
Relational Games

Yde Venema

1 Introduction

This article originates with the observation that similar phenomena occur in
the theory of binary relations and in the modal logic of time. In both fields of
logic, we find that operators play a rôle which can be defined in first order logic,
and that it is an object of study to compare the expressive strength of different
sets of such operators. Especially important is the question whether there is a
simple way of generating all operators definable in first order logic.
In the case of temporal logic, Gabbay reduced the question whether the set of
all first order definable operators is finitely generated, to the following problem:
Is there a k ∈ ω such that, over the involved class of temporal orders, Lk(x)
is as least as expressive as L(x)? (cf [G].) Here L(x) is the set of first order
formulas of which x is the only free variable, Lk(x) the set of L(x)-formulas in
which only k different variables may occur. By comparing the expressiveness of
different sets of formulas we mean the following:

Definition 1.1.
Suppose we have a language L, two sets F and F ′ of first order formulas in L,
and a class K of models for L. F ′ is said to be as least as expressive as F over
K if there is, for all formulas φ(x1, . . . , xk) ∈ F , a φ′(x1, . . . , xk) ∈ F ′, such that
φ and φ′ are equivalent over K, i.e. for every model A in K and every k-tupel
of elements a1, . . . , ak in A:

A |= φ[ai, . . . , ak]⇔ A |= φ′[a1, . . . , ak].

In [IK], Immerman and Kozen achieved some results by reformulating Gabbay’s
problem in terms of games. They introduced the ‘k-pebble game’, an adapted
version of the well-known Ehrenfeucht game meant to characterize the k-variable
fragment of first order logic, in the same way as the ordinary Ehrenfeucht game
characterizes the set of all first order formulas.

In this paper, we apply this technique in the field of proper augmented rela-
tion algebras (cf. [J2]); we first use the k-pebble game in section 4 to give a new
proof of a well-known result by Tarski, viz. the fact that the clone of logical

1

operations on binary relations is not finitely generated. In section 5 we give a
similar treatment to the clone of Jónsson’s Q-operations, for which we define
our own adaptations of the rules of the Ehrenfeucht game. Andréka and Németi
proved in [AN] that these Q-operations do not generate the clone of logical op-
erations either. Independently, we came to the same result, providing a negative
solution to the problem 1.5.5 in Jónsson’s paper [J2]. The novelty of our proofs
lies in their game-theoretical approach which we feel is very intuitive and can
be generalized to other clones of operations.
In the last sections we establish related results concerning sets of formulas of
which the definition is inspired by phenomena in natural language. In order
to keep this paper self-contained, we first give the basic definitions and facts
concerning Ehrenfeucht games and the theory of proper augmented relation al-
gebras, resp. in the sections 2 and 3.

Throughout this paper, L is a first order language without constants or function
symbols, with a sufficiently large, yet finite number of dyadic relation symbols
and with individual variables x1, x2, . . .; A and A′ are two structures for L.

2 Ehrenfeucht games.

Definition 2.1.
A partial valuation over A is a partial function u : {x1, x2, . . .} 7→ A with finite
domain δu. For a partial valuation u, the partial valuation u[xi/a] is defined
by u[xi/a](xj) = u(xj) if i 6= j, u[xi/a](xi) = a. The notion of satisfaction of a
formula φ by a partial valuation u is usually denoted by A |= φ[u], informally
we will write: u satisfies φ. A k-configuration over A,A′ is a pair (u, u′), where
u and u′ are partial valuations over A,A′ such that δu = δu′ ⊆ {x1, . . . , xk}.
For a set of first order formulas F in L, F (x1, . . . , xk) is the set of F -formulas of
which the free variables are in {x1, . . . , xk}. For a k-configuration (u, u′), u and
u′ are said to be F -equivalent if they satisfy the same formulas in F (x1, . . . , xk).
(u, u′) is a local isomorphism if u and u′ satisfy the same atomic formulas.

We will now define the ordinary Ehrenfeucht game of n moves on a k-configura-
tion (u, u′):

Definition 2.2.
Let (u, u′) be a k-configuration over A,A′. The game Gn(u, u′) is played by two
players, I and II. The first player has to show that the two structures (A, u)
and (A′, u′) are different, the other one wants to make them appear isomor-
phic. There is an infinite number of pebbles, pairwise colored x1, x2, x3, For
xi ∈ δu(= δu′), at the beginning of the game the two pebbles with color xi are
situated on the elements u(xi) and u′(xi) of A resp. A′.
The game is played in n moves; in the m-th move player I takes a new pebble,

2

say (with color) xk+m. (Intuitively, the old pebbles (i.e. in δu) correspond
to free variables of a formula, the new pebbles to bound variables.) She then
chooses a structure, say A and puts the pebble on an element a of A: xk+m 7→ a.
The second player has to respond by placing the other xk+m-pebble on an ele-
ment a′ of the other structure, in this case A′: xk+m 7→ a′.
Thus after the m-th move an k+m-configuration (um, u′m) is generated, so after
n moves one has a sequence (u, u′) = (u0, u

′
0), . . . , (un, u′n) of configurations.

The second player is said to have a winning strategy in the game if he has a way
of playing such that every generated configuration is a local isomorphism. The
first player has a winning strategy in the game if the second player has not.

The ordinary Ehrenfeucht game can be said to characterize first order logic.
What is meant by this is expressed in Lemma 2.4. First we need some notions
concerning first order formulas:

Definition 2.3.
The quantifier depth qd(φ) of a first order formula φ is inductively defined as fol-
lows: atomic formulas have quantifier depth zero, qd(¬φ) = qd(φ), qd(φ ∧ ψ) =
max(qd(φ), qd(ψ)) and qd(∃xiψ) = 1 + qd(ψ). Lω,n is the set of all first order
formulas of quantifier depth n. For a k-configuration (u, u′), u and u′ are said
to be equivalent if they are Lω,n-equivalent for all n.
Now let φ be a first order formula. For a subformula ∃xψ of φ, we call ψ the
scope of the quantifier occurrence ∃x. Let E and E′ denote quantifier occur-
rences in φ. E is said to be above E′ if E′ is in the scope of E.

Lemma 2.4.
For any k-configuration (u, u′), player II has a winning strategy in Gn(u, u′) iff
u and u′ are Lω,n-equivalent.

Proof.
By induction on n: for n = 0 the proposition follows by definition of a winning
strategy in a game with no moves, as formulas of quantifier depth 0 are just the
Boolean combinations of atomic first order formulas.
For the inductive case, suppose that II has a winning strategy in Gn+1(u, u′)
and suppose that u satisfies φ where φ(x1, . . . , xk) ∈ Lω,n+1. Without loss of
generality we may assume that φ has the form ∃xk+1ψ, where ψ(x1, . . . , xk+1)
has quantifier depth n. We have to prove that u′ satisfies φ.
As u satisfies ∃xk+1ψ, there must be an a in A such that u1 = u[xk+1/a] satisfies
ψ.
Now suppose player I starts playing the game Gn+1(u, u′) by moving xk+1 7→ a.
As player II has a winning strategy in the game, he has a countermove xk+1 7→
a′ such that he has a winning strategy in Gn(u1, u

′
1).

By the induction hypothesis, u1 and u′1 are Lω,n- equivalent, whence u′1 =
u′[xk+1/a

′] satisfies ψ. This implies that u′ satisfies φ.

3

For the other direction, suppose that the first player has a winning strategy
in Gn+1(u, u′). We must show that u and u′ are not Lω,n+1-equivalent. Now
suppose the winning strategy of I has xk+1 7→ a′ as a first move, with a′ in A′.
Write u′1 = u′[xk+1/a

′]. Whatever II’s response xk+1 7→ a is, player I has a
winning strategy in Gn(ua, u′1), where ua = u[xk+1/a]. Then by the induction
hypothesis there is a formula ψa in Lω,n such that A′ |= ψa[u′1], A 6|= ψa[ua].
Now the set of Lω,n-formulas with free variables in {x1, . . . , xk+1} is finite mod-
ulo equivalence, so there is a finite conjunction ψ of Lω,n-formulas such that ψ
is equivalent to

∧
a∈A ψa.

Then ψ itself is in Lω,n and u′ satisfies ∃xk+1ψ while u does not. So u and u′

are not Lω,n-equivalent.

3 Logical operations on binary relations.

Definition 3.1.
Let Re(U) = {R|R ⊆ U ×U} be the set of all binary relations on a universe U .
For (s, t) ∈ R we will write sRt. The following three relations play an important
rôle in the theory of binary relations: the universal relation V = U × U , the
null relation ∅ and the identity relation Id = {(t, t)|t ∈ U}.
A proper, augmented relation algebra or PARA is an algebra (Re(U),H) with
H a set of operations on binary relations. (The above-mentioned relations can
and will be seen as constant or nullary relations.) The set of all operations
generated by H (in the usual algebraic sense) is denoted by gen(H). A set C
of operations is called a clone if C = gen(C).
The simplest operations of a PARA are the Boolean set-theoretical opera-
tions: intersection (R ∩ S), union (R ∪ S) and complementation (Rc). The
Boolean clone Cb(U) is defined as gen{∩,∪,c }. It is easy to show that Cb(U) =
gen({∩,c }); one may even prove that the Boolean clone is generated by a single
operation.
The classical clone Cc(U) is defined as the set of operations generated by
{∩,c , ◦,̌ }, where the composition ◦ and converse ˇare defined by

R ◦ S = {(s, t)|∃u(sRu and uSt)}
Rˇ= {(s, t)|tRs}

The composition operation can be generalized to operations Qn of rank n2. For
an n× n-matrix of relations ~R, we define

u1Qn(~R)u2 ⇔ ∃u3 . . .∃un(
∧

1≤i,j≤n

uiRijuj)

The Q-clone CQ(U) is defined as the set of operations generated by the union
of the classical clone and the Qn-operations.

4

We may equivalently describe the Q-clone as gen{∩,c , Id,Q2, Q3, . . .}, as the
composition and converse operations are in the Q-clone:
Sˇ= Q2(~R) where ~R is the 2× 2-matrix of relations with R21 = S and all other
Rij are equal to the universal relation V , which is in the Boolean clone.
S ◦ T = Q3(~R) where ~R is the 3× 3-matrix of relations with R13 = S, R32 = T
and Rij = V for the other pairs (i, j).

All the above-mentioned operations can be defined in terms of first-order logic;
this inspires the following definition:

Definition 3.2.
Let U be a universe. Every formula φ ∈ L(x1, x2) using n relations symbols
P1, . . . , Pn, defines an operation Fφ of rank n: for R1, . . . , Rn binary relations on
U , let U be the structure (U, I) with I an interpretation such that I(Pi) = Ri.
Then Fφ is given by

sFφ(R1, . . . , Rn)t⇔ U |= φ[s, t]

We call the set of all these operations the logical clone, Cl(U).

Our definition of the logical clone is slightly different from, but equivalent to the
one Jónsson gives. The proof of this equivalence can be found in [J2]; we repro-
duce the argument, as we need it to show that our logical clone is indeed a clone:

Lemma 3.3.
Every operation generated by the logical clone is defined by a first order formula.

Proof.
If an operation H ∈ gen(Cl(U) is in the logical clone itself, there is nothing to
prove. In the other case, suppose H is given by

H(R1, . . . , Rn) = F (G1(R11, . . . , R1r(1)), . . . , Gm(Rm1, . . . , Rmr(m)))

By the induction hypothesis, every Gl(R′1, . . . , R
′
r(l)) has a defining formula

ψ(x1, x2, P
′
1, . . . , P

′
r(l)), and by assumption F (R′′1 , . . . , R

′′
m) is defined by a for-

mula φ(x1, x2, P
′′
1 , . . . , P

′′
m). Then H is defined by the formula φH which is

obtained by taking φ and replacing every occurrence of a relation symbol P ′′l in
φ by ψl(Pl1, . . . , Plr(l)), making sure that the variables do not clash.

In the sequel we will only be concerned with logical operations, and drop the
adjective ‘logical’. Furthermore, we will frequently omit references to the uni-
verse U , and simply speak about ‘the logical clone’ without further ado. The
justification for this sloppiness is that, when two formulas φ and ψ define the
same operator on a universe U , they do so on every universe V . The easy proof
for this well-known fact uses the Löwenheim-Skolem theorem (cf. Theorem 8.1

5

in [J1]).

In [J2], Jónsson raises the question whether a simple and natural generating
set can be found for the logical clone. Some candidates are:
(1) finite sets of operations
(2) the Q-clone
(3) sets of operations whose rank is bounded by a k ∈ ω.

For a finite universe U , Andréka and Németi show in [AN] that the set {∩,c , Qk}
generates Cl(U) if |U | = k. So, from now on, we assume that the universe U is
infinite. As early as 1941, Tarski announced in [T] a proof that a finite set of
operations cannot generate the logical clone. (A proof of a more general version
of this theorem can be found in [J].) Andréka and Németi proved in [AN] that
the Q-clone does not generate Cl(U) for infinite sets U either. In the next two
sections we will give new proofs for these two facts. For an outline of our proofs,
we need the following:

Definition 3.4.
Let S be a set of logical operations. Using the proof of lemma 3.3, we can easily
show that every operation in gen(S) has a first order formula that defines it. Let
LS be the set of L(x1, x2)-formulas φ such that φ defines an operation in gen(S).

Theorem 3.5.
S generates Cl(U) iff LS(x1, x2) is as expressive as L(x1, x2).

Proof.
We only prove the direction from left to right (the other directions is straigh-
forward).
Assume that S generates the logical clone. Let φ(x1, x2, P1, . . . , Pn) be in
L(x1, x2). As Fφ is in gen(S), there is a formula ψ in LS defining Fφ. We
then have, for any structure U = (U, I) with I(Pi) = Ri:

U |= φ(x1, x2, P1, . . . , Pn)[s, t]
⇔ sFφ(R1, . . . , Rn)t
⇔ U |= ψ(x1, x2, P1, . . . , Pn)[s, t]

So any φ ∈ L(x1, x2) has an equivalent in LS(x1, x2).

In the sections 4 and 5, we will define and use special Ehrenfeucht games to
show that if S is an arbitrary finite set of operations, or the Q-clone, LS(x1, x2)
is less expressive than L(x1, x2). As was said before, these results are not new;
the novelty of the present proof lies in its game-theoretical approach.

6

4 Finite generating sets and k-pebble games.

In this section we start with showing that if the logical clone is finitely gener-
ated, then there is a k < ω such that every L-formula φ(x1, x2) is equivalent to
a formula φ′(x1, x2) in which only k different variables occur. (These variables
may be bound by different quantifiers at different occurrences.) The proof we
give is well-known: see e.g. [G] for the version concerning operators in temporal
logics, or [TG], pp. 75-76, for the 3-variable fragment of a first order language
with dyadic relation symbols.

Definition 4.1.
Lk is the set of L-formulas with at most k (possibly reused) variables x1, . . . , xk.
Lk,n is the set of Lk-formulas of quantifier depth n.

Lemma 4.2.
If S is a finite set of operations on binary relations, then there is a k such that
every operation in gen(S) is defined by an Lk(x1, x2)-formula.

Proof.
Suppose S = {F1, . . . , Fs}, every Fi has rank R(i) and is defined by φi, i.e.

(s, t) ∈ Fi(R1, . . . , Rr(i)) iff U |= φi(x1, x2, P1, . . . , Pr(i))[s, t]

where U = (U, I) with I(Pi) = Ri. Let k(i) be the number of variables occur-
ring in φi and define k = max{k(i)|1 ≤ i ≤ s}.
We prove that, for every operation H ∈ gen(S), there is a formula φH ∈
Lk(x1, x2) defining H. The proof is by induction over the complexity of H.
If H is in S, say H = Fi, then H is defined by φi, and by definition of k,
φi ∈ Lk(x1, x2).
So suppose

H(R1, . . . , Rm) = Fi(G1(R11, . . . , R1m(1)), . . . , Gr(i)(Rr(i)1, . . . , Rr(i)m(r(i))))

where every Gj has rank m(j) and every Rij is in {R1, . . . , Rm}.
The induction hypothesis is that every Gj(R′1, . . . , R

′
m(j)) has a defining formula

ψj(x1, x2, P
′
1, . . . , P

′
m(j)) in Lk(x1, x2).

It is not hard to see that we get a formula φ′H defining H by taking φi and
replacing every occurrence of a predicate Pj in φi by ψj(Pj1, . . . , Pjm(j)).
To obtain an Lk-equivalent of φ′H , we have to attune the free variables in the
formulas ψj to the variables of Pj in φi:
Consider an occurrence p of Pj in φi. Suppose Pj occurs at p with the vari-
ables xa and xb (by definition of k, 1 ≤ a, b ≤ k). Let σ be a permutation of
{x1, . . . , xk} such that σ(x1) = xa, σ(x2) = xb. Now replace every occurrence
of a (free or bound) variable y in ψj by σ(y). So we get a formula ψj,p(xa, xb)
using only the variables x1, . . . , xk.

7

The required formula φH is then obtained by simultaneously substituting in φi,
for every occurrence p of every predicate Pj in φi, the formula ψj,p for Pj .
This finishes the proof of lemma 4.2.

We will now define a special version of the Ehrenfeucht game, in which there
are only k pebbles for each player. This will mean that the players sometimes
have to take pebbles from the board in order to continue the game, and that
only k-configurations are generated. We reproduce the argument in [IK] that
these k-pebble games exactly characterize the formulas with only k variables.

Definition 4.3.
Let (u, u′) be a k-configuration over A, A′. The k-pebble game Gk,n(u, u′) is
the Ehrenfeucht game Gn(u, u′) with the restriction that the first player has
only k pebbles x1, . . . , xk at her disposal. The definition of a winning strategy
in Gk,n(u, u′) is the same as for Gn(u, u′).

Theorem 4.4.
For any k-configuration (u, u′), u and u′ are Lk,n-equivalent iff the second player
has a winning strategy in Gk,n(u, u′).

Proof.
The equivalence is proved by induction over n. For n = 0, the claim is imme-
diate by definition of a winning strategy. For n > 0, one can easily obtain the
result by following the structure of the induction step in the proof of lemma
2.4. As both the variable bound by the newly added quantifier and the pebble
with which player I starts the game must be in {x1, . . . , xk}, everything runs
smoothly.

Definition 4.5.
Consider the structure Q = (Q,<) of the rational numbers with the usual order-
ing. Let α be an ordinal with α ≤ ω. An α-shuffle of Q is a partition {Ci|i < α}
of Q into α subsets, from now on called the shuffle sets, each of which is dense
in Q. By this we mean that for all i < α and all elements p and r of Q such
that p < r, there is a q in Q with p < q < r and q ∈ Ci. A binary relation
R on Q is α-shuffled on Q, if R is an equivalence relation such that the set of
R-equivalence classes forms a k-shuffle on Q. By theorem 7.11 of [R], there is
for every α ≤ ω an α-shuffled equivalence relation on Q.

Lemma 4.6.
There is no k < ω such that every L(x1, x2)-formula has an equivalent in
Lk(x1, x2).

Proof.
By lemma 4.4 it is sufficient to find two structures A and A′ with a 2−configura-

8

tion (u, u′) such that u and u′ are not equivalent, while the second player has a
winning strategy in Gk,n(u, u′) for all n.
Define A,A′, u and u′ as follows: A = (Q,<,R), A′ = (Q,<,R′) where R is
k + 1-shuffled and R′ is k-shuffled; u(x1) and u(x2) belong to different shuffle-
sets, as do u′(x1) and u′(x2).
Then u and u′ are not equivalent, as u′ satisfies ∀x3 . . .∀xk+1(

∨
1≤i,j≤k+1Rxixj),

while u does not.
The fact that the second player has a winning strategy in Gk,n(u, u′) is imme-
diate from the following claim:

For any k-configuration (u, u′) on A,A′, player II has a winning strategy in
Gk,n(u, u′) if (u, u′) is a local isomorphism.

The proof of the claim is by induction on n; the proof of the basic step is
straightforward, so consider the case n > 0. Let (u, u′) be a local isomorphism
and assume that δu = δu′ = {x1, . . . , xk}, which means that at the beginning
of the game all k pebbles are on the board. Assume also that player I starts
playing in A. (The other cases are simpler.)
Writing S(i), resp. S′(i) for the shuffle set u(xi) (resp. u′(xi)) is in, one can
easily show:

(†) (u, u′) is a local isomorphism iff
for all i, j: u(xi) < u(xj)⇔ u′(xi) < u′(xj) and S(i) = S(j)⇔ S′(i) = S′(j)

As she has only the k pebbles on the board at her disposal, with every possible
move player I must lift a pebble xi from the board, so for a moment only k− 1
pebbles are left behind on structure A.
If she places the selected pebble xi on an already pebbled element u(xj) of A,
the strategy for player II is clear: he should move xi 7→ u′(xj).
So suppose the pebble xi is moved between u(xj) and u(xl) (the case in which
she puts xi on an element greater than all u(xj), can be treated likewise); let S
be the shuffle set in which xi is placed.
The second player, lifting pebble xi from A′, has to put it somewhere be-
tween the positions u′(xj) and u′(xl); this is well possible, though he has to
be careful in which shuffle set S′ to put xi: if S = S(m) for some m 6= i,
xi is to be put in S′(m), of course. If S is different form all the S(1),. . .,
S(i− 1),S(i+ 1),. . .,S(k), then xi must be placed in a shuffle set S′ not appear-
ing in the sequence S′(1),. . .,S′(i − 1),S′(i + 1),. . .,S′(k). Such a set S′ exists,
as there are k different shuffle sets partitioning A.
In both cases there is always an S′-element between u′(xj) and u′(xk), as each
shuffle set is dense in Q.
By the assumption that (u, u′) is a local isomorphism and the characterization
(†) of local isomorphisms, it will be clear that the new k−configuration (u1, u

′
1)

is a local isomorphism as well. By the induction hypothesis then, II has a win-
ning strategy in Gk,n−1(u1, u

′
1).

9

So, the above sketched procedure yields a winning strategy for the second player
in Gk,n(u, u′).
This finishes the proof of lemma 4.6.

Theorem 4.7.
No finite set of logical operations on binary relations generates the logical clone.

Proof.
By theorem 3.5 and the lemmas 4.2 and 4.6.

We refer to [V] for the closely related result that no finite set of temporal
interval-operators can be functionally complete over a class of temporal struc-
tures, if that class contains the rationals with their usual ordering relation.

5 Q-formulas and Q-games.

In this section we first define the set of Q-formulas, which are the formulas
defining an operation in the Q-clone (recall 3.1 for a definition of the Q-clone).
Q-formulas will be defined inductively, in accordance with the fact that the Q-
clone is defined as the set of operations generated by {∩,c , Id,Qi|i ≤ ω}: each
inductive step in this definition is the syntactical counterpart to an application
of one of the generating operations of the Q-clone. Along with the induction
we define the existential rank ER(φ) and the Q-depth QD(φ) of a Q-formula φ.
Intuitively, Q-formulas having existential rank k will correspond to operations
in the clone generated by {∩,c , Id,Q1, . . . , Qk}; the meaning of the Q-depth
will hopefully be clear by its definition.

Definition 5.1.
LQ(xi, xj), the set of Q-formulas in xi and xj , is inductively defined as follows,
as is the existential rank and Q-depth of such formulas:
Any atomic L-formula Pxixj or xi = xj is a Q-formula in xi, xj ; its existential
rank is 2 and its Q-depth is 0.
If φ and ψ are Q-formulas in xi,xj , then so are ¬φ and φ ∧ ψ. Furthermore,
ER(¬φ) = ER(φ),QD(¬φ) = QD(φ) and ER(φ ∧ ψ) = max(ER(φ), ER(ψ)),
QD(φ ∧ ψ) = max(QD(φ), QD(ψ)).
If, for 1 ≤ i, j ≤ k, ψij is a Q-formula in xi and xj , then

φ = ∃x1 . . .∃xa−1∃xa+1 . . .∃xb−1∃xb+1 . . .∃xk(
∧

1≤i,j,≤k

ψij)

with 1 ≤ a, b ≤ k is in LQ(xa, xb), and
ER(φ) = max(k,max({ER(ψij)|1 ≤ i, j ≤ k},
QD(φ) = 1 + max{QD(ψij)|1 ≤ i, j ≤ k}.
The set of Q-formulas in xi and xj with existential rank k and Q-depth n is

10

denoted by LQ,k,n.

Note that every Q-formula of existential rank k and Q-depth n is in Lk,(k−2)n.
Note too that in Q-formulas, quantifier occurrences come in sequences; now an
essential property of Q-formulas is that, for ~p such a sequence, only two vari-
ables occurring in the scope of (all the quantifiers of) ~p may be free, or bound
by a quantifier occurrence above ~p. This means that the following formula is a
typical example of a non-Q-formula:

Pux ∧ ∃y(Pxy ∧ ¬∃z(Puz ∧ Pxz ∧ Pyz))

because there are three variables in the scope of ∃z which are free (viz. u and
x) or bound by a quantifier occurence above ∃z (viz. y).

Theorem 5.2.
(1) For φ ∈ LQ,k,n, the operation Fφ defined by φ is in gen({∩,c , Q1,. . . , Qk}).
(2) Every F ∈ gen({∩,c , Q1, . . . , Qk}) is defined by a φ ∈ LQ,k,n(x1, x2)).

Proof.
The tedious proof follows by a straightforward adaptation of 3.3 (cf. 4.2.), and
is left to the reader.

Corollary 5.3.
(1) Every Q-formula defines an operation in the Q-clone.
(2) Every operation in the Q-clone is defined by a Q-formula.

Now we want a characterization of Q-formulas in terms of a special Ehren-
feucht game. This Q-game will consist of a number of rounds in each of which
another special Ehrenfeucht game is played which will be defined first:

Definition 5.4.
LE,k(xi, xj) is the set of k-existential formulas in xi and xj , is defined as
LQ,k,1(xi, xj), i.e. those formulas of the form

∃x1 . . .∃xi−1∃xi+1 . . .∃xj−1∃xj+1 . . .∃xk(
∧

1≤a,b≤n

ψab)

where every ψab is a Boolean combination of atomic formulas with free variables
xa, xb.
Let (u, u′) be a k-configuration with δu = δu′ = {xi, xj}. The k-existential
Ehrenfeucht game GE,k(u, u′) is the ordinary Ehrenfeucht game in which the
first player may only use the k− 2 pebbles in {x1, . . . , xk} differing from xi and
xj , and has to place them on A. Furthermore, the second player waits until I
has put all her k − 2 pebbles on the board before he responds with his k − 2
moves.

11

II has a winning strategy in this game if the configuration generated at the end
of the game is a local isomorphism.

Lemma 5.5.
Let (u, u′) be a k-configuration with δu = δu′ = {xi, xj}. Then II has a winning
strategy in GE,k(u, u′) iff u′ satisfies all k-existential formulas that u satisfies.

Proof.
Straightforward.

Definition 5.6.
Let (u, u′) be a k-configuration with δu = δu′ = {xi, xj}. For notational sim-
plicity, assume i = 1 and j = 2. The Q-game GQ,k,n(u, u′) is defined as follows:
If n = 0, there is nothing to play.
If n > 0, the game consists of n rounds of existential games. At the start
of the first round, the first player chooses a structure, say A, and a number
m ≤ k. Then the game GE,k(u, u′) is played. At he end of the first round, the
first player chooses two colors, say xi and xj , and removes all pebbles from the
board except those colored xi and xj . This creates a k-configuration (v, v′) with
δv = δv′ = {xi, xj}. Now the game GQ,k,n−1(v, v′) is played.
A winning strategy in this game for the second player is a strategy in which
every generated configuration is a local isomorphism.

Theorem 5.7.
Player II has a winning strategy in GQ,k,n(u, u′) iff u and u′ are LQ,k,n-equiva-
lent.

Proof.
The proof is by induction on n; we only consider the induction step.

From left to right:
Suppose for some φ ∈ LQ,k,n+1(x1, x2), u satisfies φ, while u′ does not; with-
out loss of generality we may assume that φ has the form ∃x3 . . .∃xkψ, where
ψ ≡

∧
1≤i,j≤k ψij , with ψij ∈ LQ,k,n(xi, xj).

Writing u(x1) = a1, etc. we have the following winning strategy for I in
GQ,k,n+1(u, u′): in the first round she puts the pebbles x3, . . . , xk on elements
a3, . . . , ak such that A |= ψ[a1, . . . , ak].
Let x3 7→ a′3, . . . , xk 7→ a′k be the answer of II.
As u′ does not satisfy φ, A′ 6|= ψ[a′1, . . . , a

′
k]; so there is a pair a′i, a

′
j in A′ with

A′ 6|= ψij [a′i, a
′
j]. Note that A |= ψij [ai, aj]. Player I then ends this round

by removing all pebbles from the board, but she leaves xi and xj behind. Let
(v, v′) be the arisen configuration.
By induction hypothesis, I has a winning strategy in GQ,k,n(v, v′); but then she
has a winning strategy in GQ,k,n+1(u, u′) as well.

12

From right to left:
Suppose u and u′ satisfy the same LQ,k,n+1-formulas, then we must define a win-
ning strategy for player II in GQ,k,n+1(u, u′). Assume that in the first round,
player I chooses A as her structure and k−2 as the number of pebbles to move.
To define II’s strategy, it is convenient to extend the language L with (finitely
many!) new relation symbols.
First have a look at LQ,k,n(x1, x2); as this set is contained in Lω,kn, it is fi-
nite modulo equivalence; let χ1, . . . , χm ∈ LQ,k,n(x1, x2) be such that every
ψ ∈ LQ,k,n(x1, x2) has an equivalent in {χ1, . . . , χm}. We now introduce m new
relation symbols P1, . . . , Pm into our language and set

I(Pl) = {(a, b)|A |= χl[a, b]}

and likewise for I ′(Pl). It is straightforward to verify that for every ψ in
LQ,k,n(x1, x2), there is a relation symbol Pl with I(Pl) = {(a, b)|A |= ψ[a, b]}.
By assumption that u and u′ are LQ,k,n+1-equivalent, we then know that with
respect to the new language, u′ satisfies all the k-existential formulas that u
satisfies. As we have introduced finitely many new relation symbols, lemma 5.5
now gives us

(*) II has a winning strategy for GE,k(u, u′) in the expanded structures.

Now let player II make his moves in the first round of GQ,k,n+1(u, u′) according
to this strategy. By (*), the k-configuration (v, v′) reached at the end of this
first round is a local isomorphism. So when I decides to leave the pebbles xi
and xj on their place, we know that (v, v′) satisfy the same atomic formulas in
the extended language, whence they are LQ,k,n-equivalent.
By induction hypothesis then, player II has a winning strategy for the remain-
der of the game. This means that altogether II has a winning strategy in
GQ,k,n+1(u, u′).

This finishes the proof of theorem 5.7.

Lemma 5.8.
LQ(x1, x2) is less expressive than L(x1, x2).

Proof.
By the game-theoretical characterization of Q-formulas, it is sufficient to give
a 2-configuration (u, u′) such that u and u′ are not equivalent, while I cannot
win GQ,k,n(u, u′) for any pair (k, n). First we define the structures A and A′:

A′ is defined as (Q′, <′, R′), where (Q′, <′) is isomorphic to the ordering of
the rationals and R′ is ω-shuffled, i.e. R′ is an equivalence relation on Q′ having
ω equivalence classes E1, E2, . . ., each of which is dense in (Q′, <′) (cf. definition

13

4.5).

The structure A is also based on a countable dense linear ordering without
endpoints; let (Q1, <1) and (Q2, <2) be isomorphic copies of (Q,<). The lexi-
cographical ordering < on Q1 × Q2 is defined by (q1, r1) < (q2, r2) if q1 <1 q2

or q1 = q2 and r1 <2 r2.
Define, for q ∈ Q1, A(q) = {q} × Q2 ; then (A(q), <), as a subordering
of (Q1 × Q2,<), is isomorphic to (Q,<). Let there be given an ω-shuffle
{Ci|i ∈ ω} over (Q1, <1). Next, let there be given, for every q ∈ Q1, an ω-
shuffle over (A(q), <). If i ∈ ω is such that q ∈ Ci, name these shuffle sets
Dq,0,Dq,1,. . .,Dq,i−1,Dq,i+1,Dq,i+2,. . .
Then, set for i ∈ ω, Di =

⋃
q∈Q1

Dq,i. Now {Di|i ∈ ω} is a partitioning of
Q1 ×Q2 such that:

(†) if q ∈ Ci, then A(q) ∩Di = ∅
(‡) if q 6∈ Ci, then Di is dense in A(q).

Finally, define A = (Q1×Q2, <,R) where R is the equivalence relation of which
of which the Di form the equivalence classes.

R is almost an ω-shuffle over (A,<); yet not all equivalence classes Di of R are
dense: for example, consider (q, r1) and (q, r2) such that r1 <2 r2 and q ∈ Ci.
Let (q3, r3) be such that q <1 q3 and (q3, r3) ∈ Di. Then by (†) no (q, r4) with
r1 <2 r4 <2 r2 can be in Di, so for no such element can we have (q3, r3)R(q, r4).
So the partial valuation u defined by u(x1) = (q, r1), u(x2) = (q, r2) satisfies
the following formula φ:

x1 < x2 ∧ ∃x3(x2 < x3 ∧ ∀x4(x1 < x4 < x2 ↔ ¬Rx3x4))

Now look at any partial valuation u on A′ satisfying u′(x1) < u′(x2). As ev-
ery equivalence class is dense in A′, u′ cannot satisfy φ. So u and u′ are not
L(x1, x2)-equivalent. But we can easily choose u′ such that (u, u′) is a local
isomorphism, by taking (u′(x1), u′(x2)) in R′ iff (u(x1), u(x2)) is in R. The fact
that II then has a winning strategy in GQ,k,n(u, u′) is an immediate conse-
quence of the claim below.
First however, the reader is invited to act the part of the first player in an ordi-
nary Ehrenfeucht game, in order to show that A and A′ are different. She will
notice that at a certain moment during the game, she has to switch from mov-
ing pebbles on A′ to moving on A, and that she needs to leave three pebbles
behind on A′ before this step. Now this constitutes precisely a strategy which
is forbidden in a Q-game, as switching boards means starting a new round in a
Q-game, whence only two pebbles may be left behind. (Compare this to the
‘essential property’ of Q-formulas described after their definition 5.1).

We can now finish the proof of this lemma by proving the following claim:

14

II has a winning strategy in GQ,k,n(u, u′) if (u, u′) is a local isomorphism.

We only treat the induction step of the proof; assume that (u, u′) is a local
isomorphism and that I is about to move her k − 2 pebbles in the first round
of GQ,k,n+1(u, u′). To prove the existence of a winning strategy for II, it is by
the induction hypothesis sufficient to show that he can reach a situation after
the first round such that the arisen k-configuration (v, v′) is a local isomorphism.

The case in which I places her pebbles in A is simple for II by the fact that
R′ is ω-shuffled over A′ (cf. the proof of lemma 4.6), so assume that I chooses
to play in A′. We will show that there is a subset B of A such that B contains
u(x1) and u(x2) and the induced substructure (B, u(x1), u(x2)) is isomorphic
to (A′, u′(x1), u′(x2)). If the second player then answers I’s moves by putting
pebbles on those B-elements which are the images of v′(x3), . . . , v′(xk) under
the isomorphism, he has a simple winning strategy by the isomorphism. Now,
distinguish the following cases:

(1) For some q ∈ Q1, u(x1) and u(x2) are both in A(q). Then set B =
A(q), which is an ω-shuffled, countable, unbounded, dense, linear order. As
(u, u′) was a local isomorphism, this means (B, u(x1), u(x2)) is isomorphic to
(A′, u′(x1), u′(x2)).
(2) Let u(x1) = (q1, r1) and u(x2) = (q2, r2) be such that q1 < q2. Take an m
with q1, q2 6∈ Cm and (q1, r1), (q2, r2) 6∈ Dm. As Cm is dense in Q1, there are
elements p1, p2, p3 in Q1 with p1 <1 q1 <1 p2 <1 q2 <1 p3 and p1, p2, p3 ∈ Cm.
The latter fact implies Dm ∩A(pi) = ∅ by (†).
Define B = A(p1) ∪ {(q1, r1)} ∪ A(p2) ∪ {(q2, r2)} ∪ A(p3). Then B with the
ordering induced by A, is isomorphic to (Q′, <′). Further, notice that, as (q1, r1)
and (q2, r2) are not in Dm, and Dm ∩ A(pi) = ∅, the set {Dl ∩ B|l 6= m} par-
titions B. Notice too that for l 6= m, p1, p2 and p3 are not in Cl, so by (‡) Dl

is dense in B for l 6= m. But then {Dl ∩ B|l 6= m} is an ω-shuffle over B. As
(u, u′) was a local isomorphism, (B, u(x1), u(x2)) ∼= (A′, u′(x1), u′(x2)).

This finishes the proof of lemma 5.7.

Theorem 5.9.
The Q-clone does not generate the logical clone.

Proof.
By 3.5, 5.3 and 5.8.

15

6 Cyclic games for k-bound formulas.

In [vB], some fragments of first order logic are discussed which are to capture
phenomena of natural language. As an example, it is argued that

bindings in most natural languages cannot cross arbitrary layers of
operators in a sentence.

In this section a syntactic and game-theoretic characterization is given of first
order formulas that satisfy such a constraint. It comes out that these formulas
bear a resemblance to the Lk,n-formulas of section 4. (Compare this with the
fact that natural languages only have a finite number of variables!) The exact
relation between both sets of formulas will be elaborated on in the the next
section.

Definition 6.1.
In a formula φ, consider an occurrence p of a variable x which is bound by a
quantifier occurrence Q. A quantifier occurrence Q′ is between p and Q if p is in
the scope of Q′ and Q′ is in the scope of Q. The binding depth of p is defined as
the number of quantifier occurrences between p and Q. A formula φ is k-bound
if all variable occurrences have a binding depth smaller than k.

As an example, in the formula ∀v∀x(Pxv → (∃yPyx ∧ ∀zQzx)) the existential
quantifier occurrence ∃y is not between the x in Qzx and its binding quantifier
occurrence ∀x; so φ is 2-bound. The bindingsdepth of a bound occurrence p of
a variable in a formula φ may also be described using the construction tree of
φ, where the binding depth is the number of quantifier nodes one encounters
going up from p to the quantifier node where the variable of p is bound.
In the sequel, we will confine ourselves to k-bound sentences. The reason for this
is that k-bound formulas are hard to define inductively, which makes their game
characterization less elegant. (To give an indication of the problem: where φ :
∃x(Pxx∧∃y(Rxy∧Rxv)) is 2-bound, ∃vφ is not.) We might solve this problem
by treating the free variables of a k-bound formula as constants, but this makes
things rather messy.

Here we will give a game-theoretic characterization of k-bound formulas. First
we will prove that every k-bound formula has an alphabetical variant which
is k-cyclic. Intuitively spoken, k-cyclic formulas are those first order formulas
satisfying the following constraint: if Q and Q′ are quantifier occurrences in φ
such that Q′ is in the scope of Q, while there is no quantifier occurrence between
Q′ and Q, then Q′ binds xi if Q binds xi+1, and Q′ binds xk if Q binds x1. For
example: ∃x1∀x3∃x2(Px2x3∧∃x1Px1x2∧∃x1(Px1x3∧∀x3Px1x3))) is 3-cyclic,
∀x3(∃x2Px2x3 ∧ ∃x1Px2x1) is not.

Definition 6.2.

16

Let k be a fixed natural number. For any natural number i, let i∗ be the number
j satisfying 1 ≤ j ≤ k and j − i is divisible by k. Examples: (i + k)∗ = i∗,
(k + 1)∗ = 1, 0∗ = k.
Now let i be in {1, . . . , k}. C(k, i, n) will denote the set of k-cyclic formulas φ
of quantifier depth n such that φ is a Boolean combination of formulas of which
the uppermost quantifier binds xi. Formally, by induction on n:
C0(k, i, 0) is the set of atomic formulas with free variables in {x1, . . . , xk}.
C0(k, i, n+ 1) = {∃xiψ|ψ ∈ C(k, (i− 1)∗, n)}.
C(k, i, n) is the closure of C0(k, i, 0)∪ . . .∪C0(k, i, n) under Boolean operators.

Lemma 6.3.
Every k-bound sentence of quantifierdepth n has an alphabetical variant in
C(k, n∗, n).

Proof.
First consider the following alphabetical variant φ′ of φ: any quantifier occur-
rence Q binding a variable y is replaced by a quantifier binding xn−i, where i is
the number of quantifiers above Q. Of course, the bound variables are renamed
correspondingly. An example:

ψ : ∀u∃v∀w((∀x(Rux ∨ ∃y(Rvy ∧Rwx)) ∨ ∃zRuz)

(which is 4-bound and has quantifier depth 5) turns into

ψ′ : ∀x5∃x4∀x3((∀x2(Rx5x2 ∨ ∃x1(Rx4x1 ∧Rx3x2)) ∨ ∃x2Rx5x2)

Then, rename every (bound or binding) variable xm in φ′ by xm∗, to obtain φ∗;
the above ψ′ then becomes

ψ∗ : ∀x1∃x4∀x3((∀x2(Rx1x2 ∨ ∃x1(Rx4x1 ∧Rx3x2)) ∨ ∃x2Rx1x2)

It will be clear that in general, the obtained φ∗ is in C(k, n∗, n); we still have to
check that it is an alphabetical variant of φ. Now the only conceivable problem
is of the following kind: some variable x(m+k)∗ is in φ∗ bound by a quantifier
Qxm∗, while its original xm+k in φ′ was bound by Qxm+k. But in this case
there would be k quantifier occurrences (viz. Qxm+k−1, . . . , Qxm+1, Qxm) be-
tween the occurrence of xm+k and its binding quantifier, and this is precisely
the situation forbidden in k-bound formulas.
In the example: in ψ′, x5 cannot occur in the scope of ∃x1, so in ψ∗, x5∗ can
never get bound by ∃x1∗.

We will now give a game-theoretic treatment of the subject, defining the notion
of a cyclic Ehrenfeucht game with k pebbles. The idea of this game is that the
pebbles are used in a cyclic order, so that every pebble is reused after exactly k
moves.

17

Definition 6.4.
For a k-configuration (u, u′), GC,k,n(u, u′) is the k-pebble Ehrenfeucht game
Gk,n(u, u′) with the following restriction: the first player must use the pebbles
in the following order: xn∗, x(n−1)∗, . . . , x2, x1.

This restriction is just the game-theoretical counterpart of the syntactic re-
striction to k-cyclic formulas:

Lemma 6.5.
For all k-configurations (u, u′), u and u′ are C(k, n∗, n)-equivalent iff player II
has a winning strategy in GC,k,n(u, u′).

Proof.
The equivalence is proved by induction on n. For n = 0, the claim is immedi-
ate by definition of a winning strategy. For n > 0, one obtains the result by
following the structure of the proof of lemma 2.4 and observing that both the
outermost quantified variable of each C(k, (n+ 1)∗, n+ 1)-formula and the first
pebble to be used in GC,k,n+1(u, u′) are called x(n+1)∗.

The above lemmas 6.3 and 6.5 now immediately yield the following charac-
terization of k-bound sentences:

Theorem 6.6.
Let A and A’ be two structures. Then A and A’ satisfy the same k-bound
sentences of quantifierdepth n iff the second player has a winning strategy in
GC,k,n(∅, ∅).

7 Sentences with k variables and k-cyclic sen-
tences.

As was said before, in this section we discuss the relation between formulas
which have a bounded number of variables and k-bound formulas. If we confine
ourselves to sentences, it turns out that a sentence in k variables does not need
to have an equivalent which is k-bound, yet it does have an equivalent (k + 1)-
cyclic sentence.

Theorem 7.1.
Not every sentence in Lk has a k-cyclic equivalent.

Proof.
Consider the following structures M and M′: both are connected, non-directed,

18

a-cyclic, countably infinite graphs. The difference is that in M two edges meet in
every vertex, in M′ three. This difference is captured by the following formula,
holding in M′ not in M:

∃x1x2x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3 ∧ ∃y(Rx1y ∧Rx2y ∧Rx3y)).

Because the graphs are a-cyclic, the property expressed by the above formula
can be ‘approximated’ by the following L3-sentence φ, which is true in M′, not
in M:

∃x1∃x2∃x3 (x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3

∧ ∃x1(Rx1x2 ∧Rx1x3)
∧ ∃x2(Rx1x2 ∧Rx2x3)
∧ ∃x3(Rx1x3 ∧Rx2x3)

We will now show that M and M’ satisfy the same 3-cyclic sentences, by playing
the cyclic game GC,3,n(∅, ∅).
For the intuition behind II’s winning strategy in this game, call the length of the
shortest path between two elements of a graph, their distance. We denote the
distance between u(xi) and u(xj) by d(xi, xj) if no confusion arises concerning
the partial valuation u involved. Now look at an arbitrary moment in the game
GC,3,n(∅, ∅), when we have a 3-configuration (v, v′) with δv = δv′ = {x1, x2, x3}.
If xi is the pebble which I must move at this moment, call xj and xk the
remaining pebbles. The winning strategy of II consists of creating only 3-
configurations in which the distance of the remaining pebbles in M is the same
as the distance of the remaining pebbles in M′.
More formally, we will now prove the following claim:

If (u, u′) is a local isomorphism and d(x(n−1)∗, x(n−2)∗) = d′(x(n−1)∗, x(n−2)∗),
then II has a winning strategy in GC,k,n(u, u′).

The basic step in the inductive proof of the claim is straightforward, as usual.
For the inductive case n > 0, suppose for notational simplicity that xn∗ = x3,
x(n−1)∗ = x2 and x(n−2)∗ = x1. By the induction hypothesis, it is sufficient
for II to reach a configuration (u1, u

′
1) after the first move which is a local

isomorphism satisfying d1(x1, x3) = d′1(x1, x3). Note that by our notational
convention, x1 and x2 are the remaining pebbles, so d1(x1, x2) = d(x1, x2).
Now distinguish the following cases, according to I’s move:

If I makes her move in M, consider a maximal path in M′ through u′(x1)
and u′(x2). As d1(x1, x2) = d′1(x1, x2) by assumption, this path, considered as
a subgraph N′ of M′, is such that (N′, u′(x1), u′(x2)) and (M, u(x1),u(x2)) are
isomorphic, so this move of I means no problem for II.

So consider the option in which I makes her move in M′; distinguish the fol-
lowing cases:

19

(1) There is an acyclic maximal path in M′ on which x1, x2 and x3 are situated.
As d1(x1, x2) = d′1(x1, x2), this path (considered as a substructure N′ of M′),
is just like the above described path. So again II has an easy job.
(2) If there is no such path, then observe that no pair of pebbles in M ′ can be
direct neighbours; in particular, u1(x3) and u1(x2) are not adjacent.
Now look at u1(x1). Let’s say that u1(x2) is situated on the left side of u1(x1).
(M may be considered as a copy of the integers with Rz1z2 ⇔ |z1 − z2| = 1.)
As x3 and x2 are not neighbours in M′, player II has the freedom to place x3

on the right side of x1. Now if he moves like this, and places his pebble x3 so
that d1(x1, x3) = d′1(x1, x3), he creates the required local isomorphism.

An (almost) immediate consequence of this claim is that M and M′ satisfy
the same k-cyclic sentences, so we have proved lemma 7.1.

We have now come to our last result: we will show that every first order sentence
in which only k variables are used, has a k + 1-cyclic equivalent. The proof is
based on the fact that a winning strategy for the first player in Gk,n(∅, ∅) can be
modified into a winning strategy for her in the game GC,k+1,kn(∅, ∅). To prove
this, we need a more general definition of the k-cyclic game:

Definition 7.2.
Let GC,k,n,i(u, u′) be the cyclic game in which the first player is obliged to start
with the pebble xi (and then move x(i−1)∗, . . .).

Note that for sentences, this change does not effect the characterizing power
of the game. Furthermore, we need the following definition:

Definition 7.3.
Let (u, u′) be a k-configuration, (v, v′) a k + 1-configuration and i < k + 1. We
call (v, v′) an i-extension of (u, u′) if there is, for all j ≤ k, a j′ ≤ k + 1 such
that j′ 6= i, u(xj) = v(xj′) and u′(j) = v′(xj′).

Intuitively, (v, v′) is an i-extension of (u, u′) if (v, v′) contains all the information
of (u, u′), even without the pair (v(xi), v′(xi)). We can now prove our last result:

Theorem 7.4.
Every sentence in Lk,n has an equivalent in LC,k+1,kn.

Proof.
By the above given game-theoretical characterization of Lk,n and LC,k+1,kn,
and the remark below definition 7.2, it is sufficient to prove the following claim:

Suppose (u, u′) is a k-configuration, (v, v′) is an i-extension of (u, u′) and player
I has a winning strategy in Gk,n(u, u′). Then she has a winning strategy in

20

GC,k+1,kn,i(v, v′).

The proof is, as always, by induction on n, and again as always, the basis
step is trivial.
So suppose, for the induction step, that xj 7→ a is the first move in the winning
strategy of I in Gk,n+1(u, u′). Let j′ be as in definition 7.3. I would like to start
the cyclic game by moving xj′ 7→ a, but unfortunately she must first use xi,
xi−1,. . .,xj′+1. (we drop the * from the indices.) Her solution is the following
trick: in GC,k+1,k(n+1),i(v, v′), she moves:

xi 7→ v(xi−1), x1−1 7→ v(xi−2), . . . , xj′+2 7→ v(xj′+1).

Because she puts with every move a pebble on top of another one, II is forced
to move the corresponding pebbles on v′(xi−1), v′(xi−2), . . . , v′(xj′+1). The re-
sulting configuration is a j′ + 1-extension of (u, u′).
Now I plays: xj′+1 7→ a.
Suppose II answers with xj′+1 7→ a′.
Let (w,w′) be the now arisen k+1-configuration in the k+1-cyclic game. Notice
that (w,w′) is a j′-extension of (u[xj′/a, u′[xj′/a′]).
By assumption I has a winning strategy in Gk,n(u[xj′/a], u′[xj′/a′]) so the in-
duction hypothesis gives her a winning strategy in GC,k+1,kn,j′(w,w′).
The claim then follows by the fact that it took at most k moves to reach (w,w′).

This finishes the proof of theorem 7.4.

8 Literature.

References

[AK] Andréka, H. and Németi, I., On the relation algebraic clone generated
by Jónsson’s Q’s, Mathematical Institute of the Hungarian Academy of
Sciences, Budapest, 1985, 10 pp.

[vB] van Benthem, Johan, “Logical Syntax”, Theoretical Linguistics , 14 (1987)
119-142.

[G] Gabbay, Dov M., “Expressive Functional Completeness in Tense Logic”,
in: U. Mönnich, ed. Aspects of Philosophical Logic, Dordrecht, 1981.

[IK] Immerman, Neil and Kozen, Dexter, “Definability with bounded number
of bound variables”, Proceedings of the Symposium on Logic in Computer
Science; Ithaka, New York . Computer Society Press, Washington, 1987,
236-244.

21

[J1] Jónsson, Bjarni, “Varieties of relation algebras”, Algebra Universalis, 15
(1982) 273-298.

[J2] Jónsson, Bjarni, “The theory of binary relations”, this volume.

[R] Rosenstein, Joseph G., Linear Orderings, Academic Press, New York,
1982.

[T] Tarski, Alfred, “On the calculus of relations”, Journal of Symbolic Logic,
6 (1941) 73-89.

[TG] Tarski, Alfred and Givant, Steven, A formalization of set theory with-
out variables, AMS Colloquium Publications Vol 41, Providence, Rhode
Island, 1987.

[V] Venema, Yde, “Expressiveness and Completeness of an Interval Tense
Logic”, Notre Dame Journal of Formal Logic, to appear.

22

