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Abstract

We introduce a modal language for talking about projective planes. This language is
two-sorted, containing formulas to be evaluated at points and at lines, respectively. The
language has two diamonds whose intended accessibility relations are the two directions
of the incidence relation between points and lines.

We provide a sound and complete axiomatization for the formulas that are valid in
the class of projective planes. We also show that it is decidable whether a given formula
is satisfiable in a projective plane, and we characterize the computational complexity of
this satisfaction problem.
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1 Introduction

Compared to temporal logics, modal logics of space have received very little attention. I
can see two reasons for this. First, temporal logic has its roots in the semantics of natural
language; here, the notion of tense naturally leads to an extension of classical logics with
temporal modal operators. In most familiar languages spatial concepts seem to play a less
pervasive role, notwithstanding the many expressions that could be interpreted as spatial
modalities. Also, the development of temporal logic has been boosted by concerns from
computer science, in the context of program specification and verification. Here temporal
properties are of greater interest than spatial ones.

A second reason is perhaps that it is more evident which ontologies to employ when
formalizing the notion of time; apart from some notable exceptions, the standard temporal
structure consists of a set of time points together with some kind of ordering of these points.
When devising a formal model of space we seem to be faced with a far greater choice. Even
if we decide to restrict ourselves to points as spatial objects, there are a great number of
interesting relations to consider, such as nearness, collinearity, betweenness or equidistance.
But also, the restriction to points as the sole entities of the mathematical model is more
debatable than in the temporal case. For, space is inhabited by various kinds of things, such
as lines, spheres, planes, poyhedra, etc.

Nevertheless, in recent years the interest seems to be growing in the use of modal logics
for qualitative reasoning about spatial relations between objects. This increased interest
stems from intended applications in the areas of Knowledge Representation and the theory of
Geographical Information Systems. It is not our intention here to survey the variety of these
recently developed modal logics of space — the reader is referred to Lemon [4] or Lemon &

Pratt [5]. In any case, it is clear that as yet, no consensus has been reached as to what the
modal logic of space would be.

The aim of this paper is to take a class of very simple structures, a very simple modal
language to talk about it, and to give a detailed account of the arising modal logic. In this
way we hope to arrive at one sort of basic spatial logic, in the same way that S5 and K are
basic modal logics, or Kt a basic temporal one.

Now projective planes are probably the simplest spatial structures around (in our account
we have based ourselves on the treatment in Heyting [3] but the facts on projective geome-
tries used here can be found in any textbook on geometry). There seem to be two kinds
of approaches to projective planes: they are either formalized as what we call collinearity
frames, that is, structures consisting of points related by a ternary collinearity relation satis-
fying certain properties; or as two-sorted structures consisting of points and lines related by
a binary incidence relation.

We take the second approach here since it seems to be the simplest. Also, since more
complex spatial ontologies may be inhabited by various creatures, it seems quite natural for
spatial logicians to get acquainted with many-sorted modal logics. In fact, we want to make
a case for sorted modal logics as description languages for spatial structures. In the next
section, we define a projective plane to be a two-sorted structure F = (P,L, I) with P and
L being two disjoint sets, of points and lines, respectively; and I ⊆ P × L an incidence
relation satisfying some simple conditions. It naturally follows that our corresponding modal
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language MLG2 is two-sorted as well: we will distinguish point formulas and line formulas.
The language then will have two diamonds with respectively the incidence relation and its
converse as accessibility relation. These diamonds thus turn respectively line formulas into
point formulas, and vice versa. Apart from some obvious adaptations, this sortedness can be
incorporated in the general framework of modal logic quite smoothly.

The main results of the paper are the following. Theorem 4.2 is a completeness result:
in Definition 4.1 we provide a strongly sound and complete axiom system for the two-sorted
modal logic of projective planes. Theorem 5.1 states that it is decidable whether a given
MLG2-formula is satisfiable in a projective plane. Finally, Theorem 6.1 is a complexity
result; we prove that the satisfaction problem for the class of projective planes is nexptime-
complete.

There are a few papers in the literature that are closely related to this approach. I got
interested in the subject through a paper Balbiani et alii [2], which also takes two-sorted
geometrical structures as a basis. The main difference is that Balbiani cum suis wish to
stay within the framework of one-sorted modal logic. Their approach is to turn two-sorted
structures into multi-dimensional one-sorted structures; the ‘possible worlds’ in their modal
structures are so-called ‘tips’, that is, pairs consisting of a point and a line. The price they
have to pay for this is a relatively involved axiomatization and an (as yet) open decidability
problem. A modal logic of one-sorted projective geometries (of arbitrary but fixed finite
dimension) is developed in Stebletsova [8]. Here the earlier mentioned collinearity frames
are the basic ontologies. Stebletsova’s prime aim is to find axiomatizations for classes of so-
called Lyndon algebras; these are relation algebras arising as the complex algebras of structures
induced by the collinearity frames. Third, when preparing the final version of this manuscript,
I learned that independently, Ph. Balbiani has obtained some of the results reported on in
this paper. The reader may find his account in Balbiani [1].

Finally, there are some obvious directions for further research that we hope to report on in
the future. For instance, in this paper we only consider the binary relation of incidence, but
it would be interesting to consider modal logics of richer geometrical structures; immediate
candidates are the relations of parallelism, orthogonality and betweenness. Another road
would lead to a study of the modal logic of projective geometries of higher dimensions; here
we might stick to a two-sorted modal logic of points and lines, but in a fixed finite dimension,
say n, it seems more natural to consider n-sorted modal logics.

Overview In the next section we formally introduce the syntax and semantics of our modal
language MLG2. Section 3 is about quasi-planes; these are two-sorted structures that look
like projective planes but are a bit easier to work with; they play an important technical role
in this paper. In section 4 we define a Hilbert style axiom system AXP, and we state and
prove this system to be strongly sound and complete with respect to the class PP of projective
planes. The short section after that concerns the decidability of MLG2 with respect to the
class PP. Section 6 is about complexity issues: we show that the problem whether an MLG2-
formula is satisfiable in a projective plane, is nexptime-complete. Finally, in the last section
we sketch some directions for further research.



4

Acknowledgements I am indebted to V. Stebletsova for discussions on the modal logic
of geometries (and for the LATEX-code producing the picture of Pappus’ Theorem), and to
M. Marx for help in proving the complexity result.

2 The modal logic of projective planes

In this section we introduce projective planes and our two-sorted modal logic MLG2 for
talking about them. Let us first see what kind of structures projective planes should be.

Definition 2.1 A two-sorted frame is a two-sorted structure F = (P,L, I) such that P ∩
L = ∅ and I ⊆ P × L. Elements of P and L are called points and lines respectively; I is
called the incidence relation.

As variables ranging over points we will use s, t, u, . . . ; for lines we use k, l, m, . . . , while
x, y, z will range over both kinds of objects. If the relation I holds for a point s and a line
k (notation: sIk), we will say that s and k are incident, but we will also use geometrically
inspired terminology such as ‘s lies on k’ or ‘k goes through s’. Such terminology will also
be employed when referring to more complex constellations; for instance ‘k connects s and t’
means that k is incident with both s and t, etc.

We will usually drop the adjective ‘two-sorted’ when referring to two-sorted frames. In
general, we will often be rather implicit concerning sortedness when giving definitions; when
employing the key word ‘well-sorted’ we trust the reader will be able to supply the necessary
details. For instance, we will call a map f : P ∪L → P ′ ∪L′ well-sorted if f maps points to
points and lines to lines.

Definition 2.2 A two-sorted frame F = (P,L, I) is called a projective plane if it satisfies

(P1) each pair of distinct points is connected by exactly one line,

(P2) each pair of distinct lines intersects in exactly one point,

(P3) there are at least four points such that no three of them are incident with one and
the same line.

We let PP denote the class of projective planes.

We obtain an equivalent definition if we replace P3 with

(P3)d there are at least four lines such that no three of them are incident with one and the
same point.

As a consequence, we may replace the words ‘point’ and ‘line’ in any theorem concerning
projective planes, and obtain another theorem. This well-known duality principle will be
used frequently in this paper in order to shorten proofs.

We will now introduce the sorted modal language for frames.
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Definition 2.3 The alphabet of MLG2 consists of the connectives ¬, 〈01〉, 〈10〉 (unary) and
∧ (binary) and brackets; there are also two disjoint, countably infinite sets VARp of point
variables: p, q, r, . . . , and VARl of line variables: a, b, c, . . .

The sets FORp and FORl of point- and line formulas of this language are defined by the
following schema:

σ ::= p | ¬σ | σ ∧ σ | 〈01〉α
α ::= a | ¬α | α ∧ α | 〈10〉σ

As (meta-)variables ranging over point formulas we use σ, τ , . . . ; for line formulas we use
α, β, . . . , while for arbitrary formulas we use ϕ, ψ, . . . For sets of formulas we will use the
corresponding capital Greek letters; unless explicitly stated, we always assume that sets of
formulas contain formulas of one sort only. We could and perhaps should have introduced
boolean connectives in sorts as well; it seems however that no confusion is likely to arise with
respect to the sort of a given formula. The notation for the diamonds can be easily memorized
as follows: 〈ij〉ϕ holds at an object of dimension i if it is incident with an object of dimension
j where ϕ holds.

We can now define the semantics of our two-sorted modal logic.

Definition 2.4 Let F = (P,L, I) be some frame. A valuation on F is a map assigning
subsets of P to point variables and subsets of L to line variables. A (two-sorted) model is a
pair M = (F , V ) such that F is a frame and V is a valuation. Given a model M = (F , V ),
we define the notion of truth as follows:

M, s 
 p if s ∈ V (p),
M, k 
 a if k ∈ V (a),
M, x 
 ¬ϕ if not M, x 
 ϕ,

M, x 
 ϕ ∧ ψ if M, x 
 ϕ and M, x 
 ψ,

M, s 
 〈01〉α if there is some k with sIk and M, k 
 α,

M, k 
 〈10〉σ if there is some s with sIk and M, s 
 σ.

The notions of satisfiability, validity and consequence are defined and denoted as usual.
For instance, let K be some class of frames, Φ a set of formulas, and ϕ a formula. Then
we say that ϕ is a K-consequence of Φ, notation: Φ |=K ϕ, if for every model M based on a
frame in K and every object x in M, M, x 
 Φ only if M, x 
 ϕ.

In our definition of the consequence relation we require Φ and ϕ to be of the same sort.
This is because we are working in the local paradigm: suppose that we investigate whether
Φ |=K ϕ. We then have to check, for each K-based model M and object x in M where Φ
holds, whether ϕ holds at this particular object x. This would not make sense if ϕ were of
a different sort than Φ. Using the global paradigm however, we would define Φ |=g

K ϕ iff for
every K-based modelM,M |= Φ only ifM |= ϕ; obviously, here one could lift the restriction
that Φ and ϕ be of the same sort.
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As abbreviations we use the operators 〈·〉 and 〈−〉, with the following definitions:

〈·〉σ ≡ 〈01〉〈10〉σ,
〈−〉α ≡ 〈10〉〈01〉α.

It is easy to see that in a projective plane, these operators behave like universal diamonds for
points and lines, respectively.

M, s 
 〈·〉σ if there is some point t with M, t 
 σ,

M, k 
 〈−〉α if there is some line l with M, l 
 α.

It is rather straightforward to develop the model theory of sorted modal logic: notions
like bisimulations or disjoint unions can be easily generalized to the two-sorted case. As an
example, we provide the notion of a bounded morphism.

Definition 2.5 Let F = (P,L, I) and F ′ = (P ′, L′, I ′) be two frames, and let f be a well-
sorted map between their universes. This map is called a bounded morphism if it satisfies
the following conditions:

(forth) f is a homomorphism, that is: sIk only if f(s)I ′f(k),

(back) 1. If f(s)I ′k′ then there is some k with sIk and f(k) = k′,

2. If s′I ′f(k) then there is some s with sIk and f(s) = s′.

If f is a surjective bounded morphism from F to F ′, we say that F ′ is a bounded morphic
image of F , notation f : F � F ′, or F � F ′ if we do not want to mention the map explicitly.

It is straightforward to prove the following proposition.

Proposition 2.6 Let K be a class of frames and HfK the class of bounded morphic images
of frames in K. Then for any set Φ of formulas and any formula ϕ we have

Φ |=K ϕ iff Φ |=HfK ϕ.

Finally, simple as the language MLG2 may seem, there are already some interesting geo-
metrical properties that can be expressed in it. As an example we mention Pappus’ theorem,
a well-known concept in projective geometry.

In the formulation of Pappus’ theorem below, we let (for s 6= t), st denote the unique line
connecting s and t. Consider also the picture below.

Pappus Let k and l be distinct lines; let t1, t2, t3 and u1, u2, u3 be distinct points such that
each ti and no uj is incident with k, and each ui and no tj is incident with l. Let (for each
i = 1, 2, 3) vi be the point incident with the lines sjtk and sktj (here j and k are such that
{i, j, k} = {1, 2, 3}). Then there is a line m incident with v1, v2 and v3.



7

   
   

   
   

   
   

   
   

   
   

•t1 •t2

k

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

l

•u3

•
t3

c
c
c
c
c

aaaaaaaaaaaaa
u1
•

b
b
b
b
b
b
b
b
bb

%
%
%%• •···

·· · · ········· •
v3 v2

v1
•s

,
,
,
,
,

•
u2

While Pappus’ Theorem is a classic theorem of standard Euclidean geometry, there are
projective geometries for which it does not hold. Therefore, in the sequel we will no longer
refer to Pappus’ theorem but rather call a projective plane Pappian if it satisfies the property
described above.

We will now define a modal formula pappus that characterizes the Pappian planes (within
the class of projective planes). First consider the following abbreviations.

distinct(σ1 . . . σn) := [·]
∧
i6=j

(σi → ¬σj),

on(α1 . . . αn) :=
∧
i

〈01〉αi,

thru(σ1 . . . σn) :=
∧
i

〈10〉σi,

nthru(σ1 . . . σn) :=
∧
i

¬〈10〉σi,

meet(σ1σ2)(τ1τ2) := on(thru(σ1σ2), thru(τ1τ2)),

The formulas distinct(σ1 . . . σn), on(α1 . . . αn) and meet(σ1σ2)(τ1τ2) are point formu-
las; thru(σ1 . . . σn) and nthru(σ1 . . . σn) are line formulas. The meaning of the formula
distinct(σ1 . . . σn) is that no σi and σj can be true at the same point; on(α1 . . . αn) holds
at those points that are incident with lines where α1, . . . , αn are true, respectively. Likewise,
thru(σ1 . . . σn) holds at those lines that go through a σi point for each i; nthru(σ1 . . . σn)
holds at a line if it does not go through a σi point for any i; note that nthru(σ1 . . . σn) is not
the negation of thru(σ1 . . . σn). The formula meet(σ1σ2)(τ1τ2) will be true for a point if it is
incident with two lines that go through a σ1 and a σ2 point, and through a τ1 and a τ2 point,
respectively.
Finally, let pappus be the formula

pappus := (on(thru(q1q2q3) ∧ nthru(r1r2r3), thru(r1r2r3) ∧ nthru(q1q2q3))
∧ distinct(q1q2q3r1r2r3))

→ 〈·〉〈01〉thru(meet(q1r2)(q2r1), meet(q1r3)(q3r1), meet(q2r3)(q3r2)).

Proposition 2.7 Let F be a projective plane. Then F is Pappian iff F |= pappus.

Proof. Let F = (P,L, I) be a projective plane. Assuming that the basic idea behind the
proof will be clear from the suggestive notation that we just introduced, we will only supply
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the proof for the direction from left to right, confining ourselves to a proof sketch for the
other direction.

Assume that F is Pappian. Let V be a valuation and s a point such that

(F , V ), s 
 on(thru(q1q2q3) ∧ nthru(r1r2r3), thru(r1r2r3) ∧ nthru(q1q2q3))
∧ distinct(q1q2q3r1r2r3).

It is straightforward to verify that this means the existence of two lines k and l through s and
six distinct points t1, t2, t3, u1, u2 and u3 such that ti 
 qi for each i, uj 
 rj for each j, each
ti is incident with k, no ui is incident with k, each ui is incident with l and no ti is incident
with l. From this it follows that k and l must be distinct.

If we define v1, v2 and v3 as in the formulation of Pappus’ property, we see immediately
that

(F , V ), vi 
 meet(pjqk)(pkqj)

for each i, j and k with {i, j, k} = {1, 2, 3}. Since F is Pappian, there is a line m through v1,
v2 and v3; for this m we have

(F , V ),m 
 thru(meet(q1r2)(q2r1), meet(q1r3)(q3r1), meet(q2r3)(q3r2))

This immediately gives

(F , V ), s 
 〈·〉〈01〉thru(meet(q1r2)(q2r1), meet(q1r3)(q3r1), meet(q2r3)(q3r2))

For the other direction, suppose that F is not Pappian. In other words, there must be k,
l, t1, t2, t3, u1, u2, u3, v1, v2 and v3 as in the formulation of Pappus’ property, while there is
no line through v1, v2 and v3. Define the valutation V as follows:

V (qi) := {ti},
V (ri) := {ui}.

We leave it to the reader to verify that

(F , V ), s 6
 pappus,

s being the point where k and l intersect. qed

3 Quasi-planes

In this paper an important role is played by a class of frames that look rather like projective
planes but are a bit easier to work with.

Definition 3.1 A two-sorted frame F = (P,L, I) is called a quasi-plane if it satisfies

(Q1) any two given points are incident with at least one line,

(Q2) any two given lines are incident with at least one point.
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We let QP denote the class of quasi-planes.

It is obvious that every projective plane is a quasi-plane; conversely, the importance of
quasi-planes lies in the fact that every quasi-plane is the bounded morphic image of some
projective plane.

Theorem 3.2 Every quasi-plane is the bounded morphic image of some projective plane. As
a consequence, we have that

QP = HfPP.

By Proposition 2.6 this means that the modal logic of the classes PP and QP is exactly the
same. We will make good use of this fact later on. The remainder of this section is devoted
to the proof of Theorem 3.2.

Proof. The crucial idea behind the proof of Theorem 3.2 is as follows. Given a quasi-plane
F ′, we will construct its bounded pre-image and the bounded morphism in a step-by-step
construction. In each step of the construction we are dealing with an approximation of these
in the form of a so-called coherent network. A network consists of a two-sorted frame F and
a well-sorted map f to the universes of F ′. Roughly speaking, such a network will be called
coherent if F and f satisfy the universal conditions of the definition of a projective plane
and a bounded morphism to F ′. It need not satisfy all the existential conditions, but our
construction will be such that each of its shortcomings in this respect will eventually be taken
away.

We need some terminology. Let F ′ = (P ′, L′, I ′) be some quasi-plane. An F ′-network is
a quadruple N = (P,L, I, f) such that (P,L, I) is a frame, the underlying frame of N , and
f , the map of N , is a well-sorted function mapping P to P ′ and L to L′. The underlying
frame of a network N is denoted by FN , its map by fN .
A network N = (P,L, I, f) is called coherent if it satisfies

(C0) (P ∪ L, I) is connected as a graph,

(C1) f is a homomorphism,

(C2) two distinct lines cannot both go through two distinct points.

It is called saturated if it satisfies

(S1) f satisfies the back conditions of Definition 2.5,

(S2) any two given points are incident with at least one line,

(S3) any two given lines are incident with at least one point.

A network is called perfect if it is both coherent and saturated.

The following Lemma states that perfect networks extending a certain subnetwork sat-
isfying the third condition on projective planes, contain a projective plane and a surjective
bounded morphism from this plane to the target quasi-plane of the network.
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Lemma 3.3 Let N be a perfect F ′-network. Assume that FN also satisfies P3. Then FN is
a projective plane and fN : FN � F ′.

Proof. It is easy to see that FN must be a projective plane: it satisfies P1 by S2 and C2,
P2 by S3 and C2, and P3 by assumption. It is likewise easy to prove that fN is a bounded
morphism: S1 and C1 are the back- and forth conditions, respectively.

The only potential difficulty is to show that fN is surjective. Let s′ be an arbitrary point
in F ′. Consider some point t in P (the set of points of N ). It follows from Q1 that fN (t)I ′k′

and s′I ′k′ for some line k′ in L′. But then two applications of S1 reveal the existence of a
line k and a point s such that tIk, fN (k) = k′ and sIk, fN (s) = s′. In other words, we have
found the required pre-image of s′ under fN . The case for an arbitrary line in F ′ is likewise.
(In fact we have proved that any bounded morphism to a quasi-plane is surjective.) qed

Hence, we have reduced the task of finding a surjective bounded morphism onto F ′ to
a quest for a perfect F ′-network. The existence of such an object is given by the following
Lemma.

Lemma 3.4 For any quasi-plane there is a perfect network satisfying P3.

Proof. The key idea underlying the proof of Lemma 3.4 is that any witness to the imper-
fection of a coherent network can be removed. Such witnesses will be called defects and come
in kinds, according to the saturation condition that is violated. For instance, an S1-defect of
an F ′-network N = (P,L, I, f) consists of (a) a point s in P and a line k′ in L′ such that
f(s)I ′k′ while there is no k in L such that sIk and f(k) = k′, or (b) a line k in L and a point
s′ in P ′ such that s′I ′f(k) while there is no s in P such that sIk and f(s) = s′. S2- and
S3-defects have similar definitions.

Then, we have to express more precisely what it means to repair a defect. Here we need
the notion of one network extending another. Let N0 and N1 be two F ′-networks. We say
that N1 extends N0, notation: N0 �N1, if P0 and L0 are subsets of P1 and L1, respectively;
I0 is the restriction of I1 to P0 × L0; and f0 is the restriction of f1 to P0 ∪ L0.

The following shows that defects of coherent networks can always be repaired.

Claim 1 For any defect of a coherent F ′-network N there is an N+ �N lacking this defect.

Proof of Claim Let N = (P,L, I, f) be a coherent network and assume that N has some
defect. We will prove Claim 1 via a case distinction to the type of this defect.

S1-defects.
Assume that f(s)I ′k′ for some point s in P and some line k′ in L′ such that there is no k in
L such that sIk and f(k) = k′. (Repairing the other kind (b) of S1-defect will be analogous,
by the principle of duality.)

Take some new element k (new meaning that k 6∈ P ∪ L) and define N+ by

P+ := P,

L+ := L ∪ {k},
I+ := I ∪ {(s, k)},
f+ := f ∪ {(k, k′)}.
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It is clear that N+ is a network that does not have the old defect of N , and that N �N+.
It is left to show that N+ is coherent.

It is immediate that N+ satisfies C0, by the definition of I+ and the coherency of N . For
C1, the only new case to check is whether f+(s)I ′f+(k), but this is so by the assumption
on s and k′. Finally, suppose that N+ violates condition C2; by the definition of N+ and
the fact that N satisfies C2, this means that the new line k must be involved. But k cannot
cause any problem since it is incident with only one point. This shows that N+ satisfies all
the coherency conditions.

S2-defects.
Assume that P contains two distinct points s and t that are not connected by a line.

By Q1 there is some line k′ in L′ such that f(s)I ′k′ and f(t)I ′k′. Take some new element
k and define N+ by

P+ := P,

L+ := L ∪ {k},
I+ := I ∪ {(s, k), (t, k)},
f+ := f ∪ {(k, k′)}.

As in the previous case, it is easy to see N+ is an extension of N in which the defect has
been repaired, and that N+ satisfies C0 and C1. Now suppose that the points u and v and
the lines l and m constitute a counterexample to the validity of C2. That is, we have u 6= v,
l 6= m while both points lie on both lines. As before, the new line k must be involved, say
k = m; but then it follows from uIk, vIk and u 6= v that either u = s and v = t, or u = t
and v = s. Now we look at the other line l, which is distinct from k; hence, it must be old,
that is, belong to N ; but if such an old line goes through both s and t then s and t did not
constitute an S2-defect of N after all! The conclusion is that C2 holds for N+, which is thus
a coherent network.

S3-defects.
Assume that L contains two distinct lines k and l that do not intersect.

These defects are the duals of S2-defect, and thus we may refer to the principle of duality
for the strategy of repairing them.

This proves Claim 1. J

Let us now see why there is always a coherent network satisfying P3.

Claim 2 For any quasi-plane F ′ there is a coherent F ′-network satisfying P3.

Proof of Claim Let F ′ = (P ′, L′, I ′) be some quasi-plane; take some point s′ ∈ P ′. It
follows from Q1 that there is some line k′ ∈ L′ through s′. From this, it is immediate that
there is some F ′-network, say N0, containing a point s0 which is incident with a line k0, and
with f0(s0) = s′, f0(k0) = k′. Obviously, N0 is coherent.

But now we turn to the techniques we used before in order to repair S1-defects. Note that
we do not need the existence of actual defects to perform the construction used there. It is
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easy to prove the existence of an F ′-network N = (P,L, I, f) extending N0 and containing
distinct points s1, s2, s3, s4 and distinct lines k1, k2, k3, k4 such that siIki and si+1Iki (all
i for which it makes sense), while no further incidences hold for these points and lines. But
that is precisely what was required to prove Claim 2. J

Now we are prepared to finish the proof of Lemma 3.4. Let F ′ = (P ′, L′, I ′) be a quasi-
plane; take some cardinal κ larger than the size of F ′ (which we define as the sum of the sizes
of the sets P ′ and L′). Using some standard combinatorics, it is possible to build a sequence
(Nα)α<κ of coherent F ′-networks satisfying

1. N0 satisfies P3,

2. Nβ extends Nα whenever β > α,

3. for a limit ordinal λ, Nλ =
⋃
α<λNα (where unions of networks are defined in the

obvious way),

4. for every α, every defect of Nα will be repaired in an Nβ for some β > α.

For the first item we use Claim 2 and for the fourth item, Claim 1. We also use the
fact that coherency if preserved under taking unions and that unions of networks extend the
networks occurring in the union. The ‘standard combinatorics’, needed to make sure that
every defect of a network Nα will be repaired at some later stage, is completely analogous to
a proof in section 2 of Venema [9].

It is then straightforward to verify that the F ′-network N =
⋃
α<κNα is perfect and

satisfies P3. qed

Finally, it follows immediately from the Lemmas 3.3 and 3.4 that every quasi-plane is the
bounded morphic image of some projective plane. This shows that QP ⊆ HfPP. Since it is
straightforward to verify that the opposite inclusion holds as well, this proves Theorem 3.2.
qed

4 Completeness

In this section we define a two-sorted axiom system AXP, which we will then show to be
strongly sound and complete with respect to the logic of the projective planes.

Definition 4.1 Consider the axiom system AXP, consisting of the following axioms:
(CT ) all classical tautologies
(DB) [01](a→ b)→ ([01]a→ [01]b)

[10](p→ q)→ ([10]p→ [10]q)
(CJ) p→ [01]〈10〉p

a→ [10]〈01〉a
(Dl) 〈01〉>
(Dp) 〈10〉>
(4〈·〉) 〈·〉〈·〉p→ 〈·〉p.
(4〈−〉) 〈−〉〈−〉p→ 〈−〉p.
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Its derivation rules are:

MP Modus Ponens
ϕ→ ψ ϕ

ψ

N Necessitation for [01] and [10]

α

[01]α
σ

[10]σ

SUB Substitution for any substitution (·)s uniformly replacing in any formula ϕ some propo-
sitional variables by some formula of the same sort.

ϕ

ϕs

In our presentation of AXP we have not been very explicit about the sortedness of its
structure. For instance, we just said that ‘all classical tautologies’ are axioms of AXP; this
means that for instance, both the point formula p∨¬p and the line formula a∨¬a are AXP-
axioms. Also, it would be more precise to make a distinction between point theorems and
line theorems; in such a presentation, the rule of necessitation turns line theorems into point
theorems and vice versa, while the other rules do not change the sort of the theorem.

Let us first give a brief discussion of the axioms. To start with, it is obvious that we need
all classical tautologies and the distribution axioms. CJ is the conjugacy or ‘converse’ axiom;
it forms the modal way of stating that the accessibility relations connected to the diamonds
〈01〉 and 〈10〉 are each other’s converse. The axiom Dl makes that each point is incident
with at least one line; 4〈·〉 is the transitivity axiom for 〈·〉; it is needed to ensure that the
accessibility relation connected to 〈·〉 is an equivalence relation — we will see below how the
conditions of reflexivity and symmetry are implicitly taken care of. Finally, the axioms Dp

and 4〈−〉 are the obvious duals of Dl and 4〈·〉.
Given the sortedness of the system AXP, the notions of derivation, theorem, consistency

and the like are standard. A derivation in AXP is a finite sequence ϕ1,. . . , ϕn of formulas
such that each formula is either an axiom or the result of applying a rule to a subset of the
formulas occurring higher in the list. A formula ϕ is a theorem of AXP, denoted `P ϕ, if
there is a derivation of which ϕ is the last item. A formula ϕ is provable in AXP from a set
of formulas Φ, denoted Φ `P ϕ, if there are ϕ1, . . . , ϕn ∈ Φ such that `P (ϕ1 ∧ . . .∧ϕn)→ ϕ.
A set of formulas Φ is consistent in AXP if Φ 6`P ⊥. A formula ϕ is consistent if {ϕ} is. A
set of formulas Φ is a maximally consistent set (MCS) if it is consistent, and any proper
superset is inconsistent; MCP and MCL denote the sets of maximal consistent sets of point
and line formulas, respectively.

We can now state and prove the main result of this section.

Theorem 4.2 AXP is strongly sound and complete with respect to the class PP of projective
planes. That is, for any set Φ of formulas and any formula ϕ (of the same sort) we have

Φ `P ϕ ⇐⇒ Φ |=PP ϕ.
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Proof. We leave the soundness proof to the reader. For completeness, our strategy is to
establish the analogous result for the class of quasi-planes; the proof will be based on the
canonical frame method. Obviously, our logic will give rise to a two-sorted canonical model;
apart from that, however, all definitions and properties are standard.

The canonical frame for AXP is defined as the two-sorted structure Fc = (MCP,MCL, Ic).
Here the relation Ic is given by

ΣIcΓ iff 〈01〉γ ∈ Σ for all γ ∈ Γ.

Likewise, the relations Ecp and Ecl are given by

ΣEcpΠ ⇐⇒ 〈·〉π ∈ Σ for all π ∈ Π,
ΓEcl ∆ ⇐⇒ 〈−〉δ ∈ Γ for all δ ∈ ∆.

We will see that Fc is in fact the disjoint union of quasi-planes. First, we need some properties
of the canonical frame.

Claim 1 The canonical frame for AXP has the following properties (the formulation of each
statement is to be read universally):

C1 ΣIcΓ iff 〈10〉σ ∈ Γ for all σ ∈ Σ.

C2 If 〈01〉γ ∈ Σ then γ ∈ Γ for some Γ with ΣIcΓ.

C3 If 〈10〉σ ∈ Γ then σ ∈ Σ for some Σ with ΣIcΓ.

C4 There is a Γ with ΣIcΓ.

C5 There is a Σ with ΣIcΓ.

C6 ΣEcpΠ iff ΣIcΓ and ΠIcΓ for some Γ.

C7 Ecp is an equivalence relation.

C8 ΓEcl ∆ iff ΣIcΓ and ΣIc∆ for some Σ.

C9 Ecl is an equivalence relation.

Proof of Claim The proofs of C1–C3 are completely analogous to the standard (one-sorted)
case. C4 follows from C2 since the axiom Dl belongs to every MCP; likewise, C5 follows from
C3 and axiom Dp. C6 is again standard modal logic. In order to prove C7, first note that Ecp
is reflexive and symmetric by C4 and C6; we can easily prove transitivity using axiom 4〈·〉.
Finally, C8 and C9 are the duals of C6 and C7, respectively. J

We now concentrate on subframes of Fc. Let Φ be some MCS. The canonical subframe
of Φ is defined as the structure FcΦ = (P cΦ, L

c
Φ, I

c
Φ). Here P cΦ and LcΦ are the sets of MCPs

and MCLs respectively that can be reached from Φ by a finite number of Ic-steps (moving
from points to lines and back again). IcΦ is the relation Ic restricted to P cΦ ∪ LcΦ.
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Claim 2 Fc is a disjoint union of frames FcΦ, each of which is a quasi-plane.

Proof of Claim It is obvious by the definitions that each frame FcΦ is a generated subframe
of Fc; from this observation, the first part of the claim is immediate. Let Π and Σ be two
maximal consistent point sets in FcΦ. It easily follows from the definition of Fc that there is
a finite Ic-path from Π to Σ (simply reverse the path from Φ to Π and concatenate the path
from Φ to Σ to it). Using C6 and C7, by induction on the length of this path we can prove
that ΠEcpΣ, so by C6 there is some Γ with ΠIcΓ and ΣIcΓ. Clearly Γ belongs to LcΦ, so by
definition, the relation holds in FcΦ as well.

The proof that any two MCLs are joined by an MCP in Fc is the dual of the proof just
given. J

For each frame of the form FcΦ we can prove a truth lemma:

Claim 3 For every maximal consistent set Φ, all maximal consistent sets Ψ in FcΦ and all
formulas ψ:

FcΦ,Ψ 
 ψ iff ψ ∈ Ψ.

Proof of Claim By a standard formula induction. J

We now finish the completeness proof, reasoning by contraposition. Assume that Σ and
τ are such that Σ 6`P τ (the proof for line formulas is dual). By a standard Lindenbaum
construction Σ can be extended to a maximal consistent point set Π not containing τ . It
follows from Claim 3 that FcΠ,Π 
 σ for all σ ∈ Σ ⊆ Π, while FcΠ,Π 6
 τ . FcΠ is a quasi-plane
by Claim 2, so we have proved that Σ 6|=QP τ . But then it follows from Theorem 3.2 and
Proposition 2.6 that Σ 6|=PP τ . qed

5 Decidability

The main result of this section states that PP has a decidable MLG2-theory. We will prove
this result by establishing the finite model property of MLG2 with respect to the class of
quasi-planes.

Theorem 5.1 It is decidable whether a given MLG2-formula is satisfiable in a projective
plane.

Let |ϕ| denote the length of the formula ϕ; as before, the size of a frame F = (P,L, I)
is defined as the sum of the cardinalities of P and L. The following proposition states the
strong finite model property for MLG2 on the class of quasi-planes.

Proposition 5.2 Let ξ be an MLG2-formula. If ξ is satisfiable in a projective plane (or,
equivalently, in a quasi-plane), then it is satisfiable in a quasi-plane of size not exceeding
21+|ξ|.
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Proof. The proof of this proposition is by a straightforward filtration argument. Assume
that ξ is an MLG2-formula which is satisfiable in the model M = (P,L, I, V ), with (P,L, I)
being a projective plane. Let Cl(ξ) be the set of subformulas of ξ; note that Cl(ξ) will
generally contain both point and line formulas. By our notational convention, ‘σ ∈ Cl(ξ)’ is
short for ‘σ is a point formula in Cl(ξ)’.

Let ≡ be the following relation on P , and on L, respectively:

s ≡ t if for all σ ∈ Cl(ξ): (M, s 
 σ ⇐⇒ M, t 
 σ),
k ≡ l if for all α ∈ Cl(ξ): (M, k 
 α ⇐⇒ M, l 
 α).

Obviously, ≡ is an equivalence relation; we denote the equivalence class of an object x by
[x]. Let P , and L denote the set of equivalence classes of P and L, respectively, and define
I ⊆ P × L by

[s]I[k] if tIl for some t ≡ s and l ≡ k.

The valuation V is defined by

V (p) = {[s] | s ∈ V (p)},

and likewise for line variables. Of course, this is only well-defined for variables in Cl(ξ).
Finally, the filtrated frame F and modelM are defined as F = (P ,L, I) and M = (F , V ).

By a standard proof (using formula induction) we can prove that for all objects x in M and
all formulas ϕ ∈ Cl(ξ):

M, x 
 ϕ iff M, [x] 
 ϕ.

From this it is immediate that ξ is satisfiable in M. Clearly, the size of both P and L is
bounded by the number of subsets of Cl(ξ). Since Cl(ξ) is the set of subformulas of ξ, its size
does not exceed the length of ξ. It follows that the size of F is at most 2 · 2|ξ| = 21+|ξ|.

Finally, we have to show that F is a quasi-plane. Let [s] and [t] be points in F . Since F
is a projective plane, there is a (unique) line k connecting s and t. But then [k] is a line in F
through [s] and [t]. The proof that any pair of lines intersect in some point, is of course dual
to this proof. qed

Proof of Theorem 5.1. In order to decide whether ξ is satisfiable in a projective plane,
it suffices to make a list of all models of size at most 21+|ξ|, and to check of each such model:
first, whether it is based on a quasi-plane, and second, whether ξ is satisfiable in it. Both
of these criteria can be checked in time polynomial in the size of the model, so we have a
terminating algorithm, which is correct by Proposition 5.2. qed

6 Complexity

The aim of this section is to characterize the complexity of the satisfiability problem for the
class of projective planes. More precisely, let PP-SAT be the problem whether a given MLG2-
formula ϕ is satisfiable in some model based on a projective plane. We will prove PP-SAT to
be nexptime-complete; that is, we can show that PP-SAT itself can be solved in exponential
time by a non-deterministic Turing machine, and also, that every nexptime-hard problem
can be effectively reduced to PP-SAT.
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Theorem 6.1 PP-SAT is nexptime-complete.

Proof. Immediate by the Propositions 6.2 and 6.3 below. qed

The following proposition indicates that nexptime is an upper bound for the complexity
of PP-SAT.

Proposition 6.2 PP-SAT is decidable in nexptime.

Proof. Immediate by Proposition 5.2: in order to calculate whether an MLG2-formula ξ is
satisfiable in a projective plane, let a Turing machine non-deterministically choose a model of
size not exceeding 21+|ξ| and calculate (in time polynomial in the size of the model) whether
its underlying frame is a quasi-plane and whether ξ is satisfiable in it. qed

The second proposition indicates that nexptime is an lower bound for the complexity of
PP-SAT.

Proposition 6.3 PP-SAT is nexptime-hard.

Proof. The basic idea behind the proof is to reduce the satisfiability problem of a certain
(single sorted) poly-modal logic to PP-SAT.

Consider the (one-sorted) modal language L2 with two diamonds 30 and 31. A frame for
this language is of the form F = (W,R0, R1) in which Ri is the accessibility relation for 3i.
Let K be the class of all frames in which R0 and R1 are two commuting equivalence relations.
We have a special interest in a particular frame in K, which is defined as follows. Let Q be
the set of rational numbers, and define the relations ≡0 and ≡1 on pairs of rational numbers
as follows:

(q0, q1) ≡i (r0, r1) iff qi = ri.

The frame (Q2,≡0,≡1) will be called the rational square, notation: SQ. Observe that as
yet none of the structure of Q is involved here, only its cardinality. It can be proved that
an L2-formula is satisfiable in K iff it is satisfiable in SQ. For, since K is elementary, an
L2-formula is satisfiable in K iff it is satisfiable in a countable frame F in K. It can be shown
via a step-by-step construction, similar to the one employed in the proof of Theorem 3.2, that
every countable frame in K is the bounded morphic image of SQ. For more details, the reader
is referred to section 2.2 of in Marx & Venema [7].

Now let K-SAT be the problem whether a given L2-formula is satisfiable in a K-frame,
or equivalently, in SQ. K is known to have a nexptime-complete satisfiability problem,
cf. Corollary 4.14 in Marx [6]; hence, if we can find a polynomial time reduction from K-SAT
to PP-SAT, we have proved nexptime to be a lower bound for the complexity of PP-SAT.

For this reduction, we will define a translation π from L2-formulas to point formulas in
MLG2. The variables of L2 will be considered as point variables; we will also need two line
variables b0 and b1; as abbreviations we use lb0 := b0 ∧ ¬b1 and lb1 := b1 ∧ ¬b0. Lines
where the proposition letter bi holds, will be called bluei; a line where lbi holds is light bluei,
and a line with both shades of blue is dark blue. As a further abbreviation we will use
light := ¬〈01〉(b0 ∧ b1); note that this is a point formula, which holds for points that do not
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lie on a dark blue line. Now consider the following formulas that will form conjuncts of the
translation of any L2-formula.

sky := [·](〈01〉b0 ∧ 〈01〉b1),
but := [·]((〈01〉lb0 ∧ 〈01〉lb1)→ light).

The first of these states that any point lies on a bluei line of each shade, the second means
that if a point is incident with a light blue line of each shade, it cannot be incident with a
dark blue line as well.
Furthermore, we use, for a point formula σ,

〈·〉iσ := 〈01〉(lbi ∧ 〈10〉(light ∧ σ)).

This formula will be true at a point s if s ‘sees a light σ-point along a light bluei line’. Now
consider the formula

bb(σ) :=
∧
i

((light ∧ 〈·〉iσ)→ [01](lbi → 〈10〉(light ∧ σ)).)

If this formula holds in a point s, it means that whenever s is light and sees a light σ point
along some light blue line, it sees some light σ point along each light blue line of the same
shade.

We are now ready for the definition of the translation function. First consider the following
map (·)+ from L2-formulas to MLG2-formulas.

p+ := p,

(¬ϕ)+ := ¬ϕ+,

(ϕ ∧ ψ)+ := ϕ+ ∧ ψ+.

(3iϕ)+ := 〈·〉iϕ+.

Finally, the translation function π is defined as

π(ξ) := ξ+ ∧ light ∧ sky ∧ but ∧
∧

ϕ∈Cl(ξ)

[·]bb(ϕ+).

Here Cl(ξ) is the set of subformulas of ξ; note that we are talking L2-formulas here. Observe
that the length of ϕ+ is linear in the length of ϕ, and the length of bb(σ) is linear in the
length of σ. Hence, since the number of formulas in Cl(ξ) is linear in the length of ξ, π(ξ)
can be computed in quadratic time. Hence, it follows from the next two claims that K-SAT
is polynomial time reducible to PP-SAT.

Claim 1 If an L2-formula ξ is satisfiable in SQ, then π(ξ) is satisfiable in PP.

Proof of Claim Assume that ξ is satisfiable in the rational square, say in the model
M = (SQ, V ). We will transform this model into an MLG2-model which is based on a
projective plane.
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Let us first give an intuitive explanation of the proof idea. The basis of our transfor-
mation is the observation that the frame SQ itself already looks very much like a plane; the
accessibility relations ≡0 and ≡1 can be seen as collections of vertical and horizontal lines,
respectively. There are two main differences between this frame and a proper projective
plane, however. First, SQ is one-sorted; this in itself can easily be modified by invoking the
algebraic/geometric structure of the rational square: we may simply add all straight lines
in the plane as line objects. However, we do not yet obtain a projective plane in this way;
for instance, no two horizontal lines intersect. What we have to do is to add a new line, a
horizon, or line at infinity where all lines intersect that were thus far parallel; obviously, by
adding this new line, we also have to add a bunch of new points lying on this horizon.

Now that we have ‘embedded’ the rational square in this projective plane, we deal with the
valuation. We will colour the vertical lines blue0 and the horizontal lines blue1, respectively.
This means that every old point will be incident with a light blue line of each shade. Then,
our valuation will be such that the new line will be coloured both shades of blue. This already
shows that the formula sky holds in the model. But also, the new line will be the only dark
blue line; this means that old points are light. Since a horizontal and a vertical line can only
intersect in an old point, and the new line is dark blue, no new points will be light. This
shows that the formula but holds in the model.

Our construction is such that every old point is incident with a unique line of each blue
shade; this shows that for every σ, every old point satisfies the formula 〈01〉(lbi∧〈10〉(light∧
σ)) → [·](lbi → 〈10〉(light ∧ σ)). Since the old points are the only light ones, we have that
bb(σ) holds everywhere in the model. Finally, the whole construction is tailored towards the
aim that any L2-formula ϕ is true in a rational pair iff ϕ+ is true at the corresponding point
in the projective plane.

Now we go into the mathematical details. The projective plane that we have just been
describing in words is in fact well-known as the rational projective plane. This plane can be
more precisely described as follows. Consider the following relation ∼ on triples of rational
numbers

(q0, q1, q2) ∼ (r0, r1, r2) iff λq0 = r0, λq1 = r1 and λq2 = r2 for some λ 6= 0.

This relation is obviously an equivalence relation; an equivalence class of this relation is called
a ratio, at least, if it is not the singleton equivalence class of the triple (0, 0, 0). Now the sets
P of points and L of lines in P2(Q) are both defined as the collection of ratios; to denote the
difference between points and lines, we use [q0, q1, q2] as the point, and 〈q0, q1, q2〉 as the line
associated with the triple (q0, q1, q2). A point [q0, q1, q2] is incident with the line 〈a0, a1, a2〉
if a0q0 + a1q1 + a2q2 = 0 — observe that this is well-defined. For a proof that P2(Q) is in
fact a projective plane, the reader can consult any text book on projective geometry (see for
instance section 1.4 of Heyting [3]. (This construction can in fact be carried out for every
field.)

Before defining a valuation on P2(Q), let us first see how the states of M, that is, the
rational pairs, can be represented as points in P2(Q). Consider the following function mapping
rational pairs to points of P2(Q):

(q0, q1) 7→ [q0, q1, 1].
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We leave it to the reader to verify that this is an injection; this observation does not play a
role in the sequel. Let us now agree to call a point in P old if it is of the form [q0, q1, 1], that
is, if it is in the range of the mapping above. Points that are not old are called new; it is easy
to verify that any new point is of the form [q0, q1, 0] for some rationals q0 and q1.

Consider the following valuation V ′ on P2(Q):

V ′(p) := {[q0, q1, 1] | (q0, q1) ∈ V (p)},
V ′(bi) := {〈a0, a1, a2〉 | a1−i = 0}.

In order to show π(ξ) to be satisfiable in the model M′ = (P2(Q), V ′), we need the
following claims.

Every point is incident with a bluei line.(1)

Let s be some point of P2(Q); we only treat the case that i = 1. If s = [q0, q1, 1] is old,
take the line 〈0, 1,−q1〉; if s = [q0, q1, 0] is new, take the line 〈0, 0, 1〉. In both cases we have
found a blue1 line that is incident with s. This proves (1).

Every old point is incident with a unique bluei line, which is light bluei.(2)

Again, assume that i = 1, and consider an arbitrary old point [q0, q1, 1]. The line
〈0, 1,−q1〉, incident with [q0, q1, 1] is not only blue1, but even light blue1; this proves existence.
For unicity, suppose that the line 〈0, b1, b2〉 is also incident with [q0, q1, 1]. By definition, we
find that b1q1 + b2 = 0. But then b2 = b1(−q1), so (0, b1, b2) ∼ (0, 1,−q1). This means that
〈0, b1, b2〉 is in fact identical to 〈0, 1,−q1〉, and thus proves (2).

Any point s of P2(Q) is old iff M, s 
 light.(3)

If s is new, say s = [q0, q1, 0], then s is incident with the line 〈0, 0, 1〉 which is dark blue.
Hence, M′, s 6
 light.

For the other direction, suppose that M′, [q0, q1, q2] 6
 light. Let 〈a0, a1, a2〉 be a dark
blue line through [q0, q1, q2]. It follows by the definition of the valuation that a0 = a1 = 0;
since (a0, a1, a2) is a ratio, this means that a2 6= 0. But by the definition of the incidence
relation, we have that a2q2 = 0. This can only be the case if q2 = 0. But then [q0, q1, q2] is
new. This proves (3).

No new point is incident with a light bluei line of each shade.(4)

Observe that a light blue0 line must be of the form 〈1, 0, a2〉, and a light blue1 line of the
form 〈0, 1, b2〉. Now, in order to derive a contradiction, suppose that the new point [q0, q1, 0]
is incident with both 〈1, 0, a2〉 and 〈0, 1, b2〉. By definition of the incidence relation, we get
q0 = 0 and q1 = 0. But then (q0, q1, 0) is not a ratio. This proves (4).

For all (q0, q1), (r0, r1) in Q2:
(q0, q1) ≡i (r0, r1) iff some light bluei line connects [q0, q1, 1] and [r0, r1, 1].

(5)
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We only treat the case where i = 1. First assume that (q0, q1) ≡1 (r0, r1); that is, (r0, r1) =
(q′0, q1) for some q′0 ∈ Q. It is straightforward to verify that the line 〈0,−1, q1〉 connects
[q0, q1, 1] and [q′0, q1, 1].

For the other direction, suppose that the light blue1 line 〈a0, a1, a2〉 connects the points
[q0, q1, 1] and [r0, r1, 1]. Since 〈a0, a1, a2〉 is light blue1, we have a0 = 0 and a1 6= 0. By
definition of incidence, this gives {

a1q1 + a2 = 0
a1r1 + a2 = 0.

But then it is immediate that q1 = −a2/a1 = r1. This shows that (q0, q1) ≡1 (r0, r1), and
proves (5).

For any (q0, q1) ∈ Q2, and any L2-formula ϕ: M, (q0, q1) 
 ϕ iff M′, [q0, q1, 1] 
 ϕ+.(6)

The proof of (6) is by a straightforward induction on the complexity of ϕ. We only treat one
modal case of the inductive step: assume that ϕ is of the form 30ψ.

First assume thatM, (q0, q1) 
 ϕ. Hence, there is some q′1 ∈ Q such thatM, (q0, q
′
1) 
 ψ.

By the inductive hypothesis, this implies that M′, [q0, q
′
1, 1] 
 ψ+. By (5), there is some

light blue0 line connecting [q0, q1, 1] and [q0, q
′
1, 1]. But then using (3) it is easy to verify that

M′, [q0, q1, 1] 
 〈·〉0ψ+; or equivalently, that M′, [q0, q1, 1] 
 ϕ+.
For the other direction, assume that M′, [q0, q1, 1] 
 〈·〉0ψ+. This implies the existence

of a line k and a point s such that k is incident with both [q0, q1, 1] and s, M′, k 
 lb0, and
M′, s 
 light ∧ ψ+. But by (3), s is old if it is light, say s = 〈r0, r1, 1〉. It follows from
(5) that r0 = q0, and from the inductive hypothesis, that M, (r0, r1) 
 ψ. Bringing these
observations together we find that M, (q0, q1) 
 30ψ. This proves (6).

We have now sufficient information to prove that π(ξ) is satisfiable inM′. Let (q0, q1) be
the rational pair in M where ξ holds. It follows from (6) that M′, [q0, q1, 1] 
 ξ+ and from
(3) that M′, [q0, q1, 1] 
 light. From (1) we immediately infer that M′, [q0, q1, 1] 
 sky.

Now consider an arbitrary point s of M′. If s is old, then M′, s 
 light by (3); and if s
is new, M′, s 
 ¬(〈01〉lb0 ∧ 〈01〉lb1) by (4). In both cases we find that M′, s 
 (〈01〉lb0 ∧
〈01〉lb1)→ light; thus M′, [q0, q1, 1] 
 but.

Finally, it is immediate by (2) thatM′, s 

∧
i ((light∧〈·〉iσ)→ [01](lbi → 〈10〉(light∧

σ))) for any point formula σ and any light point s. This proves that M′, [q0, q1, 1] 
∧
ϕ∈Cl(ξ)[·]bb(ϕ+).

Thus we have shown that each of the conjuncts of π(ξ) holds at [q0, q1, 1], whence π(ξ) is
indeed satisfiable in P2(Q). J

Claim 2 An L2-formula ξ is satisfiable in K if π(ξ) is satisfiable in PP.

Proof of Claim Assume that π(ξ) is satisfiable in the model M = (P,L, I, V ) where
G = (P,L, I) is some projective plane. We will define a model M′ over some K-frame F =
(W,R0, R1) in which ξ is satisfiable.
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We use the following terminology. For a point t inM, let Ωt denote the set of L2-formulas
ϕ ∈ Cl(ξ) such that M, t 
 ϕ+. Now define W , Ri and V ′ as follows:

W := {Ωt | t ∈ P for some light t },
Ri := {(Γ,∆) ∈W 2 | for all ϕ ∈ Cl(ξ): 3iϕ ∈ Γ iff 3iϕ ∈ ∆}.

V (p) := {Γ ∈W | p ∈ Γ},

The crucial observation underlying our definitions is the following.

If two light points t and u are connected by a bluei line, then ΩtRiΩu.(7)

Assume that l is a bluei line connecting the light points t and u. Observe that l must be
light bluei, otherwise t and u would not be light.

Now assume that 3iϕ is a subformula of ξ that belongs to Ωt. By definition of Ωt, this
means that M, t 
 〈·〉iϕ+. But since π(ξ) is satisfiable in M, we have that M, t 
 bb(ϕ+).
This implies that

M, t 
 [01](lbi → 〈10〉(light ∧ ϕ+)).

Now l is a lightbluei line through t; hence, we have that M, l 
 〈10〉(light ∧ ϕ+). But the
fact that u lies on l as well implies that M, u 
 〈·〉iϕ+. This gives that 3iϕ belongs to Ωu.

With a similar argument we can show that any formula 3iϕ ∈ Ωu must belong to Ωt as
well. But that shows that ΩtRiΩu, and proves (7).

Our first aim is now to show the following.

F belongs to K.(8)

It follows immediately from the definitions that each Ri is an equivalence relation, so we
only have to show that R0 and R1 commute. Let Γ, ∆ and Θ be elements of W such that
ΓR0∆R1Θ. We have to find a Λ such that ΓR1ΛR1Θ. By definition of W , there are light
points t and u such that Γ = Ωt, ∆ = Ωu. It follows from the satisfiability of π(ξ) in M
(in particular, from the fact that sky holds at each point in M) that there is a blue0 line k
through t and a blue1 line l through u. Since t and u are light, k and l cannot be dark blue;
it follows that k is light blue0 and l is light blue1.

Now G is a projective plane, so k and l intersect in some point v. It follows fromM, v 
 but
that v is light. But then by applying (7) we see that ΩtR0Ωv and ΩuR1Ωv. In other words,
Ωv is the Λ that we were looking for. This proves (8).

Finally, we prove a truth lemma for M′.

For all ϕ ∈ Cl(ξ) and all Γ ∈W : M′,Γ 
 ϕ iff ϕ ∈ Γ.(9)

Obviously, we prove (9) by induction on the complexity of ϕ. We concentrate on the
modal case of the inductive step: assume that ϕ is of the form 3iψ.

First assume that M′,Γ 
 3iψ. By the truth definition, there is some ∆ in W with
ΓRi∆ and M′,∆ 
 ψ. By definition of W there is some light point t such that ∆ = Ωt, and
by definition of Ωt, we have that M, t 
 ψ+. It follows from the satisfiability of π(ξ) in M
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(again, use the sky-conjunct) that any point is incident with some bluei line; and since t is
light, we know that t is incident with some light bluei line k. But then t sees itself along a
light bluei line, so from M, t 
 ψ+ it follows that M, t 
 〈·〉iψ+; hence, by definition of Ωt

we obtain that 3iψ ∈ Ωt = ∆. But then from ΓRi∆ we may conclude that ϕ = 3iψ ∈ Γ.
For the other direction, assume that 3iψ ∈ Γ. It follows by the definition of W that

Γ = Ωs for some light point s; and from the definition of Ωs, that M, s 
 〈·〉iψ+. We can
then use the truth definition to find a light bluei line l and a light point t on l such that
M, t 
 ψ+. By definition of Ωt we see that ψ ∈ Ωt, so by the inductive hypothesis we obtain
M′,Ωt 
 ψ. But from (7) it follows that ΓRiΩt. Taking these observation together, we find
that M′,Γ 
 3iψ. This proves (9).

Finally, it follows from (9) and the satisfiability of π(ξ) in M that ξ is satisfiable in M′.
But then the claim is immediate by (8). J

qed
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