Topics in Modal Logic (Fall 2024)

Seventh tutorial (12 December 2024): exercise sheet

Exercise 1 (bisimulation invariance) Let (Y, m) and (Y', m') be one-step models; we call (Y', m') a quotient of (Y, m) if there is a homomorphism from (Y, m) onto (Y', m'), i.e., a surjection $f: Y \to Y'$ such that m'(f(y)) = m(y), for all $y \in Y$. A one-step formula α is quotient invariant if we have $(Y, m) \Vdash^{1} \alpha$ iff $(Y', m') \Vdash^{1} \alpha$, whenever (Y', m') is a quotient of (Y, m).

Prove that a one-step formula α is quotient invariant iff it is (one-step) bisimulation invariant, cf. Definition 10.32).

Exercise 2 (MSO-automata) Let L be an ω -regular language over the alphabet $\wp(\mathsf{P})$.

- (a) Show that there is an MSO-automaton \mathbb{A} over the set \mathbb{P} of proposition letters, such that \mathbb{A} accepts a tree model (S, R, V) with root w_0 iff there is an infinite branch¹ $w_0 w_1 w_2 \dots$ of the tree, for which the $\wp(P)$ -stream $m(w_0)m(w_1)m(w_2)\cdots$ belongs to L (where m is the marking corresponding to V).
- (b) Show that there is an MSO-automaton \mathbb{A}' over the set \mathbb{P} of proposition letters, such that \mathbb{A}' accepts a tree model (S, R, V) iff, for at least two infinite branches of the tree, the associated $\wp(P)$ -stream belongs to L.

Hint. Obviously, if $\alpha = (s_n)_{n \in \omega}$ and $\beta = (t_n)_{n \in \omega}$ are distinct branches, there must be a unique 'splitting point', i.e., the first $n \in \omega$ such that $s_n \neq t_n$. Note that this *n* cannot be zero, since $s_0 = t_0$ is the root of the tree. For the definition of the automaton \mathbb{A}' , modify the automaton \mathbb{A} , copying some of its states into 'pre' and 'post' splitting states.

A detailed proof of the correctness of your solution is not needed, but you need to provide and motivate the definition of your automata.

Exercise 3 (MSO-automata)

- (a) Prove that MSO-automata are closed under union. (That is, show that if K_0 and K_1 are classes of pointed Kripke models that are recognizable by an MSO-automaton, then so is $K_0 \cup K_1$.)
- (b) Recall that 1FOE(A) denotes the set of monadic first-order sentences that are positive in each $a \in A$. Show that this set is closed under taking *Boolean duals*, in the sense that for each $\alpha \in 1FOE(A)$ there is a sentence $\alpha^{\partial} \in 1FOE(A)$ with the property that for all domains D and interpretations $V : A \to \wp D$ we have

$$D, V \models \alpha^{\partial} \text{ iff } D, V^{\neg} \not\models \alpha,$$

where V^{\neg} is the complemented valuation given by $V^{\neg}(a) := D \setminus V(a)$.

¹Branches of a tree start at the root.

(c) Prove that MSO-automata are closed under complementation. (Hint: given a priority map $\Omega: A \to \omega$, consider the map $\Omega^+: A \to \omega$ given by $\Omega^+(a) := \Omega(a) + 1$.)