutation,
an extension which is partly motivated by linguistic applications. In line with tradition,
we use the operator (∇) as a label telling us how the marked formula may be used, qua
structural rules. New in our approach is that we do not see ∇ as a modality. Rather,
we treat a formula ∇A as the meet of A with a special type Q. In this way we can
make the specific structural behaviour of marked formulas more explicit.

We define a minimal proof calculus for the system and prove some nice properties
of it, like cut-elimination, decidability an an embedding result. The main motivation
for our approach however is that we can supply the proof system with an intuitive
semantics.
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1 Introduction

Substructural logics are logics one can give by a Gentzen-style derivation system lack-
ing some or all of the structural rules like associativity, permutation, weakening or
contraction. Such logics have received a lot of attention in recent years, partly because
of their interest for applications in e.g. computer science (linear logic, cf. Girard [7])
or linguistics (Lambek Calculus, cf. Lambek [12] for the original article, or Moortgat
[13], van Benthem [2] or Morrill [14] for recent developments). There is a bewildering
variety of substructural logics, as we may drop any subset of structural rules from a
standard derivation system for let’s say intuitionistic logic. Of this landscape, Wansing
[21] draws a partial map in the form of a lattice, set-inclusion of the derivable sequents
being the ordering.

Of both practical and theoretical interest now is the question, whether it is possible
to define logics that are hybrid in the sense that they make a restricted use of one or
more structural rules: one wants to travel in the substructural landscape.

To illustrate how natural this question is for linguistic applications, we look at the
Lambek Calculus L in some more detail (for definitions we refer to the next section).
Consider a very simple example: the relative clause that Mary read, which should
function as a noun modifier (CN/CN), like in the books that Mary read. We as-
sume that we have assigned the following types already: NP to Mary and (NP\S)/NP
to read, and are about to assign a type to that. In the relative clause, the object (that)
is not in the expected place (after read). We might solve this puzzle by assigning the
type R/(S/NP ) to that (where R denotes the noun-modifier CN\CN), but this solu-
tion is not very satisfactory, as it does not take care of the similar example the books

that Mary read last year. One way out is given by Moortgat [13], who formalizes
the concept of a discontinous constituent in a Categorial Grammar. Another option is
to relax the order sensitivity of the Lambek Calculus, by allowing application of the
rule of Permutation to some sequents.

In this approach, it was a quite natural move to look for inspiration at linear logic,
which also has devices built in to encapsulate stronger logics: the so-called exponential
operators (! and ?). The idea was taken up by Morrill et alii in [15], who added an
operator 2 to the Lambek calculus, with basic rules

Γ1, A,Γ2 ⇒ B
Γ1,2A,Γ2 ⇒ B

[2L]
and

2Γ⇒ A
2Γ⇒ 2A

[2R]

where 2Γ denotes 2X1, . . . ,2Xn if Γ = X1, . . . , Xn. The rules allowing permutation
of boxed formulas then are

Γ1, B,2A,Γ2 ⇒ C

Γ1,2A,B,Γ2 ⇒ C
[P2]
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(The double bar indicates that we have both the downward and the upward rule.)
Independently, Došen has addressed this issue (cf. [5, 6]) in a more general way and

concentrating on proof-theoretical properties like embeddability.
The problem however is to give a nice semantics for L2. The Lambek calculus

L itself is known to have a nice semantics: it is sound and complete with respect to
semigroup semantics, its product-free version even with respect to free semigroups,
cf. Buszkowski [3] (again, for definitions, see section 2). The S4-like character of [2L]
and [2R] lead people to see the operators as modalities, and in this line of thinking
an interpretation for 2 would use some accessibility relation. Some results are known
in this direction, cf. Kurtonina [11] for a completeness result of L2 with respect to
models consisting of a semigroup-like structure expanded with an accessibility relation.
In de Paiva [16], a category-theoretic interpretation is given which was inspired, again,
by linear logic. However, it is not immediately clear what intuitive meaning one can
assign to these proposed interpretations for the 2-operator.

Indeed, more natural from the applicational (linguistic) point of view seems to be
the subalgebra interpretation of Hepple [8] and Morrill [14]: the boxed Lambek calculus
L2 is interpreted in semigroups G having a designated ‘commuting subalgebra’ G′

(i.e. consisting of elements g′ satisfying (∀x ∈ G) g′ · x = x · g′). Here the meaning
function assigns to a boxed formula 2A the intersection of the meaning of A with
the universe of the subalgebra. In other words, boxed formulas are special pieces of
information, with a special commutative semantic behaviour.

Unfortunately, the rules given above, although sound, are not sufficient to prove
completeness with respect to this subalgebra semantics. This was shown by Versmissen
[20]; replacing [2R] by

Γ1 ⇒ 2B1 . . . Γn ⇒ 2Bn Γ1, . . . ,Γn ⇒ A
Γ1, . . . ,Γn ⇒ 2A

[2R′]

he can prove completeness for the subalgebra interpretation.
To analyze the rule [2R′], let us drop for a moment the association of 2 with modal

logic, and read 2A as ‘a special A’. Now [2R′] says the following: if Γ proves an A, it
proves that A is special if it can be decomposed into sequences proving (some other1)
formulas to be special. Our idea is now to make this ‘specialness’ explicit by adding
a special type Q to the language, and reading 2A as some sort of meet of Q and A.
In the semigroup semantics, Q is then assigned a special subset of the semigroup, and
[2R′] can be decomposed into

Γ⇒ Q Γ⇒ A
Γ⇒ 2A and

Γ1 ⇒ Q Γ2 ⇒ Q
Γ1,Γ2 ⇒ Q

1One may restrict the rule by demanding that the Bi’s are subformulas of formulas in the Γi’s and
A.
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where intuitively, the latter rule states that the Q-elements of the semigroup indeed
form a subalgebra. Adding the 2-permutation rule [P2] ensures that this subalgebra
consists of commuting elements.

Note that the structural behaviour of a formula 2A is in some sense independent
of the formula A; therefore we call operators in this approach outward strengtheners.
This paper is a first investigation into some logical consequences of this idea. We will
confine ourselves here to discussing the Lambek Calculus, but of course, the idea is not
limited to this particular site in the substructural landscape: in fact it can be applied
to every combination of a substructural logic and a structural derivation rule. In the
extended version [19] of this paper, we develop our approach in more/full generality.

To give an overview of the paper: in the next section we state some preliminary facts
concerning the Lambek calculus. In section 3 we provide the formal definition of our
approach and we discuss some applications. The sections 4, 5 and 6 then are devoted
to logical aspects of our calculus, viz. cut-elimination, semantics and embeddings. We
finish with giving our conclusions and some directions for further research.

Acknowledgements I would like to thank Natasha Kurtonina, Michael Moort-
gat, Glyn Morrill, Valeria de Paiva, Koen Versmissen and Heinrich Wansing for en-
couragement and stimulating discussions. Special thanks are due to Dirk Roorda, who
detected a crucial error in one of the proofs.

2 Preliminaries

In this section we give some technical background needed for understanding the paper.
In particular, we will define what the Lambek calculus is.

Let X be a finite set of basic types or atomic formulas. The set T (X) of types (or
formulas) in X is defined as the least set satisfying (i) X ⊂ T and (ii) if A and B are
in T , then so are A/B, A\B and A •B. A term is a sequence of formulas. A sequent is
a pair consisting of a term Γ and a formula A, and is usually denoted as Γ ⇒ A. We
understand as well-known the notion of subformula, subterm, substitution of terms for
subterms in terms, etc.

The (associative) Lambek Calculus L is a Gentzen-style proof system of sequents
Γ⇒ A (where Γ is not empty). Its logical rules are the axiom of Identity and the rule
of Cut:

[Id] : A⇒ A
Γ⇒ A ∆1, A,∆2 ⇒ B

∆1,Γ,∆2 ⇒ B
[Cut]

.

The operational rules of L are
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Γ⇒ A ∆, B,∆′ ⇒ C

∆, B/A,Γ,∆′ ⇒ C
[/L]

Γ, A⇒ B

Γ⇒ B/A
[/R]

Γ⇒ A ∆, B,∆′ ⇒ C

∆,Γ, A\B,∆′ ⇒ C
[\L]

A,Γ⇒ B

Γ⇒ A\B [\R]

Γ, A,B,∆⇒ C
Γ, A •B,∆⇒ C

[•L] Γ⇒ A ∆⇒ B
Γ,∆⇒ A •B [•R]

The notion of a derivation is defined as usual; here we are only interested in theorems
of the system, i.e. sequents that can be derived without using premisses.

Note that L does not have the structural rule of Permutation

Γ, A,B,∆⇒ C
Γ, B,A,∆⇒ C

[P ],

nor the rules of contraction, weakening or expansion. The Lambek-van Benthem calculus
LP is obtained by adding the rule of permutation to L.

In this paper we will investigate some mathematical properties of extensions of L
and LP . The first of these is cut-elimination: the rule of [Cut], though one of the
most characteristic principles of the concept of a logic, is not very attractive from a
computational perspective. So, a desirable property of any logic for which one has
applications in mind, is that the system can do without [Cut], because it is admissible
in the ‘poorer’ system. With respect to the basic systems L and LP , we state the
following fact (cf. Lambek [12] for a proof).

Theorem 2.1 (Lambek)
The [Cut]-rule can be eliminated from both L and LP , i.e. every theorem of L (resp. LP )
can be derived in L (resp. LP ) without using [Cut].

The second logical aspect of our extended Lambek calculi will be the semantics;
therefore we will need some terminology concerning the interpretation of L in semi-
groups and monoids. A semi-group is a structure (G, ·) where · is a binary associative
operator on the set G. A semigroup is free if it is (isomorphic to) an algebra of which
the universe is formed by all strings over some language and the operation · is string
concatenation. A semigroup model for L consists of a semigroup G, together with
a valuation [[·]] mapping atomic formulas to subsets of G. Such a valuation can be
extended to mapping arbitrary formulas and even terms to Sb(G) by putting

[[B/A]] = {c ∈ G | (∀a ∈ [[A]])c · a ∈ [[B]]}
[[B\A]] = {c ∈ G | (∀b ∈ [[B]])b · c ∈ [[A]]}
[[B • A]] = {a · b | a ∈ [[A]]b ∈ [[B]]}

[[A1, . . . , An]] = {g1 · . . . · gn | gi ∈ [[Ai]]}.
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A sequent Γ ⇒ A is said to be true in a model, if [[Γ]] ⊆ [[A]] and valid in a class C of
semigroups, notation: C |= Γ⇒ A, if it is true in every model based on a semigroup in
the class.

Theorem 2.2 (Buszkowski)

1. A sequent is derivable in L iff it is valid in the class of all semigroup models.

2. A product-free sequent is derivable in L iff it is valid in the class of all free
semigroup models.

3 The basic idea

Definition 3.1 Let X be a set of basic types such that Q,∇ 6∈ X. We define the set
of types T∇(X) as the smallest set Y satisfying: (i) X ∪ {Q} ⊆ Y and (ii) if A and B
are in Y , then so are A/B, A\B, A •B and ∇A.

L∇ is the Lambek Calculus over T∇, extended with the following logical rules for
Q and ∇.

The operator ∇ has two left rules:

Γ1, A,Γ2 ⇒ B
Γ1,∇A,Γ2 ⇒ B

[∇L, 1]
and

Γ1, Q,Γ2 ⇒ B
Γ1,∇A,Γ2 ⇒ B

[∇L, 2]

and the following right rule:

Γ⇒ A Γ⇒ Q
Γ⇒ ∇A [∇R]

For Q, we only have one rule:

Γ1 ⇒ Q Γ2 ⇒ Q
Γ1,Γ2 ⇒ Q

[Q′]

L∇P is L∇ extended with the following restricted permutation rule [∇P ]:

Γ1,∇A,B,Γ2 ⇒ C

Γ1, B,∇A,Γ2 ⇒ C
[P∇]

The rules for∇ hardly need explanation: clearly∇A is to be read as the intersection2

2If we have a meet-operator in the language (with standard logical rules), then the equivalence of∇A
and Q∧A is easily provable, and ∇A may be read as an abbreviation. There may be reasons however,
where having an unrestricted meet-operator in the system is less attractive. For instance, adding a
meet-operator to the Lambek calculus will pump up the recognizing power: recently M. Pentus proved
the Chomsky Conjecture, namely that every language recognized by a Lambek Grammar is context-
free. By a result of Kanazawa [10] it then follows that adding the meet operator makers languages
recognizable that are strictly more complex.
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of Q and A. The rule [P∇] is equally perspicuous, indicating the intuitive meaning of
∇, namely to license permutation of the formulas that it marks.

Note that these four rules together already constitute a hybrid system L∇−P between
L and LP . To explain why we added the rule [Q] to the basic system, let us have a look
at the semigroup semantics for L. According to L∇−P , in a semigroup (G, ·, [[]]), Q could
be interpreted as any subset S of G satisfying (∀s ∈ S)(∀g ∈ G)s · g = g · s. However,
we have a preference for the subalgebra interpretation: the product of two Q-elements
should be a Q-element itself. For example, if A and B are both permutable types, then
so should be their product A •B. (Note the analogy with ⊥ in intuitionistic logic here:
one may view ⊥ as just one of the atomic types, or as a special type denoting falsum.
With respect to the semantics, the analogon is that in the second view one wants to
interpret ⊥ as a special subset of a Kripke model, namely the empty set.) The intuitive
rule corresponding to this closure property (i.e. that the product of two Q’s is a Q) is
[Q].

Now, an example of how to use the system: consider the phrase from the intro-
duction: the books that Mary read last year. Analogous to Morrill [14, section
VI.1], we assign the type R/(S/∇N) to the lexical element that. To show that we can
reduce the relative clause to type R, we derive

Mary read last year ⇒ S/∇N.

as follows:

S ⇒ S N ⇒ N
N (N\S) ⇒ S

[\L]
(N\S)⇒ (N\S)

N (N\S) (N\S)\(N\S) ⇒ S
[\L]

N ⇒ N

N (N\S)/N N (N\S)\(N\S) ⇒ S
[/L]

N (N\S)/N ∇N (N\S)\(N\S) ⇒ S
[∇L]

N (N\S)/N (N\S)\(N\S) ∇N ⇒ S
[P∇]

N
Mary

(N\S)/N

read
(N\S)/(N\S)

last year ⇒ S/∇N
[/R]

Note that L∇P cannot handle relative clauses with parasitic gaps as in

the paper that John filed without reading,

where in the relative clause that John filed without reading, semantically paper

is supposed to be object of both files and of reading. However, again following
Morril [14], we may extend L∇P by adding the restricted rule of Contraction

Γ1,∇A,∇A,Γ2 ⇒ B
Γ1,∇A,Γ2 ⇒ B

[C∇]

and in the resulting calculus L∇PE one can easily show that the relative clause, that
John filed without reading, will get the required modifier type (CN\CN).
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4 Cut-elimination

A desirable property for substructural logics, is that applications of [Cut] can be elim-
inated from the system. Unfortunately, our systems LQP and L∇P do not have this
property. An example is given by the L∇P -theorem ∇A,Q⇒ Q ◦ ∇A, proving which
involves a necessary application of the Cut-rule. However, we can modify our logic in
such a way that [Cut] becomes eliminable. The idea is to move the effects of [Cut] into
the [Q]-rule and [P∇] itself:

Definition 4.1 LQQ is the system LQ where [Q] is replaced by

Γ1 ⇒ Q Γ2 ⇒ Q ∆1, Q,∆2 ⇒ A
∆1,Γ1,Γ2,∆2 ⇒ A

[Q′]

If we add the following rules to LQQ, we obtain the system LQQP .

Γ1 ⇒ Q ∆1,Γ1,Γ2,∆2 ⇒ A
∆1,Γ2,Γ1,∆2 ⇒ A

[P lQ]
Γ2 ⇒ Q ∆1,Γ1,Γ2,∆2 ⇒ A

∆1,Γ2,Γ1,∆2 ⇒ A
[P rQ]

Theorem 4.2 All LQQP -theorems can be derived without applications of [Cut].

Proof.
We first treat LQQ, of which system we want to prove that every application of [Cut] is
eliminable from any proof, and thereto it suffices to show that applications of [Cut] in
a proof can always be replaced by cuts of a smaller degree, or permuted upwards. For
brevity, the occurrence of the formula A in the antecedent of a sequent is not denoted
by Γ1, A,Γ2 ⇒ B, but by Γ[A]⇒ B.

Assume that we have in our LQQ-proof, an occurrence of [Cut] in the form

Γ⇒ A ∆[A]⇒ B

∆[Γ]⇒ B
[Cut]

.

We will distinguish cases:

I First we look at the rule LR used to prove the left premisse:

a If LR is an axiom or one of the operational rules of L (i.e. for /, \ or •), proceed like
in the standard cut-elimination proof of Lambek.

b If the Q′-rule was the last one applied on the left, the proof looks like the one below:

Γ1 ⇒ Q Γ2 ⇒ Q Γ[Q]⇒ A

Γ[(Γ1,Γ2)]⇒ A
[Q′]

∆[A]⇒ B

∆[Γ[(Γ1,Γ2)]]⇒ B
[Cut]
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and should be repaced by:

Γ1 ⇒ Q Γ2 ⇒ Q

Γ[Q]⇒ A ∆[A]⇒ B

∆[Γ[Q]]⇒ B
[Cut]

∆[Γ[(Γ1,Γ2)]]⇒ B
[Q′]

c LR is [∇L1]. Convert the proof, as indicated below:

Γ[C]⇒ A

Γ[∇C]⇒ A
[∇L1]

∆[A]⇒ B

∆[Γ[∇C]]⇒ B
[Cut]

;

Γ[C]⇒ A ∆[A]⇒ B

∆[Γ[C]]⇒ B
[Cut]

∆[Γ[∇C]]⇒ B
[∇L1]

d The case where LR is [∇L2] is similar.

e The case where Γ ⇒ A is proved by [∇R], is taken care of by eliminating [Cut]
upwards into the derivation tree of the right premisse.

II Now, we have a look at how the right premisse was proved:

a If the right rule was a logical rule of L, proceed as in the cut-elimination proof for
L.

b ∆[A] ⇒ B was proved by the Q′-rule; we make a subdistinction as to where in
∆[(∆1,∆2)] the formula A occurs. First assume that A occurs inside of ∆1. Then
the conversion is from

Γ⇒ A

∆1[A]⇒ Q ∆2 ⇒ Q ∆[Q]⇒ B

∆[(∆1[A],∆2)]⇒ B
[Q′]

∆[(∆1[Γ],∆2)]⇒ B
[Cut]

into
Γ⇒ A ∆1[A]⇒ Q

∆1[Γ]⇒ Q
[Cut]

∆2 ⇒ Q ∆[Q]⇒ B

∆[(∆1[Γ],∆2)]⇒ B
[Q′]

The case where A occurs in ∆2 is of course analogous. If A occurs in ∆, but
outside of ∆1 and ∆2, we obtain the following:

Γ⇒ A

∆1 ⇒ Q ∆2 ⇒ Q ∆[A][Q]⇒ B

∆[A][(∆1,∆2)]⇒ B
[Q′]

∆[Γ][(∆1,∆2)]⇒ B
[Cut]

which we transform into

∆1 ⇒ Q ∆2 ⇒ Q

Γ⇒ A ∆[A][Q]⇒ B

∆[Γ][Q]⇒ B
[Cut]

∆[Γ][(∆1,∆2)]⇒ B
[Q′]
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c The rule used to proved the right premisse, was [∇R], or [∇Li] in such a way that the
cut-formula A is not the major formula of this rule; these cases cause no problems
and are left to the reader.

III So, we are left with the main case of the Theorem, viz. where A is the major
formula in both the left and the right premisse of the Cut, and in such a way that the
rule applied left was [∇R], and the rule applied right was [∇Li]. In this case we get

Γ⇒ C Γ⇒ Q
Γ⇒ ∇C [∇R]

∆[P ]⇒ B

∆[∇C]⇒ B
[∇Li]

∆[Γ]⇒ B
[Cut]

;

Γ⇒ P ∆[P ]⇒ B

∆[Γ]⇒ B
[Cut]

where P is either C or Q.

Now we consider the case of the logic LQQP . We have to consider a few extra cases:

If The left rule was [P lQ]. Tranform the proof from

Γ[Γ1,Γ2]⇒ B Γ1 ⇒ Q

Γ[Γ2,Γ1]⇒ B
[P lQ]

∆[A]⇒ B

∆[Γ[Γ2,Γ1]]⇒ B
[Cut]

into

Γ1 ⇒ Q

Γ[Γ1,Γ2]⇒ B ∆[A]⇒ B

∆[Γ[Γ1,Γ2]]⇒ B
[Cut]

∆[Γ[Γ2,Γ1]]⇒ B
[P lQ]

IId The right rule was [PQ]; make a subdistinction, as to where in ∆[∆1,∆2] the
formula A occurs (just like in case IIb). We only treat the case where A occurs
inside of ∆1 and the rule applied was [P lQ].

Γ⇒ A

∆1[A]⇒ Q ∆[∆1[A],∆2]⇒ B

∆[∆2,∆1[A]]⇒ B
[P lQ]

∆[∆2,∆1[Γ]]⇒ B
[Cut]

becomes

Γ⇒ A ∆1[A]⇒ Q

∆1[Γ]⇒ Q
[Cut]

Γ⇒ A ∆[∆1[A],∆2]⇒ B

∆[∆1[Γ],∆2]⇒ B
[Cut]

∆[∆2,∆1[Γ]]⇒ B
[P lQ]

2
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Corollary 4.3 LQQP is decidable i.e. there is an effective algorithm deciding whether
a given sequent Γ⇒ A is provable or not.

Proof.
If we stretch the notion of ‘subformula’ to the extent that Q is a subformula of any
formula ∇A, then L∇P can be shown to have the subformula property: any proof for
Γ ⇒ A will only use subformulas of Γ and A. The decidability of L∇P then follows
by a standard argument (note that the premisses of the [Q]-rule are shorter than its
conclusion). 2

5 Semantics.

As we have already mentioned in the introduction, our idea to use a designated constant
type to strengthen substructural logics stems from semantic considerations. Let us put
it in another way: Došen [4] describes different kinds of algebras corresponding to
different substructural logics. We need not go into details here, the point that we want
to make is that these correspondences are such that when we consider two substructural
logics, X and Y , of which Y is stronger than X, then the algebras for Y form a subclass
of those for X. Now if we want to have ‘parts’ of X that do allow all structural rules
of Y , what could be more natural than look at subalgebras of X-algebras that are
themselves algebras for Y ? In this sense, the linguistic motivations for the subalgebra
interpretation of the strenthening operator, has a nice mathematical counterpart.

In our paper [19] we will discuss Došen’s groupoid semantics; here we concentrate
on extensions of Buszkowski’s completeness result of the Lambek Calculus with respect
to (free) semigroup semantics, cf. Buszkowski [3].

Definition 5.1 A (free) Q-semigroup is a structure G′ = (G, ·, S), where G = (G, ·)
and S = (S, ·) are semigroups, (the first one being free), such that S is a subalgebra of
G. Q-semigroups can be considered to be models for the L∇-calculus by adding to the
definition given in section 2, the clauses

[[Q]] = S
[[∇A]] = S ∩ [[A]].

Proposition 5.2 The product-free fragment of L∇ is sound and complete with respect
to the class of free Q-semigroups.

Proof. We skip the soundness part, and concentrate on completeness. Building
on Buszkowski’s proof, we define a canonical model G = (G, ·, S) with G consisting of
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non-empty strings over the alphabet of formulas. The canonical interpretation sends
an atomic formula A to the set of all sequences Γ for which L∇ ` Γ⇒ A.

The essential lemma of the proof is the Canonical Lemma:

(CL) For all Γ, A: Γ ∈ [[A]] iff L∇ ` Γ⇒ A.

We prove the induction step of (CL) where A is of the form ∇B. From left to right:
if Γ is in [[∇B]], then by definition of [[∇B]], we find Γ ∈ [[B]] and Γ ∈ [[Q]]. By the
induction hypothesis then, we get Γ⇒ B and Γ⇒ Q, so one application of [∇R] gives
Γ ⇒ ∇B. For the converse, assume Γ ⇒ ∇B; we then find Γ ⇒ B by applying [Cut]
to Γ⇒ ∇B and ∇B ⇒ B. Likewise we obtain Γ⇒ Q, so by the induction hypothesis,
Γ is in both [[B]] and [[Q]]. But by definition this gives Γ ∈ [[∇B]].

It is left to prove that ([[Q]], ·) is a subalgebra of G, i.e. that [[Q]] is closed under ·.
To show this, let Γ1,Γ2 be elements of [[Q]]. This means Γ1 ⇒ Q, Γ2 ⇒ Q. Then an
application of the Q-rule yields Γ1,Γ2 ⇒ Q. But by definition, this gives Γ1 ·Γ2 ∈ [[Q]].
2

Of course, we are not interested in the system L∇ as such, but in its structural
extensions like L∇P . The main motivation of our approach towards strengthening
substructural logics is the proposition below. (Note that it does not make sense to talk
about e.g. commutative subalgebras of a free semigroup!)

Proposition 5.3 L∇P is sound and complete with respect to the class of Q-semigroups
satisfying (∀g ∈ G)(∀s ∈ S)g · s = s · g.

Proof.
Soundness is straightforward; with respect to completeness, we only treat the product-
free fragment of the Lambek Calculus3.We start with the canonical frame G (cf. the
previous proof), on which we define the following equivalence relation: Γ ≡ Γ′ if for
all formulas A we have Γ ⇒ A iff Γ′ ⇒ A. We omit the proof that ≡ is a congruence
relation, and only prove that the quotient algebra G/≡ = (G/≡, ·, S/≡) has the desired
property: take arbitrary g ∈ G/≡ and s ∈ S/≡. We have to show that g · s = s · g and
for this, it suffices to consider Γ ∈ g, Σ ∈ s and prove that Γ,Σ ≡ Σ,Γ.

So assume that Γ,Σ⇒ A. As Σ ∈ s, we have Σ⇒ Q. By the following proof:

Σ⇒ Q Γ,Σ⇒ A
Σ,Γ⇒ A

[P rQ]

we find Σ,Γ⇒ A. As A was arbitrary, we have established the equivalence of Γ,Σ and
Σ,Γ.

3For the version with product, one can adapt the material in section 4.1 of Buszkowski [3].
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This proves that the Q-part of the quotient algebra indeed consists of elements that
commute with any other element of the algebra. 2

In the extended version [19] of this paper we will give similar results with respect
to Došen’s groupoid semantics, cf. [4]. It seems that results like the above proposition
come more natural in Došen’s framework.

6 Embedding LP in L∇P

In the same way that intuitionistic and classical logic can be faithfully embedded in
linear logic, we can show that our hybrid logic L∇P is not weaker in expressive power
than the Lambek-van Benthem Calculus LP . First we define a translation from the
formulas of LP into the formulas of L∇P , then we prove the embedding theorem.

Definition 6.1 Let (·)∇ be the translation of LP -formulas into L∇-formulas which
marks all subformulas with a ∇. It is extended to terms in the obvious way, ie. Γ∇ is
Γ with every formula replaced by A∇.

Theorem 6.2 For any LP -sequent Γ⇒ A, we have

LP ` Γ⇒ A iff L∇P ` Γ∇ ⇒ A∇.

Proof.
⇒ We prove the ⇒-direction of the theorem by induction to the LP -derivation of

Γ⇒ A in LP . If Γ⇒ A is an axiom of LP , then Γ is a one-element sequence consisting
of A, so Γ∇ ⇒ A∇ is an L∇P -axiom.

So, suppose that Γ⇒ A was obtained as an LP -theorem by applying some rule [R].
We distinguish two cases:

First assume that [R] is one of the logical rules; for instance, suppose that we found
Γ⇒ A as a result of applying [/L]:

∆0 ⇒ B ∆1, C,∆2 ⇒ D

∆1, C/B,∆0,∆2 ⇒ D
[/L]

By the induction hypothesis we have ∆∇0 ⇒ B∇ and ∆∇1 , C
∇,∆∇2 ⇒ D∇ as L∇P -

theorems. Now we find L∇P ` Γ∇ ⇒ A∇ by

∆∇0 ⇒ B∇ ∆∇1 , C
∇,∆∇2 ⇒ D∇

∆∇1 , C
∇/B∇,∆∇0 ,∆

∇
2 ⇒ D∇

[/L]

∆∇1 ,∇(C∇/B∇),∆∇0 ,∆
∇
2 ⇒ D∇

[∇L]
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The cases of the other logical rules are similar.
Second, assume that [R] is the permutation rule [P ], in which case the LP -derivation

is of the form
∆0, B, C,∆1 ⇒ D
∆0, C,B,∆1 ⇒ D

[P ]

By the induction hypothesis we have L∇P ` ∆∇0 , C
∇, B∇,∆∇1 ⇒ D∇ so one application

of [Cut] yields the desired result.

⇐ The basic idea for the other direction is that in a certain sense, every L∇P -
deriation ‘is’ an LP -derivation. To make this idea precise, we introduce an auxiliary
system S which is nothing more than the extension of LP with the connective >,
together with its usual logical rule (axiom): ∆⇒ >.

Furthermore, we define a translation from L∇P -formulas into S-formulas by setting
P ◦ = P for atoms, Q◦ = >, and inductively: (∇A)◦ = A◦ and (A♥B)◦ = A◦♥B◦ for
any other connective ♥. For terms we set (X1, . . . , Xn)◦ = X◦1 . . . X

◦
n. We now state

the following claims, of which we omit the rather straightforward proofs:

1. For any LP -formula A, we have (A∇)◦ = A.

2. L∇P ` ∆⇒ B implies S ` ∆◦ ⇒ B◦.

3. S enjoys the subformula property, i.e. any S-theorem Γ⇒ A has a proof in which
only the connectives appear that also occur in Γ⇒ A.

Now, to prove the right-left direction of the theorem, let L∇P ` Γ∇ ⇒ A∇. By claim
(2), S ` (Γ∇)◦ ⇒ (A∇)◦, which is by (1) nothing more than saying that S ` Γ ⇒ A.
Then (3) tells us that we have an S-proof for Γ⇒ A in which the new symbol > does
not appear. Such a proof is thus completely performed within LP . 2

In the more general setting of [19] we will show that we can obtain the same result
with a more economical embedding than (·)∇.

7 Conclusions

Accepting the idea to use operators for the task of strengthening a substructural logic,
viz. adding a restricted version of the rule of Permutation to the Lambek Calculus, we
have asked ourselves the question what the meaning of a formula ∇A (∇ the operator)
in a resource-bounded derivation system might be. Our answer was, that a formula
∇A is like a labelled formula: the label (∇, but in fact a special type Q) tells us that
the information proper, A, may be used, qua structural rules, in a way extending the
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default character of the logic. The novelty of this paper (as far as we know) lies in
the fact that we have implemented this idea in a fashion inspired by the wish to give a
natural semantics for the arising hybrid logic. We have separated the information of a
formula from its structural behaviour, thus being able to make the structural properties
of marked formulas explicit (by manipulating the proof rules involving the special type
Q.

We believe our approach to be intuitive and compatible with the paradigm of
resource-consciousness in substructural logics. Besides, it enjoys nice mathematical
properties, like cut-elimination for the basic systems, and interesting applications.

A lot of research remains to be done — we mention a few questions:

1. A huge part of the research into linear logic is of a category-theoretic nature.
Recently, the use of modalities in weaker logics has been studied from such a
perspective as well, cf. de Paiva [16]. What is the category-theoretic side of our
approaches?

2. Substructural logics have a type-theoretical side, via (adaptations of) the Curry-
Howard interpretation, cf. Wansing [21], van Benthem [2]. (How) can we assign
terms to proofs in our calculi?

3. Besides linear logic itself, Girard also invented a new proof method for it, viz. via
proofnets. In his dissertation [18], Roorda extended this method to the Lambek
calculus. Can we also find proof nets for the extended logic discussed here?

4. As mentioned before, in a separate paper [19] we will discuss the idea of a special
meet-operator as a device to strengthen substructural logics, in more generality.
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