
Lectures on the modal µ-calculus

Yde Venema∗

©YV 2024

Abstract

These notes give an introduction to the theory of the modal µ-calculus.

∗Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, NL–1098XG
Amsterdam. E-mail: y.venema@uva.nl.

Contents

Introduction 0-1

1 Basic Modal Logic 1-1
1.1 Basics . 1-1
1.2 Game semantics . 1-5
1.3 Bisimulations and bisimilarity . 1-7
1.4 Finite models and computational aspects . 1-11
1.5 Modal logic and first-order logic . 1-11
1.6 Complete derivation systems for modal logic . 1-11
1.7 The cover modality . 1-11

2 The modal µ-calculus: basics 2-1
2.1 Basic syntax . 2-2
2.2 The evaluation game based on subformulas . 2-8
2.3 Examples . 2-12
2.4 Bisimulation invariance and the bounded tree model property 2-14
2.5 The evaluation game based on the closure set . 2-18
2.6 Measuring formula . 2-24
2.7 Substitutions and free subformulas . 2-28

3 Fixpoints 3-1
3.1 General fixpoint theory . 3-2
3.2 Boolean algebras . 3-3
3.3 Vectorial fixpoints . 3-6
3.4 Algebraic semantics for the modal µ-calculus . 3-8
3.5 Adequacy . 3-12

4 Stream automata and logics for linear time 4-1
4.1 Deterministic stream automata . 4-1
4.2 Acceptance conditions . 4-3
4.3 Nondeterministic automata . 4-9
4.4 Determinization of stream automata . 4-12
4.5 Logic and automata . 4-17
4.6 A coalgebraic perspective . 4-17

5 Parity games 5-1
5.1 Board games . 5-1
5.2 Winning conditions . 5-4
5.3 Reachability games and attractor sets . 5-6
5.4 Positional Determinacy of Parity Games . 5-9
5.5 Algorithms for solving parity games . 5-15
5.6 Game equivalence . 5-22

6 Parity formulas & model checking 6-1
6.1 Parity formulas . 6-1
6.2 Basics . 6-7
6.3 From ordinary formulas to parity formulas . 6-11
6.4 From parity formulas to ordinary formulas . 6-24
6.5 Alternation depth . 6-32

6.6 Guarded transformation . 6-38

7 Tableau games and derivation systems 7-1
7.1 The Tableau Game . 7-1
7.2 Determinacy and adequacy . 7-10
7.3 Streamlined tableaux . 7-22
7.4 Decidability of the satisfiability problem . 7-28
7.5 A cut-free proof system . 7-28
7.6 Kozen’s axiom system and the refutation calculus . 7-28

8 Disjunctive formulas and the fixpoint logic of the cover modality 8-1
8.1 Introduction . 8-1
8.2 The language of the cover modality . 8-2
8.3 Redistributions and the modal distributive law . 8-5
8.4 Tableaux for the coalgebraic modal µ-calculus . 8-8
8.5 Disjunctive companions . 8-14
8.6 The refutation calculus for the cover modality . 8-23

9 Completeness 9-1
9.1 Introduction . 9-1
9.2 Semidisjunctive formulas and thin refutations . 9-5
9.3 From thin refutations to derivations . 9-13
9.4 Tableau consequence . 9-26
9.5 Completeness . 9-43

10 Modal automata 10-1
10.1 Introduction . 10-1
10.2 Modal automata . 10-2
10.3 Disjunctive modal automata . 10-6
10.4 One-step logics and their automata . 10-8
10.5 From formulas to automata and back . 10-14
10.6 Simulation Theorem . 10-18

11 Model theory of the modal µ-calculus 11-1
11.1 The cover modality and disjunctive formulas . 11-1
11.2 The small model property . 11-5

12 Expressive completeness 12-1
12.1 Monadic second-order logic . 12-1
12.2 Automata for monadic second-order logic . 12-3
12.3 Expressive completeness modulo bisimilarity . 12-8

A Mathematical preliminaries A-1

B Some remarks on proof theory B-1

References R-1

Introduction

The study of the modal µ-calculus can be motivated from various (not necessarily disjoint!)
directions.

Process Theory In this area of theoretical computer science, one studies formalisms for de-
scribing and reasoning about labelled transition systems — these being mathematical struc-
tures that model processes. Such formalisms then have important applications in the speci-
fication and verification of software. For such purposes, the modal µ-calculus strikes a very
good balance between computational efficiency and expressiveness. On the one hand, the
presence of fixpoint operators make it possible to express most, if not all, of the properties
that are of interest in the study of (ongoing) behavior. But on the other hand, the formalism
is still simple enough to allow an (almost) polynomial model checking complexity and an
exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal µ-calculus is a well-behaved
extension of the basic formalism, with a great number of attractive logical properties. For
instance, it is the bisimulation invariant fragment of second order logic, it enjoys uniform
interpolation, and the set of its validities admits a transparent, finitary axiomatization, and
has the finite model property. In short, the modal µ-calculus shares (or naturally generalizes)
all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More generally, the modal µ-calculus has a
very interesting theory, with lots of connections with neighboring areas in mathematics and
theoretical computer science. We mention automata theory (more specifically, the theory
of finite automata operating on infinite objects), game theory, universal algebra and lattice
theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concerning the
modal µ-calculus. For instance, it is unknown whether the characterization of the modal
µ-calculus as the bisimulation invariant fragment of monadic second order logic still holds if
we restrict attention to finite structures, and in fact there are many open problems related
to the expressiveness of the formalism. Also, the exact complexity of the model checking
problem is not known. And to mention a third example: the completeness theory of modal
fixpoint logics is still a largely undeveloped field.

Summarizing, the modal µ-calculus is a formalism with important applications in the field
of process theory, with interesting metalogical properties, various nontrivial links with other
areas in mathematics and theoretical computer science, and a number of intriguing open
problems. Reason enough to study it in more detail.

1 Basic Modal Logic

As mentioned in the preface, we assume familiarity with the basic definitions concerning the
syntax and semantics of modal logic. The purpose of this first chapter is to briefly recall
notation and terminology. We focus on some aspects of modal logic that feature prominently
in its extensions with fixpoint operators.

Convention 1.1 Throughout this text we let Prop be a countably infinite set of propositional
variables, whose elements are usually denoted as p, q, r, x, y, z, . . ., and we let D be a finite set
of (atomic) actions, whose elements are usually denoted as d, e, c, We will usually focus
on a finite subset P of Prop, consisting of those propositional variables that occur freely in a
particular formula. In practice we will often suppress explicit reference to Prop, P and D.

1.1 Basics

Structures

I Introduce LTSs as process graphs

Definition 1.2 A (labelled) transition system, LTS, or (Kripke) model of type (P,D) is a
triple S = 〈S, V,R〉 such that S is a set of objects called states or points, V : P → ℘(S) is a
valuation, and R = {Rd ⊆ S × S | d ∈ D} is a family of binary accessibility relations. In case
D is a singleton, we will simply write R for the unique accessibility relation in a model.

Elements of the set Rd[s] := {t ∈ S | (s, t) ∈ Rd} are called d-successors of s. A transition
system is called image-finite or finitely branching if Rd[s] is finite, for every d ∈ D and s ∈ S.

A pointed transition system or Kripke model is a pair (S, s) consisting of a transition
system S and a designated state s in S. �

Remark 1.3 It will occasionally be convenient to work with an alternative, coalgebraic pre-
sentation of transition systems. Intuitively, it should be clear that instead of having a val-
uation V : P → ℘(S), telling us at which states each proposition letter is true, we could
just as well have a marking σV : S → ℘(P) informing us which proposition letters are
true at each state. Also, a binary relation R on a set S can be represented as a map
R[·] : S → ℘(S) mapping a state s to the collection R[s] of its successors. In this line, a family
R = {Rd ⊆ S × S | d ∈ D} of accessibility relations can be seen as a map σR : S → ℘(S)D,
where ℘(S)D denotes the set of maps from D to ℘(S).

Combining these two maps into one single function, we see that a transition system S =
〈S, V,R〉 of type (P,D) can be seen as a pair 〈S, σ〉, where σ : S → ℘(P)× ℘(S)D is the map
given by σ(s) := (σV (s), σR(s)). �

For future reference we define the notion of a Kripke functor.

Definition 1.4 Fix a set P of proposition letters and a set D of atomic actions. Given a set
S, let KD,PS denote the set

KD,PS := ℘(P)× ℘(S)D.

This operation will be called the Kripke functor associated with D and P.

1-2 Basic Modal logic

A typical element of KD,PS will be denoted as (π,X), with π ⊆ P and X = {Xd | d ∈ D}
with Xd ⊆ S for each d ∈ D.

When we take this perspective we will sometimes refer to Kripke models as KD,PS-
coalgebras or Kripke coalgebras. �

Given this definition we may summarize Remark 1.3 by saying that any transition system
can be presented as a pair S = 〈S, σ : S → KS〉 where K is the Kripke functor associated with
S. In practice, we will usually write K rather than KD,P.

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the negation
symbol may only be applied to atomic formulas. The price that one has to pay for this is
an enlarged arsenal of primitive symbols. In the context of modal logic we then arrive at the
following definition.

Definition 1.5 The language MLD of polymodal logic in D is defined as follows:

ϕ ::= p | p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | 3dϕ | 2dϕ

where p ∈ Prop, and d ∈ D. Elements of MLD are called (poly-)modal formulas, or briefly,
formulas. In case the set D is a singleton, we speak of the language ML of basic modal logic or
monomodal logic; in this case we will denote the modal operators by 3 and 2, respectively.

Given a finite set P of propositional variables, we let MLD(P) denote the set of formulas in
which only variables from P occur. �

Often the sets P and D are implicitly understood, and suppressed in the notation. Gen-
erally it will suffice to treat examples, proofs, etc., from monomodal logic.

We will need some definitions and notations concerning atomic formulas.

Definition 1.6 Let P be a set of propositional variables. We define the sets Lit(P) and
At(P) of, respectively, literals and atomic formulas over P as follows:

Lit(P) := {p, p | p ∈ P}
At(P) := {⊥,>} ∪ Lit(P)

We will generally use the symbol ` to denote an arbitrary literal. �

Remark 1.7 The negation ∼ϕ of a formula ϕ can inductively be defined as follows:

∼⊥ := > ∼> := ⊥
∼p := p ∼p := p
∼(ϕ ∨ ψ) := ∼ϕ ∧ ∼ψ ∼(ϕ ∧ ψ) := ∼ϕ ∨ ∼ψ
∼2dϕ := 3d∼ϕ ∼3dϕ := 2d∼ϕ

On the basis of this, we can also define the other standard abbreviated connectives, such as
→ and ↔. �

Lectures on the modal µ-calculus 1-3

We assume that the reader is familiar with standard syntactic notions such as those of
a subformula or the construction tree of a formula, and with standard syntactic operations
such as substitution. Concerning the latter, we let ϕ[ψ/p] denote the formula that we obtain
by substituting all occurrences of p in ϕ by ψ.

Definition 1.8 We define the collection Sf (ξ) of subformulas of a modal formula ξ by the
following induction on the complexity of ξ:

Sf (⊥) := {⊥}
Sf (>) := {>}
Sf (p) := {p}
Sf (p) := {p}
Sf (ϕ ? ψ) := {ϕ ? ψ} ∪ Sf (ϕ) ∪ Sf (ψ) where ? ∈ {∨,∧}
Sf (♥ϕ) := {♥ϕ} ∪ Sf (ϕ) where ♥ ∈ {3d,2d | d ∈ D}

We write ϕ P ψ to denote that ϕ is a subformula of ψ. The size of a formula ξ is defined as
the number of its subformulas, |ξ| := |Sf (ξ)|. �

Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal
operators 3d and 2d are both interpreted using the accessibility relation Rd.

The notion of truth (or satisfaction) is defined as follows.

Definition 1.9 Let S = 〈S, σ〉 be a transition system of type (P,D). Then the satisfaction
relation between states of S and formulas of MLD(P) is defined by the following formula
induction.

S, s p if s ∈ V (p),
S, s p if s 6∈ V (p),
S, s ⊥ never,
S, s > always,
S, s ϕ ∨ ψ if S, s ϕ or S, s ψ,
S, s ϕ ∧ ψ if S, s ϕ and S, s ψ,
S, s 3dϕ if S, t ϕ for some t ∈ Rd[s],
S, s 2dϕ if S, t ϕ for all t ∈ Rd[s].

We say that ϕ is true or holds at s if S, s ϕ, and we let the set

[[ϕ]]S := {s ∈ S | S, s ϕ}.

denote the meaning or extension of ϕ in S. �

Alternatively (but equivalently), one may define the semantics of modal formulas directly
in terms of this meaning function [[ϕ]]S. This approach has some advantages in the context of
fixpoint operators, since it brings out the role of the powerset algebra ℘(S) more clearly.

1-4 Basic Modal logic

Remark 1.10 Fix an LTS S, then define [[ϕ]]S by induction on the complexity of ϕ:

[[p]]S = V (p) [[p]]S = S \ V (p)
[[⊥]]S = ∅ [[>]]S = S
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S [[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = 〈Rd〉[[ϕ]]S [[2dϕ]]S = [Rd][[ϕ]]S

Here the operations 〈Rd〉 and [Rd] on ℘(S) are defined by putting

〈Rd〉(X) := {s ∈ S | Rd[s] ∩X 6= ∅}
[Rd](X) := {s ∈ S | Rd[s] ⊆ X}.

The satisfaction relation may be recovered from this by putting S, s ϕ iff s ∈ [[ϕ]]S. �

Definition 1.11 Let s and s′ be two states in the transition systems S and S′ of type (P,D),
respectively. Then we say that s and s′ are modally equivalent, notation: S, s ≡(P,D) S′, s′, if s
and s′ satisfy the same modal formulas, that is, S, s ϕ iff S′, s′ ϕ, for all modal formulas
ϕ ∈ MLD(P). �

Flows, trees and streams

In some parts of these notes deterministic transition systems feature prominently.

Definition 1.12 A transition system S = 〈S, V,R〉 is called deterministic if each Rd[s] is a
singleton. �

Note that our definition of determinism does not allow Rd = ∅ for any point s. We first
consider the monomodal case.

Definition 1.13 Let P be a set of proposition letters. A deterministic monomodal Kripke
model for this language is called a flow model for P, or a ℘(P)-flow. In case such a structure is
of the form 〈ω, V,Succ〉, where Succ is the standard successor relation on the set ω of natural
numbers, we call the structure a stream model for P, or a ℘(P)-stream. �

In case the set D of actions is finite, we may just as well identify it with the set k =
{0, . . . , k− 1}, where k is the size of D. We usually restrict to the binary case, that is, k = 2.
Our main interest will be in Kripke models that are based on the binary tree, i.e., a tree in
which every node has exactly two successors, a left and a right one.

Definition 1.14 With 2 = {0, 1}, we let 2∗ denote the set of finite strings of 0s and 1s. We
let ε denote the empty string, while the left- and right successor of a node s are denoted by
s · 0 and s · 1, respectively. Written as a relation, we put

Succi = {(s, s · i) | s ∈ 2∗}.

A binary tree over P, or a binary ℘(P)-tree is a Kripke model of the form 〈2∗, V,Succ0,Succ1〉.
�

Lectures on the modal µ-calculus 1-5

Remark 1.15 In the general case, the k-ary tree is the structure (k∗,Succ0, . . . ,Succk−1),
where k∗ is the set of finite sequences of natural numbers smaller than k, and Succi is the
i-th successor relation given by

Succi = {(s, s · i) | s ∈ k∗}.

A k-flow model is a Kripke model S = 〈S, V,R〉 with k many deterministic accessibility
relations, and a k-ary tree model is a k-flow model which is based on the k-ary tree. �

In deterministic transition systems, the distinction between boxes and diamonds evapo-
rates. It is then convenient to use a single symbol ©i to denote either the box or the diamond.

Definition 1.16 The set MFLk(P) of formulas of k-ary Modal Flow Logic in P is given as
follows:

ϕ ::= p | p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ©iϕ

where p ∈ P, and i < k. In case k = 1 we will also speak of modal stream logic, notation:
MSL(P). �

1.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is, we will
define the evaluation game E(ξ,S) associated with a (fixed) formula ξ and a (fixed) LTS S.
This game is an example of a board game. In a nutshell, board games are games in which the
players move a token along the edge relation of some graph, so that a match of play of the
game corresponds to a (finite or infinite) path through the graph. Furthermore, the winning
conditions of a match are determined by the nature of this path. We will meet many examples
of board games in these notes, and in Chapter 5 we will study them in more detail.

The evaluation game E(ξ,S) is played by two players: Éloise (∃ or 0) and Abélard (∀ or
1). Given a player σ, we always denote the opponent of σ by σ. As mentioned, a match of
the game consists of the two players moving a token from one position to another. Positions
are of the form (ϕ, s), with ϕ a subformula of ξ, and s a state of S.

It is useful to assign goals to both players: in an arbitrary position (ϕ, s), think of ∃ trying
to show that ϕ is true at s in S, and of ∀ of trying to convince her that ϕ is false at s.

Depending on the type of the position (more precisely, on the formula part of the position),
one of the two players may move the token to a next position. For instance, in a position of
the form (3dϕ, s), it is ∃’s turn to move, and she must choose an arbitrary d-successor t of s,
thus making (ϕ, t) the next position. Intuitively, the idea is that in order to show that 3ϕ is
true at s, ∃ has to come up with a successor of s where ϕ holds. Formally, we say that the set
of (admissible) next positions that ∃ may choose from is given as the set {(ϕ, t) | t ∈ Rd[s]}.
In the case there is no successor of s to choose, she immediately loses the game. This is a
convenient way to formulate the rules for winning and losing this game: if a position (ϕ, s)
has no admissible next positions, the player whose turn it is to play at (ϕ, s) gets stuck and
immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a propo-
sition letter: we always assign to such a position an empty set of admissible moves, but we

1-6 Basic Modal logic

Position Player Admissible moves

(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ Rd[s]}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ Rd[s]}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), s ∈ V (p) ∀ ∅
(p, s), s 6∈ V (p) ∃ ∅
(p, s), s 6∈ V (p) ∀ ∅
(p, s), s ∈ V (p) ∃ ∅

Table 1: Evaluation game for modal logic

make ∃ responsible for (p, s) in case p is false at s, and ∀ in case p is true at s. In this way, ∃
immediately wins if p is true at s, and ∀ if it is otherwise. The rules for the negative literals
(p) and the constants, ⊥ and >, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of this
game are finite, since at each move of the game the active formula is reduced in size. (From
the general perspective of board games, this means that we need not worry about winning
conditions for matches of infinite length.) We may now summarize the game as follows.

Definition 1.17 Given a modal formula ξ and a transition system S, the evaluation game
E(ξ,S) is defined as the board game given by Table 1, with the set Sf (ξ) × S providing the
positions of the game; that is, a position is a pair consisting of a subformula of ξ and a point
in S. The instantiation of this game with starting point (ξ, s) is denoted as E(ξ,S)@(ξ, s). �

An instance of an evaluation game is a pair consisting of an evaluation game and a starting
position of the game. Such an instance will also be called an initialized game, or sometimes,
if no confusion is likely, simply a game.

A strategy for a player σ in an initialized game is a method that σ uses to select his moves
during the play. Such a strategy is winning for σ if every match of the game (starting at the
given position) is won by σ, provided σ plays according to this strategy. A position (ϕ, s) is
winning for σ if σ has a winning strategy for the game initialized in that position. (Note that
this definition applies to all positions, not only to the ones owned by σ.) The set of winning
positions in E(ξ,S) for σ is denoted as Winσ(E(ξ,S)).

The main result concerning these games is that they provide an alternative, but equivalent,
semantics for modal logic.

I Example to be added

Theorem 1.18 (Adequacy) Let ξ be a modal formula, and let S be an LTS. Then for any
state s in S it holds that

(ξ, s) ∈Win∃(E(ξ,S)) ⇐⇒ S, s ξ.

Lectures on the modal µ-calculus 1-7

The proof of this Theorem is left to the reader.

1.3 Bisimulations and bisimilarity

One of the most fundamental notions in the model theory of modal logic is that of a bisimu-
lation between two transition systems.

I discuss bisimilarity as a notion of behavioral equivalence

Definition 1.19 Let S and S′ be two transition systems of the same type (P,D). Then a
relation Z ⊆ S × S′ is a bisimulation of type (P,D) if the following hold, for every pair
(s, s′) ∈ Z.
(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;
(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;
(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z.

Two states s and s′ are called bisimilar, notation: S, s ↔P,D S′, s′ if there is some bisim-
ulation Z of type (P,D) with (s, s′) ∈ Z. If no confusion is likely to arise, we generally drop
the subscripts, writing ‘↔’ rather than ‘↔P,D’. �

Bisimilarity and modal equivalence

In order to understand the importance of this notion for modal logic, the starting point should
be the observation that the truth of modal formulas is invariant under bisimilarity. Recall
that ≡ denotes the relation of modal equivalence.

Theorem 1.20 (Bisimulation Invariance) Let S and S′ be two transition systems of the
same type. Then

S, s ↔ S′, s′ ⇒ S, s ≡ S′, s′

for every pair of states s in S and s′ in S′.

Proof. By a straightforward induction on the complexity of modal formulas one proves that
bisimilar states satisfy the same formulas. qed

But there is much more to say about the relation between modal logic and bisimilarity
than Theorem 1.20. In particular, for some classes of models, one may prove a converse
statement, which amounts to saying that the notions of bisimilarity and modal equivalence
coincide. Such classes are said to have the Hennessy-Milner property. As an example we
mention the class of finitely branching transition systems.

Theorem 1.21 (Hennessy-Milner Property) Let S and S′ be two finitely branching tran-
sition systems of the same type. Then

S, s ↔ S′, s′ ⇐⇒ S, s ≡ S′, s′

for every pair of states s in S and s′ in S′.

1-8 Basic Modal logic

Proof. The direction from left to right follows from Theorem 1.20. In order to prove the
opposite direction, one may show that the relation ≡ of modal equivalence itself is a bisimu-
lation. Details are left to the reader. qed

This theorem can be read as indication of the expressiveness of modal logic: any differ-
ence in behaviour between two states in finitely branching transition systems can in fact be
witnessed by a concrete modal formula. As another witness to this expressivity, in section 1.5
we will see that modal logic is sufficiently rich to express all bisimulation-invariant first-order
properties. Obviously, this result also adds considerable strength to the link between modal
logic and bisimilarity.

As a corollary of the bisimulation invariance theorem, modal logic has the tree model
property, that is, every satisfiable modal formula is satisfiable on a structure that has the
shape of a tree.

Definition 1.22 A transition system S of type (P,D) is called tree-like if the structure
〈S,
⋃
d∈DRd〉 is a tree. �

The key step in the proof of the tree model property of modal logic is the observation
that every transition system can be ‘unravelled’ into a bisimilar tree-like model. The basic
idea of such an unravelling is the new states encode (part of) the history of the old states.
Technically, the new states are the paths through the old system.

Definition 1.23 Let S = 〈S, V,R〉 be a transition system of type (P,D). A (finite) path
through S is a nonempty sequence of the form (s0, d1, s1, d2, . . . , sn) such that Rdisi−1si for
all i with 0 < i ≤ n. The set of paths through S is denoted as Paths (S); we use the notation
Pathss(S) for the set of paths starting at s.

The unravelling of S around a state s is the transition system ~Ss which is coalgebraically
defined as the structure 〈Pathss(S), ~σ〉, where the coalgebra map ~σ = (~σV , (~σd | d ∈ D)) is
given by putting

~σV (s0, d1, s1, d2, . . . , sn) := σV (sn),

~σd(s0, d1, s1, d2, . . . , sn) := {(s0, d1, s1, . . . , sn, d, t) ∈ Pathss(S) | Rdsnt}.

Finally, the unravelling of a pointed transition system (S, s) is the pointed structure (~Ss, s),
where (with some abuse of notation) we let s denote the path of length zero that starts and
finishes at s. �

Clearly, unravellings are tree-like structures, and any pointed transition system is bisimilar
to its unravelling. But then the following theorem is immediate by Theorem 1.20.

Theorem 1.24 (Tree Model Property) Let ϕ be a satisfiable modal formula. Then ϕ is
satisfiable at the root of a tree-like model.

Lectures on the modal µ-calculus 1-9

Bisimilarity game

We may also give a game-theoretic characterization of the notion of bisimilarity. We first give
an informal description of the game that we will employ. A match of the bisimilarity game
between two Kripke models S and S′ is played by two players, ∃ and ∀. As in the evaluation
game, these players move a token around from one position of the game to the next one. In
the game there are two kinds of positions: pairs of the form (s, s′) ∈ S × S′ are called basic
positions and belong to ∃. The other positions are of the form Z ⊆ S × S′ and belong to ∀.

The idea of the game is that at a position (s, s′), ∃ claims that s and s′ are bisimilar, and
to substantiate this claim she proposes a local bisimulation Z ⊆ S × S′ (see below) for s and
s′. This relation Z can be seen as providing a set of witnesses for ∃’s claim that s and s′ are
bisimilar. Implicitly, ∃’s claim at a position Z ⊆ S × S′ is that all pairs in Z are bisimilar,
so ∀ can pick an arbitrary pair (t, t′) ∈ Z and challenge ∃ to show that these t and t′ are
bisimilar.

Definition 1.25 Let S and S′ be two transition systems of the same type (P,D). Then a
relation Z ⊆ S × S′ is a local bisimulation for two points s ∈ S and s′ ∈ S′, if it satisfies the
properties (prop), (back) and (forth) of Definition 1.19 for this specific s and s′:
(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;
(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;
(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z. �

Note that a local bisimulation for s and s′ need only relate successors of s to successors of
s′. In particular, the pair (s, s′) itself will generally not belong to such a relation. It is easy to
see that a relation Z between two Kripke models is a bisimulation iff Z is a local bisimulation
for every pair (s, s′) ∈ Z.

If a player gets stuck in a match of the bisimilarity game, then the opponent wins the
match. For instance, if s and s′ disagree about some proposition letter, then there is no local
bisimulation for s and s′, and so the corresponding position (s, s′) is an immediate loss for ∃.
Or, if neither s nor s′ has successors, and agree on the truth of all proposition letters, then
∃ could choose the empty relation as a local bisimulation, so that ∀ would lose the match at
his next move.

A new option arises if neither player gets stuck: this game may also have matches that
last forever. Nevertheless, we can still declare a winner for such matches, and the agreement
is that ∃ is the winner of any infinite match. Formally, we put the following.

Definition 1.26 The bisimilarity game B(S,S′) between two Kripke models S and S′ is the
board game given by Table 2, with the winning condition that finite matches are lost by the
player who got stuck, while all infinite matches are won by ∃.

A position (s, s′) is winning for σ if σ has a winning strategy for the game initialized in
that position. The set of these positions is denoted as Winσ(B(S,S′)). �

Also observe that a bisimulation is a relation which is a local bisimulation for each of its
members. The following theorem states that the collection of basic winning positions for ∃
forms the largest bisimulation between S and S′.

1-10 Basic Modal logic

Position Player Admissible moves

(s, s′) ∈ S × S′ ∃ {Z ∈ ℘(S × S′) | Z is a local bisimulation for s and s′}
Z ∈ ℘(S × S′) ∀ Z = {(t, t′) | (t, t′) ∈ Z}

Table 2: Bisimilarity game for Kripke models

Theorem 1.27 Let (S, s) and (S′, s′) be two pointed Kripke models. Then S, s ↔ S′, s′ iff
(s, s′) ∈Win∃(B(S, S′)).

Proof. For the direction from left to right: suppose that Z is a bisimulation between S and
S′ linking s and s′. Suppose that ∃, starting from position (s, s′), always chooses the relation
Z itself as the local bisimulation. A straightforward verification, by induction on the length
of the match, shows that this strategy always provides her with a legitimate move, and that
it keeps her alive forever. This proves that it is a winning strategy.

For the converse direction, it suffices to show that the relation {(t, t′) ∈ S × S′ | (t, t′) ∈
Win∃(B(S, S′))} itself is in fact a bisimulation. We leave the details for the reader. qed

Remark 1.28 I The bisimilarity game should not be confused with the bisimulation

game.

�

Bisimulations via relation lifting

Together, the back- and forth clause of the definition of a bisimulation express that the pair
of respective successor sets of two bisimilar states must belong to the so-called Egli-Milner
lifting ℘Z of the bisimulation Z. In fact, the notion of a bisimulation can be completely
defined in terms of relation lifting.

Definition 1.29 Given a relation Z ⊆ A×A′, define the relation ℘Z ⊆ ℘A×℘A′ as follows:

℘Z := {(X,X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

Similarly, define, for a Kripke functor K = KD,P, the relation KZ ⊆ KA× KA′ as follows:

KZ := {((π,X), (π′, X ′)) | π = π′ and (Xd, X
′
d) ∈ ℘Z for each d ∈ D}.

The relations ℘Z and KZ are called the liftings of Z with respect to ℘ and K, respectively.
We say that Z ⊆ A×A′ is full on B ∈ ℘A and B′ ∈ ℘A′ if (B,B′) ∈ ℘Z. �

It is completely straightforward to check that a nonempty relation Z linking two transition
systems S and S′ is a local bisimulation for two states s and s′ iff (σ(s), σ′(s′)) ∈ KZ. In
particular, ∃’s move in the bisimilarity game at a position (s, s′) consists of choosing a binary
relation Z such that (σ(s), σ′(s′)) ∈ KZ. The following characterization of bisimulations is
also an immediate consequence.

Lectures on the modal µ-calculus 1-11

Proposition 1.30 Let S and S′ be two Kripke coalgebras for some Kripke functor K, and let
Z ⊆ S × S′ be some relation. Then

Z is a bisimulation iff (σ(s), σ′(s′)) ∈ KZ for all (s, s′) ∈ Z. (1)

1.4 Finite models and computational aspects

I complexity of model checking

I filtration & polysize model property

I complexity of satisfiability

I complexity of global consequence

1.5 Modal logic and first-order logic

I modal logic is the bisimulation invariant fragment of first-order logic

1.6 Complete derivation systems for modal logic

1.7 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of basic
modal logic in terms of boxes and diamonds. This alternative set-up is based on a connective
which turns a set of formulas into a formula. We first restrict attention to the monomodal
case.

Definition 1.31 Let Φ be a finite set of formulas. Then ∇Φ is a formula, which holds at a
state s in a Kripke model if every formula in Φ holds at some successor of s, while at the
same time, every successor of s makes some formula in Φ true. The operator ∇ is called the
cover modality. �

It is not so hard to see that the cover modality can be defined in the standard modal
language:

∇Φ ≡ 2
∨

Φ ∧
∧

3Φ, (2)

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}. Things start to get interesting once we realize that
both the ordinary diamond 3 and the ordinary box 2 can be expressed in terms of the cover
modality (and the disjunction):

3ϕ ≡ ∇{ϕ,>},
2ϕ ≡ ∇∅ ∨∇{ϕ}. (3)

Here, as always, we use the convention that
∨
∅ = ⊥ and

∧
∅ = >.

Remark 1.32 Observe that this definition involves the ∀∃&∀∃ pattern that we know from
the definition of a bisimulation. The fundamental concept is the notion of relation lifting ℘
defined in the previous section. In other words, the semantics of the cover modality can be

1-12 Basic Modal logic

expressed in terms of relation lifting. To be more precise, observe that we may think of the
forcing or satisfaction relation simply as a binary relation between states and formulas.
Then we find that

S, s ∇Φ iff (σR(s),Φ) ∈ ℘().

for any pointed Kripke model (S, s) and any finite set Φ of formulas. �

Remark 1.33 In the special case where Φ = ∅ we find that S, s ∇∅ iff R[s] = ∅, that is,
s has no successors. Using this it is easy to see that > = ∇{>} ∨ ∇∅. �

Given that ∇ and {3,2} are mutually expressible, we obtain an expressively equivalent
language ML∇ if we replace 2 and 3 with the cover modality. As we will see further on
it will be convenient for us to use a format for this language in which not only the cover
modality, but also the disjunction and conjunction connectives take finite sets of formulas
as their argument. That is, rather then working with disjunction and conjunction as binary
connectives, we will work with their finitary versions. This perspective also allows us to omit
the constants ⊥ and > from the basic syntax, since we may consider them as abbreviations:
⊥ :=

∨
∅ and > :=

∧
∅.

Definition 1.34 The formulas of the language ML∇ are given by the following grammar:

ϕ ::= p | p |
∨

Φ |
∧

Φ | ∇Φ

where p is a propositional variable, and Φ ⊆ ML∇. �

Proposition 1.35 The languages ML and ML∇ are equally expressive.

Proof. Immediate by (2) and (3). qed

The real importance of the cover modality is that it allows us to almost completely elim-
inate the Boolean conjunction. This remarkable fact is based on the following modal dis-
tributive law. Recall from Definition 1.29 that a relation Z ⊆ A × A′ is full on A and A′ if
(A,A′) ∈ ℘Z, or in other words: A ⊆ Dom(Z) and A′ ⊆ Ran(Z).

Proposition 1.36 (Binary Modal Distributive Law) Let Φ and Φ′ be two sets of for-
mulas. Then the following two formulas are equivalent:

∇Φ ∧∇Φ′ ≡
∨
{∇ΓZ | Z is full on Φ and Φ′}, (4)

where, given a relation Z ⊆ Φ× Φ′, we define

ΓZ := {ϕ ∧ ϕ′ | (ϕ,ϕ′) ∈ Z}.

Proof. For the direction from left to right, suppose that S, s ∇Φ ∧ ∇Φ′. Let Z ⊆ Φ × Φ′

consist of those pairs (ϕ,ϕ′) such that the conjunction ϕ∧ϕ′ is true at some successor t of s.
It is then straightforward to verify that Z is full on Φ and Φ′, and that S, s ∇ΓZ .

The converse direction follows fairly directly from the definitions. qed

Lectures on the modal µ-calculus 1-13

As a corollary of Proposition 1.36 we can restrict the use of conjunction in modal logic to
that of a special conjunction connective • which may only be applied to a pair consisting of
a set of literals and a ∇-formula (or, a certain set of ∇-formulas in the polymodal case). The
intended reading of the bullet operator is as follows:

α • Φ ≡ (
∧
α) ∧∇Φ.

Definition 1.37 Fix a finite set P of proposition letters. Then the set DML(P) of disjunctive
monomodal formulas in P is given by the following grammar:

ϕ ::= > |
∨

Φ | α • Φ,

where α is a finite set of literals over P and Φ is a finite set of formulas in DML(P). �

Note that the proposition letters in P and their negations themselves do not qualify as
disjunctive formulas. However, these formulas are easily seen to be equivalent to disjunctive
formulas: for instance, we have ` ≡ {`} • {>} ∨ {`} •∅, for any literal `.

Remark 1.38 In the above definition we do not need to list the formula ⊥ explicitly as a
disjunctive formula, since we can see it as an abbreviation: ⊥ :=

∨
∅. This is different for the

formula >, however. Since we no longer have
∧

as a connective, we cannot use it to define
>. For this reason we have added > as a primitive constant. �

The following theorem states that every modal formula can be rewritten into an equivalent
disjunctive normal form.

Theorem 1.39 Let P be a set of proposition letters. Then there are effective ways to trans-
form an arbitrary formula in ML(P) into an equivalent formula in DML(P), and vice versa. As
a corollary, the languages ML(P) and DML(P) are expressively equivalent.

We leave the proof of this result as an exercise to the reader.

Remark 1.40 In the polymodal case we adapt the definition as follows. Let Φ = {Φd | d ∈
D} be a D-indexed family of formula sets. Then we write ∇DΦ :=

∧
d∈D∇dΦd, where ∇d

is the cover modality associated with the action d. The following grammar defines the set
DMLD(P) of disjunctive polymodal formulas in D and P

ϕ ::= > |
∨

Φ | α • Φ,

where α ⊆ω Lit(P) and Φ is an D-indexed family of finite sets of DMLD(P)-formulas. One may
then formulate and prove a polymodal version of Theorem 1.39, relating MLD and DMLD. �

1-14 Basic Modal logic

Notes

Modal logic has a long history in philosophy and mathematics, for an overview we refer to
Blackburn, de Rijke and Venema [3]. The use of modal formalisms as specification languages
in process theory goes back at least to the 1970s, with Pratt [19] and Pnueli [18] being two
influential early papers.

The notion of bisimulation, which plays an important role in modal logic and process
theory alike, was first introduced in a modal logic context by van Benthem [2], who proved
that modal logic is the bisimulation invariant fragment of first-order logic. The notion was
later, but independently, introduced in a process theory setting by Park [17]. At the time
of writing we do not know who first took a game-theoretical perspective on the semantics of
modal logic. The cover modality ∇ was introduced independently by Moss [13] and Janin &
Walukiewicz [7].

Readers who want to study modal logic in more detail are referred to Blackburn, de Rijke
and Venema [3] or Chagrov & Zakharyaschev [5].

Exercises

Exercise 1.1 Prove Theorem 1.18.

Exercise 1.2 Prove that the Hennessy-Milner theorem (Theorem 1.21) also holds if only one
of the two structures is finitely branching.

Exercise 1.3 (bisimilarity game) Consider the following version Bω(S, S′) of the bisimi-
larity game between two transition systems S and S′. Positions of this game are of the form
either (s, s′,∀, α), (s, s′,∃, α) or (Z,α), with s ∈ S, s′ ∈ S′, Z ⊆ S×S′ and α either a natural
number or ω. The admissible moves for ∃ and ∀ are displayed in the following table:

Position Player Admissible moves

(s, s′, ∀, α) ∀ {(s, s′, ∃, β) | β < α}
(s, s′, ∃, α) ∃ {(Z,α) | Z is a local bisimulation for s and s′ }
(Z,α) ∀ {(s, s′, ∀, α) | (s, s′) ∈ Z}

Note that all matches of this game have finite length.
We write S, s ↔α S′, s′ to denote that ∃ has a winning strategy in the game Bω(S, S′)

starting at position (s, s′, ∀, α). It is not hard to see that S, s↔ω S′, s′ iff S, s↔k S′, s′ for all
k < ω.

(a) Give concrete examples such that S, s↔ω S′, s′ but not S, s↔ S′, s′.
(Hint: think of two modally equivalent but not bisimilar states.)

(b) Let k ≥ 0 be a natural number. Prove that, for all S, s and S′, s′:

S, s↔k S′, s′ ⇒ S, s ≡k S′, s′.

Here ≡k denotes the modal equivalence relation with respect to formulas of modal depth
at most k. Here we use a slightly nonstandard notion of modal depth, defined as follows:
d(⊥), d(>) := 0, d(p), d(p) := 1 for p ∈ P, d(ϕ ∧ ψ), d(ϕ ∨ ψ) := max(d(ϕ), d(ψ)), and
d(3ϕ), d(2ϕ) := 1 + d(ϕ).

Lectures on the modal µ-calculus 1-15

(c) Let S and S′ be finitely branching transition systems. Prove directly (i.e., without using
part (b)) that (i) ⇒ (ii), for all s ∈ S and s′ ∈ S′:

(i) S, s↔ω S′, s′

(ii) S, s↔ S′, s′.

(d)∗ Does the implication in (c) hold in the case that only one of the two transition systems
is finitely branching?

Exercise 1.4 Let Φ and Θ be finite sets of formulas. Prove that

∇
(
Φ ∪ {

∨
Θ}
)
≡
∨{
∇
(
Φ ∪Θ′

)
| ∅ 6= Θ′ ⊆ Θ

}
.

Exercise 1.5 Prove Theorem 1.39.

2 The modal µ-calculus: basics

This chapter is a first introduction to the modal µ-calculus. We define the language, discuss
some syntactic issues, and then proceed to its game-theoretic semantics, in two variants.
As a first result, we prove that the modal µ-calculus is bisimulation invariant, and has a
strong, ‘bounded’ version of the tree model property. We then provide some basic information
concerning the main complexity measures of µ-calculus formulas: size and alternation depth,
and we discuss some further syntactic issues.

To introduce the formalism, we start with a simple example.

Example 2.1 Consider the formula 〈d∗〉p from propositional dynamic logic. By definition,
this formula holds at those points in an LTS S from which there is a finite Rd-path, of
unspecified length, leading to a state where p is true.

We leave it for the reader to prove that

S, s 〈d∗〉p↔ (p ∨ 〈d〉〈d∗〉p)

for any pointed transition system (S, s) (here we write 〈d〉 rather than 3d). Informally, one
might say that 〈d∗〉p is a fixed point of the formula p ∨ 〈d〉x, or a solution of the ‘equation’

x ≡ p ∨ 〈d〉x. (5)

One may show, however, that 〈d∗〉p is not the only fixpoint of (5). If we let ∞d denote
a formula that is true at those states of a transition system from which an infinite d-path
emanates, then the formula 〈d∗〉p ∨∞d is another fixed point of (5).

In fact, one may prove that the two mentioned fixpoints are the smallest and largest
possible solutions of (5), respectively. �

The modal µ-calculus allows one to explicitly refer to such smallest and largest solutions.
For instance, the smallest and largest solution of the ‘equation’ (5) will be written as µx.p ∨
〈d〉x and νx.p∨〈d〉x, respectively. The basic idea underlying the modal µ-calculus is to enrich
the language of basic modal logic with two explicit fixpoint operators, µ and ν, respectively.
Syntacticlly, these operators behave like quantifiers in first-order logic, in the sense that
the application of a fixpoint operator µx to a formula ϕ binds all (free) occurrences of the
proposition letter x in ϕ. The word ‘fixpoint’ indicates that semantically, the formulas µxϕ
and νxϕ are both ‘solutions’ to the ‘equation’ x ≡ ϕ(x), in the sense that, writing ≡ for
semantic equivalence, we have both

µxϕ ≡ ϕ[µxϕ/x]
and νxϕ ≡ ϕ[νxϕ/x],

(6)

where [µx.ϕ/x] denotes the operation of substituting µxϕ for every free occurrence of x. In
other words, both µxϕ and νxϕ are equivalent to their respective unfoldings, ϕ[µxϕ/x] and
ϕ[νxϕ/x].

To arrive at this semantics of modal fixpoint formulas one can take two roads. In Chapter 3
we will introduce the algebraic semantics of µxϕ and νxϕ in an LTS S, in terms of the

2-2 The modal µ-calculus

least and greatest fixpoint, respectively, of some algebraically defined meaning function. For
this purpose, we will interpret the formula ϕ(x) as an operation ϕS

x on the power set of
(the state space of) S, and we have to prove that this operation indeed has a least and
a greatest fixpoint. This formal definition of the semantics of the modal µ-calculus may
be mathematically transparent, but it is of little help when it comes to unravelling and
understanding the actual meaning of individual formulas. In practice, it is much easier to
work with the evaluation games that we will introduce in this chapter.

This framework builds on the game-theoretical semantics for ordinary modal logic as
described in Subsection 1.2, extending it with features for the fixpoint operators and for the
bound variables of fixpoint formulas (such as x in the formula µx.p∨3x). The key difference
lies in the fact that when a match of the subformula-based evaluation game reaches a position
of the form (x, s), with x a bound variable, then an equation such as (5) is used to unfold the
variable x into its associated formula δ (in the example, the formula p∨3x), so that the next
position in the game is the pair (δ, s). The alternative version of the evaluation game also
crucially involves unfolding: here, for instance, a position of the form (µxϕ, s) is replaced by
the pair (ϕ[µxϕ/x], s) we obtain by unfolding the fixpoint formula µxϕ.

As a consequence, the flavour of these games is remarkably different from the evaluation
games we met before. Recall that in evaluation matches for basic modal formulas, the formula
is broken down, step by step, until we can declare a winner of the match. From this it follows
that the length of such a match is bounded by the length of the formula. Evaluation matches
for fixpoint formulas, on the other hand, can last forever, if some fixpoint variables or fixpoint
formulas are unfolded infinitely often. Hence, the game-theoretic semantics for fixpoint logics
takes us to the area of infinite games. In this Chapter we keep our treatment of infinite games
informal, in Chapter 5 the reader can find precise definitions of all notions that we introduce
here.

2.1 Basic syntax

Formulas

As announced already in the previous chapter, in the case of fixpoint formulas we will usually
work with formulas in positive normal form in which the only admissible occurrences of the
negation symbol is in front of atomic formulas.

Definition 2.2 Given a set D of atomic actions, we define the collection µMLD of (poly-)modal
fixpoint formulas as follows:

ϕ ::= > | ⊥ | p | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3dϕ | 2dϕ | µxϕ | νxϕ

where p and x are propositional variables, and d ∈ D. There is a restriction on the formation
of the formulas µxϕ and νxϕ, namely, that the formula ϕ is positive in x. That is, all
occurrences of x in ϕ are positive, or, phrasing it yet differently, no occurrence of x in ϕ may
be in the form of the negative literal x.

In case the set D of atomic actions is a singleton, we will simply speak of the modal
µ-calculus, notation: µML.

Lectures on the modal µ-calculus 2-3

The syntactic combinations µx and νx are called the least and greatest fixpoint operators,
respectively. We use the symbols η and λ to denote either µ or ν, and we define µ := ν and
ν := µ. �

A formula of the form ηxϕ is called a fixpoint formula, and, more specifically, a µ-formula
if η = µ and a ν-formula if η = ν. Furthermore, conjunctions and disjunctions will sometimes
be called boolean µML-formulas, and formulas of the form 3dϕ or 2d will sometimes be called
modal.

Convention 2.3 In order to increase readability by reducing the number of brackets, we
adopt some standard scope conventions. We let the unary modal connectives, 3 and 2, bind
stronger than the binary propositional connectives ∧, ∨ and →, and use associativity to the
left for the connectives ∧ and ∨. As an example, we will abbreviate the formula (3p ∧ q) as
3p ∧ q.

Furthermore, we use ‘dot notation’ to indicate that the fixpoint operators preceding the
dot have maximal scope. For instance, µp.3p ∧ q denotes the formula µp (3p ∧ q), and not
the formula ((µp3p) ∧ q). As a final example, µx.p ∨ 2x ∨ y ∨ νy.q ∧ 2(x ∨ y) stands for

µx
((

(p ∨2x) ∨ y
)
∨ νy (q ∧2(x ∨ y))

)
.

Remark 2.4 An alternative definition of the language of the modal µ-calculus makes a dis-
tinction between propositional variables and proposition letters. Formulas are now defined as
follows:

ϕ ::= > | ⊥ | p | p | x | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3dϕ | 2dϕ | µxϕ | νxϕ

where p is a proposition letter, x a propositional variable, and d is an atomic action. In this
framework, only propositional variables can be bound. �

Length and syntax tree of a formula

There are various ways to measure a µ-calculus formula. The most basic measure of a formula
is its length, which basically corresponds to its number of symbols.

Definition 2.5 Given a µ-calculus formula ξ, we define its length |ξ|` inductively as follows:

|ϕ|` := 1 if ϕ is atomic
|ϕ0 ~ ϕ1|` := 1 + |ϕ0|` + |ϕ1|` where ~ ∈ {∧,∨}
|♥ϕ|` := 1 + |ϕ|` where ♥ ∈ {3,2}
|ηx.ϕ|` := 1 + |ϕ|` where η ∈ {µ, ν}

�

We assume that the reader is familiar with the concept of the syntax tree or construction
tree Tξ of a formula ξ. We will not give a formal definition of this structure, but confine
ourselves to an example: in Figure 2.1 we display the syntax tree of the µ-calculus formula
µx.(p∨3x)∨ νy.(q ∧2(x∨ y)). Note that the length of a formula corresponds to the number
of nodes of its syntax tree, and that an occurrence of a certain symbol in a formula may be
associated with some node in the formula’s syntax tree that is labelled with that symbol;
occurrences of literals correspond to leaves of the tree.

2-4 The modal µ-calculus

µx

∨

νy

∧

2

∨

yx

q

∨

3

x

p

Figure 1: A syntax tree

Subformulas and free/bound variables

The concepts of subformula and proper subformula are extended from basic modal logic to
the modal µ-calculus in the obvious way.

Definition 2.6 We define the set Sf 0(ξ) of direct subformulas of a formula ξ ∈ µML via the
following case distinction:

Sf 0(ξ) := ∅ if ξ ∈ At(P)
Sf 0(ξ0 ~ ξ1) := {ξ0, ξ1} where ~ ∈ {∧,∨}
Sf 0(♥ξ0) := {ξ0} where ♥ ∈ {3,2}
Sf 0(ηx.ξ0) := {ξ0} where η ∈ {µ, ν},

and we write ϕ /0 ξ if ϕ ∈ Sf 0(ξ).

For any formula ξ ∈ µML, Sf (ξ) is the least set of formulas which contains ξ and is closed
under taking direct subformulas. Elements of the set Sf (ξ) are called subformulas of ξ, and
we write ϕ P ξ (ϕ / ψ) if ϕ is a subformula (proper subformula, respectively) of ξ.

The (subformula) dag of a formula ξ is defined as the directed acyclic graph (Sf (ξ),�0),
where �0 is the converse of the direct subformula relation /0. �

I Give an example comparing the syntax tree of a formula to its subformula dag.

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order logic
in the way they bind variables.

Lectures on the modal µ-calculus 2-5

Definition 2.7 Fix a formula ϕ. The sets FV (ϕ) and BV (ϕ) of free and bound variables of
ϕ are defined by the following induction on ϕ:

FV (⊥) := ∅ BV (⊥) := ∅
FV (>) := ∅ BV (>) := ∅
FV (p) := {p} BV (p) := ∅
FV (p) := {p} BV (p) := ∅
FV (ϕ ∨ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∨ ψ) := BV (ϕ) ∪ BV (ψ)
FV (ϕ ∧ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∧ ψ) := BV (ϕ) ∪ BV (ψ)
FV (3dϕ) := FV (ϕ) BV (3dϕ) := BV (ϕ)
FV (2dϕ) := FV (ϕ) BV (2dϕ) := BV (ϕ)
FV (ηx.ϕ) := FV (ϕ) \ {x} BV (ηx.ϕ) := BV (ϕ) ∪ {x}

For a finite set of propositional variables P, we let µMLD(P) denote the set of µMLD-formulas
ϕ of which all free variables belong to P. �

Formulas like x∨µx.((p∨x)∧2νx.3x) may be well formed, but in practice they are very
hard to read and to work with. In the sequel we will often work with formulas in which every
bound variable uniquely determines a subformula where it is bound, and almost exclusively
with formulas in which no variable has both free and bound occurrences in ϕ.

Definition 2.8 A formula ϕ ∈ µMLD is tidy if FV (ϕ)∩BV (ϕ) = ∅, and clean if in addition
with every bound variable x of ϕ we may associate a unique subformula of the form ηx.δ. In
the latter case we let ϕx = ηxx.δx denote this unique subformula. �

Convention 2.9 As a notational convention, we will use the letters p, q, r, . . . and x, y, z, . . .
to denote, respectively, the free and the bound propositional variables of a µMLD-formula.
This convention can be no more than a guideline, since the division between bound and free
variables may not be the same for a formula and its subformulas. For instance, the variable
x is bound in µx.p ∨3x, but free in its subformula p ∨3x.

Remark 2.10 In the alternative definition of the language of the modal µ-calculus as dis-
cussed in Remark 2.4, just like in first-order logic one makes a difference between (open)
formulas (which may contain free variables) and sentences (which may not). Observe that
the sentences correspond to the tidy formulas in our framework. For instance, µx (p ∨ 3x)
is a sentence, µx (y ∨ 3x) is an open formula, and µp (x ∨ 3p) is not a well-formed formula
(assuming that p is a proposition letter, and x is a variable). �

Substitution

The syntactic operation of substitution is ubiquitous in any account of the modal µ-calculus,
first of all because it features in the basic operation of unfolding a fixpoint formula. As
usual in the context of a formal language featuring operators that bind variables, the precise
definition of a substitution operation needs some care. In particular, we need to protect the
substitution operation from variable capture.

2-6 The modal µ-calculus

Example 2.11 To give a concrete example, suppose that we would naively define a sub-
stitution operation ψ/x by defining ϕ[ψ/x] to be the formula we obtain from the formula
ϕ by replacing every free occurrences of x with the formula ψ. Now consider the formula
ϕ(q) = µp.q ∨3p expressing the reachability of a q-state in finitely many steps. If we substi-
tute p for q in ϕ, we would expect the resulting formula to express the reachability of a p-state
in finitely many steps, but the formula we obtain is ϕ[p/q] = µp.p∨3p, which says something
rather different (in fact, it happens to be equivalent to ⊥). Even worse, the substitution [p/q]
would produce a syntactic string ϕ[p/q] = µp.p∨3p which is not even a well-formed formula.
�

To avoid such anomalies, for the time being we shall only consider substitutions ξ/x
applied to formulas where ξ is free for x.

Definition 2.12 Let ξ and x be respectively a modal µ-calculus formula and a propositional
variable. We define what it means for ξ to be free for x in a formula ϕ by the following
induction on the complexity of ϕ:

- if ϕ is an atomic formula then ξ is free for x in ϕ, unless ϕ = x1;

- ξ is free for x in ϕ0 ~ ϕ1 if it is free for x in both ϕ0 and ϕ1;

- ξ is free for x in ♥ψ if it is free for x in ψ;

- ξ is free for x in ηy ψ if x 6∈ FV (ηy ψ) or if y 6∈ FV (ξ) and ξ is free for x in ψ. �

Informally, ξ is free for x in ϕ if ϕ is positive in x and no free variable in ξ gets bound,
after substitution, by a fixpoint operator in ϕ. A special case of this, that we shall encounter
frequently, is the following.

Proposition 2.13 Let ϕ, ξ and x be respectively two modal µ-calculus formulas and a propo-
sitional variable, such that FV (ξ) ∩ BV (ϕ) ⊆ {x}. Then ξ is free for x in ϕ.

Definition 2.14 Let {ξz | z ∈ Z} be a set of modal µ-calculus formulas, indexed by a set of
variables Z, let ϕ ∈ µML be positive in each z ∈ Z, and assume that each ξz is free for z in ϕ.
We inductively define the simultaneous substitution [ξz/z | z ∈ Z] as the following operation
on µML:

ϕ[ξz/z | z ∈ Z] :=

{
ξz if ϕ = z ∈ Z
ϕ if ϕ is atomic but ϕ 6∈ Z

(♥ψ)[ξz/z | z ∈ Z] := ♥ψ[ξz/z | z ∈ Z]

(ϕ0 ~ ϕ1)[ξz/z | z ∈ Z] := ϕ0[ξz/z | z ∈ Z]~ ϕ1[ξz/z | z ∈ Z]

(ηx.ψ)[ξz/z | z ∈ Z] := ηx.ψ[ξz/z | z ∈ Z \ {x}]

In case Z is a singleton, say Z = {z}, we will simply write ϕ[ξz/z], or ϕ(ξ) if z is understood.
�

1Strictly speaking, this condition is not needed. In particular, as a separate atomic case of our inductive
definition, we could define the outcome of the substitution p[ψ/p] to be the negation of the formula ψ (suitably
defined). However, we will only need to look at substitutions ϕ[ψ/z] where we happen to know that ϕ is
positive in z. As a result, our simplified definition does not impose a real restriction.

Lectures on the modal µ-calculus 2-7

I Add some examples

Remark 2.15 In case ψ is not free for some z ∈ Z in ξ, we take a standard approach
using alphabetical variants. Roughly, two formulas are alphabetical variants if we can obtain
one from the other by renaming bound variables. We then define a correct version of the
substitution ξ[ψz/z | z ∈ Z] as follows: first we take some canonically chosen alphabetical
variant ξ′ of ξ such that each ψz is free for z in ξ′, and then we set

ξ[ψz/z | z ∈ Z] := ξ′[ψz/z | z ∈ Z].

However, in almost all situations that we will encounter we will only need perform sub-
stitutions that are ‘safe’ in the sense that the substituted formula is free for the variable it
replaces. This means that generally we may avoid taking alphabetical variants. Situations
where this is not the case will be explicitly marked. The reason for taking such care is that
the operation of taking alphabetical variants is not completely harmless when it comes to size
issues. We will come back to this matter in more detail later. � •

Unfolding

The reason that the modal µ-calculus, and related formalisms, are called fixpoint logics is
that, for η = µ/ν, the meaning of the formula ηx.χ in a model S is given as the least/greatest
fixpoint of the semantic map expressing the dependence of the meaning of χ on (the meaning
of) the variable x. As a consequence, the following equivalence lies at the heart of semantics
of µML:

ηx.χ ≡ χ[ηx.χ/x] (7)

In words: every formula is equivalent to its unfolding.

Definition 2.16 Given a formula ηx.χ ∈ µML, we call the formula unf(ξ) := χ[ηx.χ/x] its
unfolding. �

Remark 2.17 Unfolding is the central operation in taking the closure of a formula that we are
about to define. Unfortunately, the collection of clean formulas is not closed under unfolding
(unless we take alphabetical variants). Consider for instance the formula ϕ(p) = νq.3q ∧ p,
then we see that the formula µp.ϕ is clean, but its unfolding ϕ[µp.ϕ/p] = νq.3q∧µp νq.3q∧p
is not. Furthermore, our earlier observation that the naive version of substitution may produce
‘formulas’ that are not well formed applies here as well. For instance, with χ denoting the
formula p ∧ νp.2(x ∨ p), naively unfolding the (untidy) formula µx.χ would produce the
ungrammatical p ∧ νp.2

(
(µx.p ∧ νp.2(x ∨ p)) ∨ p

)
. �

Fortunately, the condition of tidyness guarantees that we may calculate unfoldings without
moving to alphabetical variants, since we can prove that the formula ηx.χ is free for x in χ,
whenever ηx.χ is tidy. In addition, tidyness is preserved under taking unfoldings.

Proposition 2.18 Let ηx.χ ∈ µML be a tidy formula. Then
1) ηx.χ is free for x in χ;

2-8 The modal µ-calculus

2) χ[ηx.χ/x] is tidy as well.

Proof. For part 1), take a variable y ∈ FV (ηx.χ). Then obviously y is distinct from x,
while y 6∈ BV (ηx.χ) by tidyness. Clearly then we find y 6∈ BV (χ); in other words, χ has no
subformula of the form λy.ψ. Hence it trivially follows that ηx.χ is free for x in χ.

Part 2) is immediate by the following identities:

FV (χ[ηx.χ/x]) = (FV (χ) \ {x}) ∪ FV (ηx.χ) = FV (ηx.χ)
BV (χ[ηx.χ/x]) = BV (χ) ∪ BV (ηx.χ) = BV (ηx.χ)

which can easily be proved. qed

Guardedness

We continue our discussion of basic syntactic definitions with the notion of guardedness, which
will become important later on.

I A bit more to be said here.

Definition 2.19 A variable x is guarded in a µMLD-formula ϕ if every free occurrence of x in
ϕ is in the scope of a modal operator. A formula ξ ∈ µMLD is guarded if for every subformula
of ξ of the form ηx.δ, x is guarded in δ. �

In the next chapter we will prove that every formula can be effectively rewritten into an
equivalent guarded formula.

2.2 The evaluation game based on subformulas

For a definition of the evaluation game of the modal µ-calculus, fix a clean formula ξ and an
LTS S. Basically, the game E(ξ,S) for ξ a fixpoint formula is defined in the same way as for
plain modal logic formulas.

Definition 2.20 Given a clean modal µ-calculus formula ξ and a transition system S, we
define the evaluation game or model checking game E(ξ,S) as a board game with players ∃
and ∀ moving a token around positions of the form (ϕ, s) ∈ Sf (ξ)×S. The rules, determining
the admissible moves from a given position, together with the player who is supposed to make
this move, are given in Table 3.

As before, E(ξ,S)@(ξ, s) denotes the instantiation of this game where the starting position
is fixed as (ξ, s). �

One might expect that the main difference with the evaluation game for basic modal for-
mulas would involve the new formula constructors of the µ-calculus: the fixpoint operators.
Perhaps surprisingly, we can deal with the fixpoint operators themselves in the most straight-
forward way possible, viz., by simply stripping them. That is, the successor of a position of
the form (ηx.δ, s) is simply obtained as the pair (δ, s). (In section 2.5 we present an alternative
version in which the formula ηx δ is replaced with its unfolding). Since this next position is
thus uniquely determined, the position (ηx.δ, s) will not be assigned to either of the players.

Lectures on the modal µ-calculus 2-9

The crucial difference lies in the treatment of the bound variables of a fixpoint formula ξ.
Previously, all positions of the form (p, s) would be final positions of the game, immediately
determining the winner of the match, and this is still the case here if p is a free variable.
However, at a position (x, s) with x bound, the fixpoint variable x gets unfolded ; this means
that the new position is given as (δx, s), where ηxx.δx is the unique subformula of ξ where
x is bound. Note that for this to be well defined, we need ξ to be clean. The disjointness
of FV (ξ) and BV (ξ) ensures that it is always clear whether a variable is to be unfolded or
not, and the fact that bound variables are bound by unique occurrences of fixpoint operators
guarantees that δx is uniquely determined. Finally, since in this case the next position is
also completely determined by the current one, positions of the form (x, s) with x bound are
assigned to neither of the players.

Position Player Admissible moves

(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ σd(s)}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ σd(s)}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∃ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∀ ∅
(ηxx.δx, s) − {(δx, s)}
(x, s), with x ∈ BV (ξ) − {(δx, s)}

Table 3: Evaluation game for modal fixpoint logic

Example 2.21 Let S = 〈S,R, V 〉 be the Kripke model based on the set S = {0, 1, 2}, with
R = {(0, 1), (1, 1), (1, 2), (2, 2)}, and V given by V (p) = {2}. Now let ξ be the formula
ηx.p ∨2x, and consider the game E(ξ,S) initialized at (ξ, 0).

The second position of any match of this game will be (p∨2x, 0) belonging to ∃. Assuming
that she wants to win, she chooses the disjunct 2x since otherwise p being false at 0 would
mean an immediate loss for her. Now the position (2x, 0) belongs to ∀ and he will make the
only move allowed to him, choosing (x, 1) as the next position. Here an automatic move is
made, unfolding the variable x, and thus changing the position to (p∨2x, 1). And as before,
∃ will choose the right disjunct: (2x, 1).

At (2x, 1), ∀ does have a choice. Choosing (x, 2), however, would mean that ∃ wins the
match since p being true at 2 enables her to finally choose the first disjunct of the formula
p ∨2x. So ∀ chooses (x, 1), a position already visited by the match before.

This means that these strategies force the match to be infinite, with the variable x un-
folding infinitely often at positions of the form (x, 1), and the match taking the following

2-10 The modal µ-calculus

form:

(ξ, 0)(p ∨2x, 0)(2x, 0)(x, 1)(p ∨2x, 1)(2x, 1)(x, 1)(p ∨2x, 1) . . .

So who is declared to be the winner of this match? This is where the difference between
the two fixpoint operators shows up. In case η = µ, the above infinite match is lost by ∃
since the fixpoint variable that is unfolded infinitely often is a µ-variable, and µ-variables are
to be unfolded only finitely often. In case η = ν, the variable unfolded infinitely often is a
ν-variable, and this is unproblematic: ∃ wins the match. �

The above example shows the principle of unfolding at work. Its effect is that matches
may now be of infinite length since formulas are no longer deconstructed at every move of
the game. Nevertheless, as we will see, it will still be very useful to declare a winner of such
an infinite game. Here we arrive at one of the key ideas underlying the semantics of fixpoint
formulas, which in a slogan can be formulated as follows:

ν means unfolding, µ means finite unfolding.

Giving a more detailed interpretation to this slogan, in case of a unique variable that is
unfolded infinitely often during a match π, we will declare ∃ to be the winner of π if this
variable is a ν-variable, and ∀ in case we are dealing with a µ-variable. But what happens in
case that various variables are unfolded infinitely often?

Definition 2.22 Let ξ be a clean µMLD-formula, and S a labelled transition system. A match
of the game E(ξ,S) is a (finite or infinite) sequence of positions

π = (ϕi, si)i<κ

(where κ is either a natural number or ω) which is in accordance with the rules of the
evaluation game — that is, π is a path through the game graph given by the admissibility
relation of Table 3. A full match is either an infinite match, or a finite match in which the
player responsible for the last position got stuck. In practice we will always refer to full
matches simply as matches. A match that is not full is called partial.

Given an infinite match π, we let Unf∞(π) ⊆ BV (ξ) denote the set of variables that are
unfolded infinitely often during π. �

As we will see now, for any infinite match π of the evaluation game, the set Unf∞(π)
contains a unique variable that ranks higher than all the others in the following order.

Definition 2.23 Given a clean formula ξ, we define the unfolding order Pξ on the set BV (ξ)
by putting x Pξ y if δx P δy. If x Pξ y we say that y ranks higher than x. �

Proposition 2.24 Let ξ be a clean µMLD-formula, and S a labelled transition system. Then
for any infinite match π of the game E(ξ, S), the set Unf∞(π) has a highest ranking member,
in terms of the unfolding order Pξ.

Lectures on the modal µ-calculus 2-11

Proof. Since π is an infinite match, the set U := Unf∞(π) is not empty. Let y be an element
of U which is maximal (with respect to the ranking order Pξ) — such an element exists since
U is finite. We claim that

from some moment on, π only features subformulas of δy. (8)

To prove this, note that since y is Pξ-maximal in U , there must be a position in π such that
y is unfolded to δy, while no higher ranking variable z is unfolded at any later position in π.

But then a straightforward induction shows that all formulas featuring at later positions
must be subformulas of δy: the key case here is where z P δy unfolds to δz. Here we distinguish
two cases whether z ∈ FV (δy) or not; in the first case we use the claim below.

Claim 1 Let ϕ P ξ be such that z ∈ FV (ϕ) ∩ BV (ξ). Then ϕ P δz.

Proof of Claim Let `ϕ be the length of the shortest /0-path from ϕ to ξ. Then we prove
by induction on `ϕ that z ∈ FV (ϕ) implies ϕ P δz. The case where `ϕ = 0 holds vacuously
since here we have ϕ = ξ, and z is not free in ξ. In the inductive case we assume that `ϕ > 0,
and we consider a formula ψ P ξ of which ϕ is a direct subformula. We distinguish cases. If
ψ is not of the form ψ = λz.ϕ then we have z ∈ FV (ψ) so that by the inductive hypothesis
we have ϕ P ψ P δz. On the other hand, by cleanness of ξ, the formula ψ can only be of the
form ψ = λz.ϕ if λ = ηz and ϕ = δz, so in this case we also have ϕ P δz. J

Returning to the main argument, if z ∈ FV (δy) then we may infer from Claim 1 that
δy P δz; this means that y Pξ z, so that by the assumption of maximality we must have
y = z, so that δz is a subformula of δy indeed. On the other hand, if z 6∈ FV (δy) then it is
not hard to see that the cleannes of ξ implies that δz P δy. qed

Given this result, there is now a natural formulation of the winning conditions for infinite
matches of evaluation games.

Definition 2.25 Let ξ be a clean µMLD-formula. The winning conditions of the game E(ξ,S)
are given in Table 4. �

∃ wins π ∀ wins π

π is finite ∀ got stuck ∃ got stuck

π is infinite max(Unf∞(π)) is a ν-variable max(Unf∞(π)) is a µ-variable

Table 4: Winning conditions of E(ξ,S)

We can now formulate the game-theoretic semantics of the modal µ-calculus as follows.

Definition 2.26 Let ξ be a clean formula of the modal µ-calculus, and let S be a transition
system of the appropriate type. Then we say that ξ is (game-theoretically) satisfied at s,
notation: S, s g ξ if (ξ, s) ∈Win∃(E(ξ,S)). �

2-12 The modal µ-calculus

Remark 2.27 As mentioned we have kept this introduction to evaluation games for fixpoint
formulas rather informal, referring to Chapter 5 for a more rigorous discussion of infinite
games. Nevertheless, we want to mention already here that evaluation games, on the ground
of being so-called parity games, have two very useful properties that make them attractive
to work with. To start with, every evaluation game is determined in the sense that every
position is winning for exactly one of the two players. And second, one may show that winning
strategies for either player of an evaluation game, can always be assumed to be positional,
that is, do not depend on moves made earlier in the match, but only on the current position.
Combining this, evaluation games enjoy positional determinacy ; that is, every position (ϕ, s)
is winning for exactly one of the two players, and each player Π ∈ {∃,∀} has a positional
strategy fΠ which is winning for the game E(ξ,S)@(ϕ, s) for every position (ϕ, s) that is
winning for Π. �

Remark 2.28 Observe that we have defined the game-theoretic semantics for clean formula
only. The reason for this should be obvious: at any position (ϕ, s) in the evaluation game
it should be unequivocally clear what the admissible moves are, and in the case where ϕ
is a (positive) literal this is only guaranteed if the ambient formula is clean. Consider for
example the formula ξ = 3p ∧ (µp.q ∨3p) ∧ νp.23p, which has three occurrences of each of
the subformulas 3p and p. It should be obvious that we cannot define an adequate evaluation
game for this formula based on the set Sf (ξ)× S as positions (where S is the set of points in
the Kripke model under consideration), since there is no reasonable definition of a legitimate
move at a position of the form (p, s).

In the next section we define an alternative version of the evaluation game which works
for the wider class of tidy formulas. It is certainly possible to extend this definition to
arbitrary fixpoint formulas; a straightforward approach would be to involve the construction
tree of a non-clean formula ξ, and redefine a position of the evaluation game E(ξ,S) to be
a pair, consisting of a node in this construction tree and a point in the Kripke structure.
Alternatively, one may work with a clean alphabetical variant of the formula ξ; once we have
given the algebraic semantics for arbitrary formulas, it is not hard to show that in that
semantics, alphabetic variants are equivalent. �

2.3 Examples

Example 2.29 As a first example, consider the formulas ηx.p∨x, and fix a Kripke model S.
Observe that any match of the evaluation game E(ηx.p∨x,S) starting at position (ηx.p∨x, s)
immediately proceeds to position (p∨ x, s), after which ∃ can make a choice. In case η is the
least fixpoint operator, η = µ, we claim that

S, s g µx.p ∨ x iff s ∈ V (p).

For the direction from right to left, assume that s ∈ V (p). Now, if ∃ chooses the disjunct
p at the position (s, p ∨ x), she wins the match because ∀ will get stuck at (s, p). Hence
s ∈Win∃(E(µx.p ∨ x,S)).

On the other hand, if s 6∈ V (p), then ∃ will lose if she chooses the disjunct p at position
(s, p ∨ x). So she must choose the disjunct x which then unfolds to p ∨ x so that ∃ is back

Lectures on the modal µ-calculus 2-13

at the position (s, p ∨ x). Thus if ∃ does not want to get stuck, her only way to survive is to
keep playing the position (s, x), thus causing the match to be infinite. But such a match is
won by ∀ since the only variable that gets unfolded infinitely often is a µ-variable. Hence in
this case we see that s 6∈Win∃(E(νx.p ∨ x,S)).

If on the other hand we consider the case where η = ν, then ∃ can win any match:

S, s g νx.p ∨ x.

It is easy to see that now, the strategy of always choosing the disjunct x at a position of the
form (s, p ∨ x) is winning. For, it forces all games to be infinite, and since the only fixpoint
variable that gets ever unfolded here is a ν-variable, all infinite matches are won by ∃.

Concluding, we see that µx.p ∨ x is equivalent to the formula p, and νx.p ∨ x, to the
formula >. �

Example 2.30 Now we turn to the formulas µx.3x and νx.3x. First consider how a match
for any of these formulas proceeds. The first two positions of such a match will be of the
form (ηx.3x, s)(3x, s), at which point it is ∃’s turn to make a move. Now she either is stuck
(in case the state s has no successor) or else the next two positions are (x, t)(3x, t) for some
successor t of s, chosen by ∃. Continuing this analysis, we see that there are two possibilities
for a match of the game E(ηx.3x,S):

1. the match is an infinite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1)(x, s2) . . .

corresponding to an infinite path s0Rs1Rs2R . . . through S.

2. the match is a finite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1) . . . (3x, sk)

corresponding to a finite path s0Rs1R . . . sk through S, where sk has no successors.

Note too that in either case it is only ∃ who has turns, and that her strategy corresponds to
choosing a path through S. From this it is easy to derive that
• µx.3x is equivalent to the formula ⊥,
• S, s g νx.3x iff there is an infinite path starting at s. �

I Until operator

The examples that we have considered so far involved only a single fixpoint operator. We
now look at an example containing both a least and a greatest fixpoint operator.

Example 2.31 Let ξ be the following formula:

ξ = νx.µy. (p ∧3x)︸ ︷︷ ︸
αp

∨ (p ∧3y)︸ ︷︷ ︸
αp

2-14 The modal µ-calculus

Then we claim that for any LTS S, and any state s in S:

S, s g ξ iff there is some path from s on which p is true infinitely often. (9)

To see this, first suppose that there is a path π = s0s1s2 . . . as described in the right hand
side of (9) and suppose that ∃ plays according to the following strategy:

(a) at a position (αp ∨ αp, t), choose (αp, t) if S, t g p and choose (αp, t) otherwise;

(b) at a position (3ϕ, t), distinguish cases:
- if the match so far has followed the path, with t = sk, choose (ϕ, sk+1);
- otherwise, choose an arbitrary successor (if possible).

We claim that this is a winning strategy for ∃ in the evaluation game initialized at (ξ, s).
Indeed, since ∃ always chooses the propositionally safe disjunct of αp ∨ αp, she forces ∀,
when faced with a position of the form (α±p, t) = (±p∧3z, t) to always choose the diamond
conjunct 3z, or lose immediately. In this way she guarantees to always get to positions of the
form (3z, si), and thus she can force the match to last infinitely long, following the infinite
path π. But why does she actually win this match? The point is that, whenever she chooses
αp, three positions later, x will be unfolded, and likewise with αp and y. Thus, p being true
infinitely often on π means that the ν-variable x gets unfolded infinitely often. And so, even
though the µ-variable y might get unfolded infinitely often as well, she wins the match since
x ranks higher than y anyway.

For the other direction, assume that S, s g ξ so that ∃ has a winning strategy in the
game E(ξ,S) initialized at (ξ, s). It should be clear that any winning strategy must follow (a)
above. So whenever ∀ faces a position (p ∧3z, t), p will be true, and likewise with positions
(p ∧ 3z, t). Now consider a match in which ∀ plays propositionally sound, that is, always
chooses the diamond conjunct of these positions. This match must be infinite since both
players will stay alive forever: ∀ because he can always choose a diamond conjunct, and ∃
because we assumed her strategy to be winning. But a second consequence of ∃ playing a
winning strategy, is that it cannot happen that y is unfolded infinitely often, while x is not.
So x is unfolded infinitely often, and as before, x only gets unfolded right after the match
passed a world where p is true. Thus the path chosen by ∃ must contain infinitely many states
where p holds. �

2.4 Bisimulation invariance and the bounded tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward to
prove that formulas of the modal µ-calculus are bisimulation invariant. From this it is im-
mediate that the modal µ–calculus has the tree model property. But in fact, we can use the
game semantics to do better than this, proving that every satisfiable modal fixpoint formula
is satisfied in a tree of which the branching degree is bounded by the size of the formula.

Theorem 2.32 (Bisimulation Invariance) Let ξ be a modal fixpoint formula with FV (ξ) ⊆
P, and let S and S′ be two labelled transition systems with points s and s′, respectively. If
S, s ↔P S′, s′, then

S, s g ξ iff S′, s′ g ξ.

Lectures on the modal µ-calculus 2-15

Proof. Assume that s ↔P s′ and that S, s g ξ, with FV (ξ) ⊆ P. We will show that
S′, s′ g ξ. By definition we may assume that ∃ has a winning strategy f in the evaluation
game E := E(ξ,S) initialized at (ξ, s); that is, given an f -guided partial E-match π ending in
a position for ∃, we let f(π) denote the next position as determined by f .

We need to provide her with a winning strategy in the game E ′ := E(ξ,S′)@(ξ, s′). She
obtains her strategy f ′ in E ′ from playing a shadow match of E , using the bisimilarity relation
to guide her choices.

To see how this works, let’s simply start with comparing the initial position (ξ, s′) of E ′
with its counterpart (ξ, s) of E . (From now on we will write s↔ s′ instead of s↔P s

′).

• In case ξ is a literal, it is easy to see that both (ξ, s) and (ξ, s′) are final positions. Also,
since f is assumed to be winning, ξ must be true at s, and so it must hold at s′ as well.
Hence, ∃ wins the match.

If ξ is not a literal, we distinguish cases.

• First suppose that ξ = ξ1∨ξ2. If f tells ∃ to choose disjunct ξi at (ξ, s), then she chooses
the same disjunct ξi at position (ξ, s′). If ξ = ξ1 ∧ ξ2, it is ∀ who moves. Suppose in E ′
he chooses ξi, making (ξi, s

′) the next position. We now consider in E the same move
of ∀, so that the next position in the shadow match is (ξi, s).

• A third possibility is that ξ = 3ψ. In order to make her move at (ξ, s′), ∃ first looks
at (ξ, s). Since f is a winning strategy, it indeed picks a successor t of s. Then because
s ↔ s′, there is a successor t′ of s′ such that t ↔ t′. This t′ is ∃’s move in E ′, so that
(ψ, t) and (ψ, t′) are the next positions in E and E ′, respectively.

• If ξ = 2ψ, we are dealing again with positions for ∀. Suppose in E ′ he chooses the
successor t′ of s′, so that the next position is (ψ, t′). (In case s′ has no successors, ∀
immediately loses, so that there is nothing left to prove.) Now again we turn to the
shadow match; by bisimilarity of s and s′ there is a successor t of s such that t ↔ t′.
So we may assume that ∀ moves the game token of E to position (ψ, t).

• Finally, if ξ = ηx δx then the next positions in E and E ′ are, respectively, (δx, s) and
(δx, s

′).

The crucial observation is that if ∃ does not win immediately, then at least she can
guarantee that the next positions in E and E ′ are of the form (ϕ, u) and (ϕ, u′) respectively,
with u ↔ u′, and such that the move in E is consistent with f . We may in fact show that
she can maintain this condition throughout the match, and it is not hard to see that she can
construct a winning strategy based on this.

Making this proof sketch a bit more precise, we introduce some terminology (anticipating
the formal treatment of games in Chapter 5). Generally we identify matches of a game with
certain sequences of positions in that game, and we say that a match π = p0p1 . . . pn is guided
by a strategy f for player Π ∈ {∃, ∀} if for every i < n such that position pi belongs to Π,
the next position pi+1 is indeed the position dictated by the strategy f . In the context of
this particular proof we say that an E ′-match π′ = (ϕ′0, s

′
0)(ϕ′1, s

′
1) . . . (ϕ′n, s

′
n) is linked to an

2-16 The modal µ-calculus

E-match π = (ϕ0, s0)(ϕ1, s1) . . . (ϕn, sn) (of the same length), if ϕ′i = ϕi and S′, s′i ↔ S, si
for all i with 0 ≤ i ≤ n. The key claim in the proof states that, for a E ′-match π′, if ∃ has
established such a bisimilarity link with an E-match that is f -guided, then she will either win
the E ′-game immediately, or else she can maintain the link during one further round of the
game.

Claim 1 Let π′ be a finite E ′-match, and assume that π′ is linked to some f -guided E-match
π. Then one of the following two cases apply.

1) both last(π′) and last(π) are positions for ∃, and ∃ can continue π′ with a legitimate
move (ϕ, t′) such that π′ · (ϕ, t′) is bisimilarity-linked to π · (ϕ, t), where (ϕ, t) is the move
dicated by f in π.

2) both last(π′) and last(π) are positions for ∀, and for every move (ϕ′, t) for ∀ in π′ there
is a legitimate move (ϕ, t) for ∀ in π such that π′ · (ϕ, t′) is bisimilarity-linked to π · (ϕ, t).

The proof of this Claim proceeds via an obvious adaptation of the case-by-case argument
just given for the initial positions of E ′ and E . Omitting the details, we move on to show that
based on Claim 1, ∃ has a winning strategy in E ′.

By a straightforward inductive argument we may provide ∃ with a strategy f ′ in E ′,
and show how to maintain, simultaneously, for every f ′-guided match π, an f -guided E-
match which is linked to π′. For the base case of this induction, simply observe that by
the assumption that S, s ↔ S′, s′, the initial positions of E ′ and E constitute linked (trivial)
matches. For the inductive case we consider an f ′-guided E ′-match π′, and inductively assume
that there is a bisimilarity-linked f -guided E-match π. Now distinguish cases:

• If last(π′) is a position for ∃, we use item 1) of Claim 1 to define her move (ϕ, t′); it
follows that π′ · (ϕ, t′) and π · (ϕ, t) are bisimilarity-linked (where (ϕ, t) is the move
dicated by f in π).

• On the other hand, in case last(π′) is a position for ∀, assume that he makes some move,
say, (ψ, t′); now we use item 2) of the claim to define a continuation π · (ψ, t) of π that
is bisimilarity-linked to π′ · (ψ, t′).

To see why the strategy f ′ of ∃ is winning for her, consider a full (i.e., finished) f ′-guided
match π′, and distinguish cases. If π′ is finite, this means that one of the players must be
stuck, and we have to show that this player must be ∀. But we just showed that there must
be an f -guided match π which is bisimilarity-linked to π′. It follows from the definiton of
linked matches that the final positions of π′ and π must be, respectively, of the form (ϕ, t′)
and (ϕ, t) for some formula ϕ and states t′, t such that S′, t′ ↔ S, t. From this it is not hard
to derive that the same player who got stuck in π′ also got stuck in π; and since π is guided
by ∃’s supposedly winning strategy f , this player must be ∀ indeed.

If π′ is infinite, say π′ = (ϕi, s
′
i)i<ω, the shadow E-match maintained by ∃ is infinite as

well. More precisely, the inductive argument given above reveals the existence of an infinite,
f -guided E-match π = (ϕi, si)i<ω such that S′, s′i ↔ S, si for all i < ω. The key observation,
however, is that the two sequences of formulas, in the E ′-match π′ and its E-shadow π,
respectively, are exactly the same. This means that also in the infinite case the winner of π′

is the winner of π, and since π is f -guided, this winner must be ∃. qed

Lectures on the modal µ-calculus 2-17

As an immediate corollary, we obtain the tree model property for the modal µ-calculus.

Theorem 2.33 (Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is satisfi-
able, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that ξ is
satisfiable at state s of the Kripke model S. Then by bisimulation invariance, ξ is satisfiable
at the root of the unravelling ~Ss of S around s, cf. Definition 1.23. This unravelling clearly is
a tree model. qed

For the next theorem, recall that the size of a formula is simply defined as the number of
its subformulas.

Theorem 2.34 (Bounded Tree Model Property) Let ξ be a modal fixpoint formula. If
ξ is satisfiable, then it is satisfiable at the root of a tree, of which the branching degree is
bounded by the size |ξ| of the formula.

Proof. Suppose that ξ is satisfiable. By the Bisimulation Invariance Theorem it follows that
ξ is satisfiable at the root r of some tree model T = 〈T,R, V 〉. So ∃ has a winning strategy
f in the game E@(ξ, r), where we abbreviate E := E(ξ,T). By the Positional Determinacy of
the evaluation game, we may assume that this strategy is positional — this will simplify our
argument a bit. We may thus represent this strategy as a map f that, among other things,
maps positions of the form (3ϕ, s) to positions of the form (ϕ, t) with Rst.

We will prune the tree T, keeping only the nodes that ∃ needs in order to win the match.
Formally, define subsets (Tn)n∈ω as follows:

T0 := {r},
Tn+1 := Tn ∪ {s | (ϕ, s) = f(3ϕ, t) for some t ∈ Tn and 3ϕ P ξ},
Tω :=

⋃
n∈ω Tn.

Let Tω be the subtree of T based on Tω. (Note that Tω is in general not a generated submodel
of T: not all successors of nodes in Tω need to belong to Tω.) From the construction it is
obvious that the branching degree of Tω is bounded by the size of ξ, because ξ has at most
|ξ| diamond subformulas.

We claim that Tω, r g ξ. To see why this is so, let E ′ := E(ξ,Tω) be the evaluation game
played on the pruned tree. It suffices to show that the strategy f ′, defined as the restriction
of f to positions of the game E ′, is winning for ∃ in the game starting at (ξ, r). Consider an
arbitrary E ′-match π = (ξ, r)(ϕ1, t1) . . . which is consistent with f ′. The key observation of
the proof is that π is also a match of E@(ξ, r), that is consistent with f . To see this, simply
observe that all moves of ∀ in π could have been made in the game on T as well, whereas by
construction, all f ′ moves of ∃ in E ′ are f moves in E .

Now by assumption, f is a winning strategy for ∃ in E , so she wins π in E . But then π is
winning as such, i.e., no matter whether we see it as a match in E or in E ′. In other words,
π is also winning as an E ′-match. And since π was an arbitrary E ′-match starting at (ξ, r),
this shows that f ′ is a winning strategy, as required. qed

2-18 The modal µ-calculus

2.5 The evaluation game based on the closure set

In this section we define an alternative version of the evaluation game for µ-calculus formulas,
in which the equivalence

ηxχ ≡ χ[ηxχ/x]

is exploited more directly than in the subformula game that we defined in section 2.2. The
idea in the closure game is that, at a position (ηxχ, s) the fixpoint formula will simply be
unfolded, yielding the pair (χ[ηxχ/x], s) as the (unique) next position. That is, the admissible
moves in the closure game are given in Table 5.

Position Player Admissible moves

(ϕ ∨ ψ, s) ∃ {(ϕ, s), (ψ, s)}
(ϕ ∧ ψ, s) ∀ {(ϕ, s), (ψ, s)}
(3ϕ, s) ∃ {(ϕ, t) | sRt}
(2ϕ, s) ∀ {(ϕ, t) | sRt}
(p, s) with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s) with p ∈ FV (ξ) and s /∈ V (p) ∃ ∅
(p, s) with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(p, s) with p ∈ FV (ξ) and s /∈ V (p) ∀ ∅
(ηx.ϕ, s) - {(ϕ[ηxϕ/x], s)}

Table 5: Positions and admissible moves in the closure evaluation game Ec(ξ,S)

In order to turn this table into a proper game, we need to introduce appropriate winning
conditions for the two players. For this purpose we introduce some terminology and notation,
and we make some observations. We start with the notion of a trace.

Traces and the closure game

Definition 2.35 Let →C be the binary relation between tidy µ-calculus formulas given by
the following exhaustive list:

1) (ϕ0 ~ ϕ1)→C ϕi, for any ϕ0, ϕ1 ∈ µML, ~ ∈ {∧,∨} and i ∈ {0, 1};
2) ♥ϕ→C ϕ, for any ϕ ∈ µML and ♥ ∈ {3,2});
3) ηx.ϕ→C ϕ[ηx.ϕ/x], for any ηx.ϕ ∈ µML, with η ∈ {µ, ν}.

We call a →C-path ψ0 →C ψ1 →C · · · →C ψn a (finite) trace; similarly, an infinite trace is a
sequence (ψi)i<ω such that ψi →C ψi+1 for all i < ω. �

Intuitively a trace is a sequence that corresponds to the formula part of a possible match
of the closure game. The closure of a formula consists of the formulas that can be encountered
in such a match.

Definition 2.36 We define the relation �C as the reflexive and transitive closure of →C ,
and define the closure of a tidy formula ξ as the set

Cl(ξ) := {ϕ | ξ �C ϕ}.

Lectures on the modal µ-calculus 2-19

Given a set of formulas Ψ, we put Cl(Ψ) :=
⋃
ξ∈Ψ Cl(ξ), and we call Ψ closed if Ψ = Cl(Ψ).

Formulas in the set Cl(ξ) are said to be derived from ξ. The closure graph of ξ is the directed
graph Cξ := (Cl(ξ),→C). �

In words, Cl(ξ) is the smallest set which contains ξ and is closed under direct boolean and
modal subformulas, and under unfoldings of fixpoint formulas. In terms of traces: a formula
χ belongs to the closure of a formula ξ iff there is a trace from ξ to χ. Furthermore, a trace
starting at ξ is nothing but a path in the closure graph starting at ξ.

Remark 2.37 The final example of Remark 2.17 shows that the closure of a non-tidy formula
may not even be defined — unless we work with alphabetical variants. We will come back to
this point later. �

The following example will be instructive for understanding the concept of closure, and
its relation with subformulas.

Example 2.38 Consider the following formulas:

ξ1 := µx1νx2µx3.
(
((x1 ∨ x2) ∨ x3) ∧2((x1 ∨ x2) ∨ x3)

)
ξ2 := νx2µx3.

(
((ξ1 ∨ x2) ∨ x3) ∧2((ξ1 ∨ x2) ∨ x3)

)
ξ3 := µx3.

(
((ξ1 ∨ ξ2) ∨ x3) ∧2((ξ1 ∨ ξ2) ∨ x3)

)
ξ4 :=

(
((ξ1 ∨ ξ2) ∨ ξ3) ∧2((ξ1 ∨ ξ2) ∨ ξ3)

)
α := (ξ1 ∨ ξ2) ∨ ξ3

β := ξ1 ∨ ξ2,

and let Φ be the set Φ := {ξ1, ξ2, ξ3, ξ4,2α, α, β}.
For i = 1, 2, 3, the formula ξi+1 is the unfolding of the formula ξi. Thus we find Cl(ξ1) = Φ;

in fact, we have Cl(ϕ) = Φ for every formula ϕ ∈ Φ. In Figure 2 we depict the closure graph
of ξ1.

ξ1start ξ2 ξ3 ξ4

α

2α

β

Figure 2: A closure graph

Observe that the formulas ξ1, ξ2, ξ3 and ξ4 are equivalent to one another, and hence also
to α. Note too that the formula ξ1 is the only clean formula in Φ, and that it is a subformula
of every formula in Cl(ξ1). �

2-20 The modal µ-calculus

The closure of ξ consists of the formulas that one may encounter in a match of the closure
game Ec(ξ,S), and, as a consequence of this, we will take Cl(ξ)× S as the set of positions in
this game. As we will see now, the key observation for defining the winning conditions of this
game is that every infinite trace can be identified as either a µ-trace or a ν-trace. This is in
some sense the analogon of Proposition 2.24.

Proposition 2.39 1) Let τ be a finite trace. Then there is a unique formula on τ which is
a subformula of every formula on τ .

2) Let τ be a infinite trace. Then there is a unique formula which appears infinitely often
on τ , and is a subformula of cofinitely many formulas on τ . This formula is always a fixpoint
formula.

Proof. The reader is asked to supply a proof of this Proposition in Exercise 2.9. qed

Definition 2.40 Let τ be an infinite trace. The formula ηxϕ which appear infinitely often
on τ and is a subformula of all formulas on τ is called the most significant formula of τ ,
notation: msf(τ). Depending on the nature of η we call τ either a µ-trace or a ν-trace.

For future reference we define some relations. We write ρ �ψ
C σ if there is a trace

ρ = χ0 →C χ1 →C · · · →C χn = σ such that ψ P χi, for every i ∈ [0, n]. We write ρ �η
C σ

(for η ∈ {µ, ν}) if we have ρ �ψ
C σ for some η-formula ψ, and ρ �o

C σ if ρ �ψ
C σ for some

formula ψ which is not a fixpoint formula. �•

The classification of infinite traces as either µ- or ν-traces enables us to complete the
definition of the closure game.

Definition 2.41 Let S = (S,R, V) be a Kripke model and let ξ be a tidy formula in µML.
We define the evaluation game Ec(ξ,S) as the game (G,E,Ω) of which the board consists of
the set Cl(ξ) × S, and the game graph (i.e., the partitioning of Cl(ξ) × S into positions for
the two players, together with the set E(z) of admissible moves at each position), is given in
Table 5.

The winner of an infinite match π = (ξn, sn)n<ω is ∃ if its left projection πL := (ξn)n<ω is
a ν-trace, and ∀ if it is a µ-trace. �

The closure operation

The closure operation is one of the most fundamental tools in the theory of the modal µ-
calculus, and in this subsection we discuss some of its properties, the most important being
Proposition 2.45 stating that the closure of a finite set is always finite.

We first gather some basic observations. To start with, while Example 2.38 clearly shows
that, while the unfolding of a clean formula will generally not be clean, tidyness is preserved.

Proposition 2.42 Let ξ ∈ µML be a tidy formula, and let ϕ be derived from ξ. Then

1) BV (ϕ) ⊆ BV (ξ) and FV (ϕ) ⊆ FV (ξ);
2) ϕ is tidy;

Lectures on the modal µ-calculus 2-21

3) if ψ is free for x in ξ and ξ[ψ/x] is tidy then ψ is also free for x in ϕ, and ϕ[ψ/x] is
tidy.

Proof. The proofs of the first two items proceed by a straightforward induction on the trace
ξ �C ϕ. For instance, for the preservation of tidyness it suffices to prove that χ is tidy if ♥χ
is so (where ♥ ∈ {3,2}), that χ0 and χ1 are tidy if χ0 ~ χ1 is so (where ~ ∈ {∧,∨}), and
that the unfolding of a tidy formula is tidy again. The proofs of the first two claims are easy,
and the third claim was stated in Proposition 2.18.

For part 3) we also reason by induction on the length of the trace τ : ξ �C ϕ. We focus
on the key inductive case where τ : ξ �C ξ

′ →C ϕ, and ξ′ is a fixpoint formula, say, ξ′ = ηy χ;
in this case we find ϕ = χ[ξ′/y]. The inductive hypothesis states that ψ is free for x in ξ′ and
that ξ′[ψ/x] is tidy. By definition of freeness we can make the following case distinction. If
x is not free in ξ′ then it is not free in χ[ξ′/x] either, which immediate implies that ψ is free
for x in χ[ξ′/x], and that ϕ[ψ/x] = χ[ξ′/x][ψ/x] = χ[ξ′/x], so that ϕ[ψ/x] is tidy by part 2).

In the remainder we focus on the case where y 6∈ FV (ψ) and ψ is free for x in χ. Clearly
it suffices to show that

ψ is free for x in ρ[ξ′/y], for every ρ P χ. (10)

We prove (10) by induction on ρ and only consider the key case, where ρ is a fixpoint formula,
say, ρ = λz ρ′. Then by the inner induction hypothesis we have that ψ is free for x in ρ′. Now
assume for contradiction that ψ is not free for x in ρ′; this can only be the case if z itself is
free in ψ. We leave it for the reader to verify that this implies that z has both free and bound
occurrences in ξ′[ψ/x], contradicting the tidyness of ξ′. qed

Second, the following proposition states that Cl is indeed a closure operation. We leave
the proof of this proposition as an exercise for the reader.

Proposition 2.43 Cl is a closure operation on the collection of tidy formulas:

1) Φ ⊆ Cl(Φ);
2) Cl is monotone: Φ ⊆ Ψ implies Cl(Φ) ⊆ Cl(Ψ);
3) Cl(Cl(Φ)) ⊆ Cl(Φ).

The proposition below will prove to be very useful. It details how the closure map interacts
with various connectives and formula constructors of the µ-calculus.

Proposition 2.44 Let ξ be a tidy formula. Then the following hold.

1) Let ` P ξ be a literal occurring in ξ, and assume that ` 6∈ BV (ξ). Then ` ∈ Cl(ξ).
2) If ξ = ♥χ, then χ is tidy and Cl(ξ) = {♥χ} ∪ Cl(χ), where ♥ ∈ {3,2}.
3) If ξ = χ0 ~ χ1 then both χi are tidy and Cl(ξ) = {χ0 ~ χ1} ∪ Cl(χ0) ∪ Cl(χ1), where
~ ∈ {∧,∨}.

4) If ξ = χ[ψ/x], χ is tidy, x ∈ FV (χ) and ψ is free for x in χ, then ψ is tidy and

Cl(ξ) = {ϕ[ψ/x] | ϕ ∈ Cl(χ)} ∪ Cl(ψ).

2-22 The modal µ-calculus

5) Let ξ = ηx.χ, where η ∈ {µ, ν}; assume that x ∈ FV (χ), and let x∗ be some fresh
variable. Then χ[x∗/x] is tidy and

Cl(ξ) = {ϕ[ηx.χ/x∗] | ϕ ∈ Cl(χ[x∗/x])}. (11)

Before we turn to the proof of Proposition 2.44, we briefly comment on the formulation
of part 5). Note that if ξ is of the form ξ = ηxχ, then χ is not necessarily tidy, so that Cl(χ)
may not be defined. For this reason we use a fresh propositional variable x∗. However, in
case χ is tidy, (11) simplifies to

Cl(ξ) = {ϕ[ηx.χ/x] | ϕ ∈ Cl(χ)}. (12)

Proof. We prove the first and fourth claim of the proposition, leaving the other parts to the
reader. The second and third claim are easy to prove, and part 5) is a fairly direct consequence
of part 4).

For the first item, define the height of ` in ξ as the length of the shortest chain of the
form ϕ0 /0 ϕ1 /0 · · · /0 ϕn such that ϕ0 = `, ϕn = ξ, and, in case ` is a propositional variable
p, no formula ϕi is of the form ηpψ. It is then straightforward to prove that ` ∈ Cl(ξ) by
induction on the height of ` in ξ. We leave the details for the reader.

For the proof of 4), assume that x ∈ FV (χ) and that ψ is free for x in χ. By Proposi-
tion 2.42(3), the formula ψ is free for x in every ϕ ∈ Cl(χ). To prove the inclusion ⊆ it suffices
to show that the set {ϕ[ψ/x] | ϕ ∈ Cl(χ)} ∪Cl(ψ)} has the required closure properties. This
is easily verified, and so we omit the details.

For the opposite inclusion, we first show that

ϕ[ψ/x] ∈ Cl(χ[ψ/x]), for all ϕ ∈ Cl(χ), (13)

and we prove this by induction on the trace from ξ to ϕ. It is immediate by the definitions
that χ[ψ/x] ∈ Cl(χ[ψ/x]), which takes care of the base case of this induction.

In the inductive step we distinguish three cases. First, assume that ϕ ∈ Cl(χ) because the
formula ♥ϕ ∈ Cl(χ), with ♥ ∈ {3,2}. Then by the inductive hypothesis we find ♥ϕ[ψ/x] =
(♥ϕ)[ψ/x] ∈ Cl(χ[ψ/x]); but then we may immediately conclude that ϕ[ψ/x] ∈ Cl(χ[ψ/x])
as well. The second case, where we assume that ϕ ∈ Cl(χ) because there is some formula
ϕ~ ϕ′ or ϕ′ ~ ϕ in Cl(χ) (with ~ ∈ {∧,∨}), is dealt with in a similar way.

In the third case, we assume that ϕ ∈ Cl(χ) is of the form ϕ = ρ[λy.ρ/y], with λ ∈ {µ, ν}
and λy.ρ ∈ Cl(χ). Then inductively we may assume that (λy.ρ)[ψ/x] ∈ Cl(χ[ψ/x]). Now we
make a case distinction: if x = y we find that (λy.ρ)[ψ/x] = λy.ρ, while at the same time we
have ϕ[ψ/x] = ρ[λy.ρ/y][ψ/x] = ρ[λy.ρ/y], so that it follows by the closure properties that
ϕ[ψ/x] ∈ Cl(χ[ψ/x]) indeed. If, on the other hand, x and y are distinct variables, then we
find (λy.ρ)[ψ/x] = λy.ρ[ψ/x], and so it follows by the closure properties that the formula
(ρ[ψ/x])

[
λy.ρ[ψ/x]/y

]
belongs to Cl(χ[ψ/x]). But since ψ is free for x in χ, the variable y

is not free in ψ, and so a straightforward calculation shows that (ρ[ψ/x])
[
λy.ρ[ψ/x]/y

]
=

ρ[λy.ρ/y][ψ/x] = ϕ[ψ/x], and so we find that ϕ[ψ/x] ∈ Cl(χ[ψ/x]) in this case as well. This
proves (13).

To see why this implies part 4) of the proposition, it remains to show that Cl(ψ) ⊆ Cl(ξ).
But from x ∈ FV (χ) we infer x ∈ Cl(χ) by part 1), and from this we obtain that ψ =
x[ψ/x] ∈ Cl(ξ). This suffices by Proposition 2.43. qed

Lectures on the modal µ-calculus 2-23

As an almost immediate corollary of Proposition 2.44 we find that the closure set of a
µ-calculus formula is always finite.

Proposition 2.45 Let ξ ∈ µML be some formula. Then the set Cl(ξ) is finite.

Proof. We prove the proposition by induction on the length of a formula, as defined in
Definition 2.5. More precisely, we claim that

|Cl(ξ)| ≤ |ξ|` (14)

for every tidy formula ξ ∈ µML.
In case ξ is a formula of length 1 it must be atomic, so (14) is obvious. For the inductive

case we consider a formula ξ with |ξ|` > 1; such a formula cannot be atomic, and so it must
be a boolean, modal or fixpoint formula. We now make a case distinction, only considering
the cases where ξ is a conjunction or a µ-formula.

First let ξ be of the form ξ = ξ0 ∧ ξ1. By Proposition 2.44(3) we obtain |Cl(ξ)| ≤
|Cl(ξ0)|+ |Cl(ξ1)|, and the induction hypothesis yields |Cl(ξi)| ≤ |ξi|`. Thus we find |Cl(ξ)| ≤
|ξ0|` + |ξ1|` < |ξ|`.

If ξ is of the form ξ = µxχ we further distinguish cases. If x is not free in χ we have
χ[ξ/x] = χ and so Cl(ξ) = {ξ}∪Cl(χ). Thus, using the induction hypothesis on χ, we obtain
|Cl(ξ)| ≤ 1 + |Cl(χ)| ≤ 1 + |χ|` = |ξ|`, as required. On the other hand, if x does occur
freely in χ, by Proposition 2.44(5) we find |Cl(ξ)| ≤ |Cl(χ[x∗/x])|. But since χ[x∗/x] has
the same length as χ we may use the induction hypothesis for it; this gives |Cl(χ[x∗/x])| ≤
|χ[x∗/x]|` = |χ|`. Combining these observations we find that |Cl(ξ)| ≤ |χ|` = |ξ|` − 1 which
obviously suffices to prove (14). qed

2-24 The modal µ-calculus

2.6 Measuring formulas

If we are interested in the complexity of algorithms for, e.g., model checking of a formula on
a model, or satisfiability checking of a formula, we will see that two measures of a formulas
feature prominently: its size and its alternation depth. Both notions are in fact quite subtle
in that they admit several non-equivalent definitions.

Size

When it comes to size, there are at least three definitions that look reasonable, at first sight: in
principle one could define the size of a formula as its length, its subformula-size, or its closure-
size. Each definition corresponds to a certain way of representing a formula as a graph-based
structure: the length of a formula corresponds to the number of nodes in its syntax tree, its
subformula-size to the number of nodes in its subformula graph, and its closure-size to the
size of its closure graph. In later chapters we will see that the main complexity results on
µ-calculus formulas are actually proved using algorithms that operate on such graph-based
representations. As a key example, the algorithm for model checking a µ-calculus formula in
a pointed model is based on computing the winner of the associated evaluation game, and
the two versions of the evaluation game that we have seen in this chapter crucially involve,
respectively, the subformula graph and the closure graph of a formula. In other words, much
more than just picking a number and referring to it as ‘the size’ of a formula, the more
fundamental discussion concerns the various graph-based representations of a formula.

Definition 2.46 The closure-size |ξ| of a tidy formula ξ is given by

|ξ|c := |Cl(ξ)|,

i.e., it is defined as the number of formulas that are derived from ξ. The subformula-size of
a clean formula ξ is defined as follows:

|ξ|s := |Sf (ξ)|,

i.e., |ξ|s is given as the number of subformulas of ξ. �

Note that while the notion of length applies to all formulas, this is different for the other
two measures. In Remark 2.28 we saw that it only makes sense to define the subformula-based
evaluation game for clean formulas. For this reason we restrict the definition of subformula-
size to clean formulas, and for similar reasons we only define the closure-size for tidy formulas.
These definitions could be extended to arbitrary formulas by considering alphabetical variants,
but we shall have no need to do so.

In the remark below we discuss the advantages and disadvantages of the three different
ways to represent µ-calculus formulas.

Remark 2.47 The tree representation and the associated concept of length are very useful
when giving inductive definitions and proofs but not so convenient for algorithmic purposes
because of the unnecessarily unwieldy size of trees. For instance, it is well-known that the

Lectures on the modal µ-calculus 2-25

subformula-size of a formula can be exponentially smaller than its length, as is witnessed by
the sequence of formulas (ξn)n∈ω given by ξ0 := p, ξn+1 := (ξn ∧ ξn). It is easy to see that the
length of these formulas grows exponentially, whereas their subformula size grows linearly.
For this reason in the sequel we leave the tree representations out of the picture and focus on
a comparison between the subformula graph and the closure graph.

At first sight it seems more intuitive to work with subformulas because they are part of
the formula itself, therefor always shorter, and they seamlessly fit with the natural inductive
definition of formulas. Contrary to this, when defining the closure set of a formula, one easily
get entangled in the complexities of performing substitutions which produce unreadably long
formulas. In addition, proofs using the closure set can be more involved because we cannot
always use straightforward inductive arguments.

Despite of this we argue that often the more natural representation of a µ-calculus formula
is its closure graph, for the following reasons.

To start with, we already saw that working with subformulas makes sense for clean formu-
las only, while the closure set is well defined for all tidy formulas, which form a substantially
larger class of formulas. Related to this but more importantly, recall that the equivalence of
a fixpoint formula to its unfolding lies at the core of the semantics of the modal µ-calculus.
The fact that the closure set of a formula is closed under taking unfoldings by design makes
derived formulas more natural to work with than subformulas. For instance, this feature al-
lows for a very smooth development of tableaux and derivation systems for µML in Chapter 7,
where the natural rule for fixpoint formulas simply means to unfold them.

Second, in Chapter 6 we will see that, perhaps counterintuitively, the closure graph of
a formula can be exponentially smaller than its subformula graph. More precisely, Proposi-
tion 6.55 provides a sequence of formulas (ξn)n∈ω of which the subformula-size grows expo-
nentially, while the closure-size only grows linearly. Combining this with the above discussion
one could say that

Sf (ξ) is a large set of short expressions, Cl(ξ) is a small set of long expressions.

When it comes to complexity issues, the point is that key algorithms such as model checking
work as fast on the subformula graph as on the closure graph. This means that we obtain
sharper results if we measure the size of a formula as its closure-size. �

Definition 2.48 The size of a tidy formula ξ is given as its closure-size: |ξ| := |ξ|c. �

I define size for arbitrary formulas?

I discuss size wrt alphabetical variance?

Alternation depth

After size, the most important complexity measure of modal µ-calculus formulas concerns the
degree of nesting of least- and greatest fixpoint operators in the syntax tree (or dag) of the
formula. Intuitively, the alternation depth of a formula ξ will be defined as the length of a
maximal chain of nested, alternating fixpoint operators. As in the case of size, there is more
than one reasonable way to make this intuition precise

2-26 The modal µ-calculus

Example 2.49 As a first example, consider the formula

ξ1 = µx.(νy.p ∧2y) ∨3x,

expressing the reachability of some state from which only p-states will be reachable. Clearly
this formula features a ν-operator in the scope of a µ-operator, and in the most straightforward
approach one might indeed take this as nesting, and define the (simple) alternation depth of
the formula ξ1 as 2. However, a closer inspection of the formula ξ1 reveals that, since the
variable x does not occur in the subformula νy.p ∧2y, the latter subformula does not really
depend on x. This is different in the following example:

ξ2 = νx.µy.(p ∧3x) ∨3y,

stating the existence of a path on which p is true infinitely often. Here the variable x does
occur in the subformula µy.(p ∧ 3x) ∨ 3y; that is, ξ2 contains a ‘real’ ν/µ-chain of fixpoint
operators. In the definition of alternation depth ad that we shall adopt, we will see that
ad(ξ2) = 2 but ad(ξ1) = 1. �

The formal definition of alternation depth involves inductively defined formula collections
Θη
n, where η ∈ {µ, ν} and n is a natural number. Intuitively, the class Θη

n consists of those
µ-calculus formulas where n bounds the length of any alternating nesting of fixpoint operators
of which the most significant formula is an η-formula. Recall our notation µ = ν, ν = µ.

Definition 2.50 By natural induction we define classes Θµ
n,Θν

n of µ-calculus formulas. With
η, λ ∈ {µ, ν} arbitrary, we set:

1. all atomic formulas belong to Θη
0;

2. if ϕ0, ϕ1 ∈ Θη
n, then ϕ0 ∨ ϕ1, ϕ0 ∧ ϕ1,3ϕ0,2ϕ0 ∈ Θη

n;

3. if ϕ ∈ Θη
n then ηx.ϕ ∈ Θη

n;

4. if ϕ(x), ψ ∈ Θη
n, then ϕ[ψ/x] ∈ Θη

n, provided that ψ is free for x in ϕ;

5. all formulas in Θλ
n belong to Θη

n+1.

The alternation depth ad(ξ) of a formula ξ is defined as the least n such that ξ ∈ Θµ
n ∩Θν

n. A
formula is alternation free if it has alternation depth at most 1. �

Roughly, we obtain Θµ
0 by closing the set of basic modal formulas under the boolean and

modal operators, and the greatest fixpoint operator; and similarly for Θν
0 . Inductively, we

obtain Θη
n+1 by closing the set Θη

n under the boolean and modal operations, substitution, and
the η-operator.

Remark 2.51 In the literature one usually sees the alternation hierarchy defined in terms of
classes Σn and Πn, with the notation taken from the arithmetical hierarchy. The connection
with our notation is as follows:

Σ0 := Θµ
0 ∩Θν

0 Σn+1 := Θν
n

Π0 := Θµ
0 ∩Θν

0 Πn+1 := Θµ
n.

Our notation, which uses µ and ν as superscripts, allows to exploit the symmetry between µ
and ν more directly, and may thus make the definition of alternation depth a bit easier. �

Lectures on the modal µ-calculus 2-27

Example 2.52 Observe that the basic modal (i.e., fixpoint-free) formulas are exactly the
ones with alternation depth zero. Formulas that use µ-operators or ν-operators, but not
both, have alternation depth 1. For example, observe that µx.p∨ x belongs to Θν

0 but not to
Θµ

0 : none of the clauses in Definition 2.50 is applicable. On the other hand, using clause (5)
it is easy to see that µx.p ∨ x ∈ Θν

1 ∩Θµ
1 , from which it is immediate that ad(µx.p ∨ x) = 1.

Returning to Example 2.49, consider the formula ξ1 = µx.(νy.p ∧ 2y) ∨ 3x. Taking a
fresh variable q, we find µx.q ∨ 3x ∈ Θν

0 ⊆ Θν
1 and νy.p ∧ 2y ∈ Θµ

0 ⊆ Θν
1 , so that by the

substitution rule we have ξ1 = (µx.q ∨ 3x)[νy.p ∧ 2y/q] ∈ Θν
1 . Similarly we may show that

ξ1 ∈ Θµ
1 , so that ξ1 has alternation depth 1.

The formula ξ2 = νx.µy.(p∧3x)∨3y is of higher complexity. It is clear that the formula
µy.(p ∧ 3x) ∨ 3y belongs to Θν

0 but not to Θµ
0 . From this it follows that ξ2 belongs to Θµ

1

but there is no way to place it in Θν
1 . Hence we find that ad(ξ2) = 2.

As a final example, consider the formula

ξ3 = µx.νy.(2y ∧ µz.(3x ∨ z)).

This formula looks like a µ/ν/µ-formula, in the sense that it contains a nested fixpoint chain
µx/νy/µz. However, the variable y does not occur in the subformula µz.(3x∨ z), and so the
variable z is not dependent on y. Consequently we may in fact consider ξ3 as a µ/ν-formula.
Formally, we observe that µz.3x ∨ z ∈ Θν

0 ⊆ Θν
1 and νz.2y ∧ p ∈ Θµ

0 ⊆ Θν
1 ; from this it

follows by the substitution rule that the formula νy.(2y ∧µz.(3x∨ z)) belongs to the set Θν
1

as well; from this it easily follows that ξ3 ∈ Θν
1 . It is not hard to show that ξ3 6∈ Θµ

1 , so that
we find ad(ξ3) = 2. �

In Chapter 6 we will make precise the link between the formally defined alternation depth
of a formula and the more intuitive notion of alternating chains of bound variables (in the
case of clean formulas) and of fixpoint formulas (in the case of tidy formulas).

Remark 2.53 A natural question is whether the alternation hierarchy is strict ; that is,
whether there are formulas of arbitrary alternation depth. The (affirmative) answer to this
question will be given in Chapter 11. �

We finish our discussion of alternation depth here by mentioning that each class Θη
n is

closed under taking subformulas and derived formulas.

Proposition 2.54 Let ξ and χ be µ-calculus formulas. Then the following hold:

if ξ ∈ Θη
n and ϕ P ξ then ϕ ∈ Θη

n (15)

if ξ ∈ Θη
n and ξ �C ϕ then ϕ ∈ Θη

n (16)

As a corollary, we have ad(χ) ≤ ad(ξ) if ξ is clean and χ ∈ Sf (ξ), or ξ is tidy and χ ∈ Cl(ξ).

Proof. The statement in (15) can be proved by a straightforward induction on the derivation
of ξ ∈ Θη

n — we leave the details for the reader. •
To prove (16), it suffices to show that the class Θη

n is closed under unfoldings, since by
(15) we already know it to be closed under subformulas. So assume that λx.χ ∈ Θη

n for some
n and λ ∈ {µ, ν}. Because χ P ηx.χ it follows from (15) that χ ∈ Θλ

n. But then we may
apply clause (4) from Definition 2.50 and conclude that χ[η.χ/x] ∈ Θλ

n. qed

2-28 The modal µ-calculus

2.7 Substitutions and free subformulas

In this section we discuss some further syntactic issues related to the modal µ-calculus. None
of these is of high intrinsic importance, but all concepts and results that we introduce or
prove here will play a role in the development of the general theory.

Substitution lemmas

We start with proving some lemmas on substitution. The following proposition is a well known
observation in areas where syntax is used that features variable binding. Note however that
our version below is a bit subtler than usual since we do not allow the renaming of bound
variables.

Proposition 2.55 Let ϕ, χ and ρ be µ-calculus formulas, and let x and y be distinct variables
such that x is free in ϕ but not in ρ. Furthermore, assume that χ is free for x in ϕ and that
ρ is free for y in ϕ[χ/x]. Then ρ is free for y in both ϕ and χ, χ[ρ/y] is free for x in ϕ[ρ/y],
and we have

ϕ[χ/x][ρ/y] = ϕ[ρ/y][(χ[ρ/y])/x]. (17)

Proof. The proposition can be proved by a straightforward but rather tedious induction on
the complexity of ϕ. We omit details. qed

A major theme in this book is to study representations of formulas as structures, that is,
sets with additional relations and operations. It will be of interest to study the properties
of substitutions seen as maps between such structures. The next proposition states that
substitutions have the characteristic property of bounded morphisms, with respect to the
trace relation.

Proposition 2.56 (Back- and forth property of substitution) Let ξ and χ be tidy µ-
calculus formulas such that χ[ξ/x] is tidy. Then the substitution operation ξ/x : Cl(χ)→ µML
satisfies the following back- and forth condition, for every ϕ ∈ Cl(χ) \ {x}:

{χ | ϕ[ξ/x]→C χ} = {ψ[ξ/x] | ϕ→C ψ}. (18)

Proof. We distinguish cases depending on the shape of ϕ.
If ϕ 6= x is atomic then there are no ψ with ϕ→C ψ. Because there is also no→C-successor

of ϕ[ξ/x] = y[ξ/x] = ϕ the claim holds trivially.
The cases where ϕ = ϕ0 � ϕ1 with � ∈ {∧,∨}, or ϕ = ♥ψ with ♥ ∈ {3,2} are

straightforward.
If ϕ = ηy.ρ, then the unique →C-successor of ϕ is the formula ρ[ϕ/y]. We distinguish

further cases depending on whether y = x. If y = x then we have ϕ[ξ/x] = ϕ, and this formula
has again ρ[ϕ/y] as its only →C-successor. Because x /∈ FV (ϕ) we also have ρ[ϕ/x][ξ/x] =
ρ[ϕ/x] and thus the claim holds trivially.

If y 6= x then we find ϕ[ξ/x] = ηy.ρ[ξ/x], and the unique →C-successor of this formula
is its unfolding

(
ρ[ξ/x]

)
[ϕ[ξ/x]/y]. For the right hand side of (18), obviously the unique

→C-successor of ϕ is its unfolding ρ[ϕ/y]. It is thus left to show that(
ρ[ξ/x]

)
[ϕ[ξ/x]/y] =

(
ρ[ϕ/y]

)
[ξ/x]. (19)

Lectures on the modal µ-calculus 2-29

But we have BV (ϕ) ⊆ BV (χ) by Proposition 2.42 and BV (χ)∩FV (ξ) ⊆ {x} by the tidyness
of χ[ξ/x]. Thus it follows from y ∈ BV (ϕ) and y 6= x that y 6∈ FV (ξ). Hence (19) follows by
Proposition 2.55 — the condition that ξ is free for x in ρ[ϕ/y] follows by Proposition 2.42 as
well. qed

Free subformulas

We now have a closer look at the relation between the sets Sf (ξ) and Cl(ξ). Our first
observation concerns the question, which subformulas of a formula also belong to its closure.
This brings us to the notion of a free subformula.

Definition 2.57 Let ϕ and ψ be µ-calculus formulas. We say that ϕ is a free subformula of
ψ, notation: ϕ Pf ψ, if ψ = ψ′[ϕ/x] for some formula ψ′ such that x ∈ FV (ψ′) and ϕ is free
for x in ψ′. �

Note that in particular all literals occurring in ψ are free subformulas of ψ. The following
characterisation is useful. Recall that we write ϕ�C ψ if ψ ∈ Cl(ϕ), or equivalently, if there
is a trace (possibly of length zero) from ϕ to ψ.

Proposition 2.58 Let ϕ and ψ be µ-calculus formulas. If ψ is tidy, then the following are
equivalent:

1) ϕ Pf ψ;
2) ϕ P ψ and FV (ϕ) ∩ BV (ψ) = ∅;
3) ϕ P ψ and ψ �C ϕ.

Proof. We will prove the equivalence of the statements 1) - 3) to a fourth statement, viz.:

4) there is a /0-chain ϕ = χ0 /0χ1 /0 · · ·/0χn = ψ, such that no χi has the form χi = ηy.ρi
with y ∈ FV (ϕ).

For the implication 1) ⇒ 4), assume that ϕ Pf ψ, then by definition ψ is of the form
ψ′[ϕ/x] where x ∈ FV (ψ′) and ϕ is free for x in ψ′. But if x ∈ FV (ψ), then it is easy to
see that there is a /0-chain x = χ′0 /0 χ

′
1 /0 · · · /0 χ

′
n = ψ′ such that no χ′i is of the form

χ′i = 〈x.ρ′. Assume for contradiction that one of the formulas χ′i is of the form χi = ηy.ρi
where y ∈ FV (ϕ). Since ϕ is free for x in ψ′ this would mean that there is a formula of
the form 〈x.χ with ηy.ρi P 〈x.χ P ψ′. However, the only candidates for this would be the
formulas χ′j with j > i, and we just saw that these are not of the shape 〈x.ρ′. This provides
the desired contradiction.

For the opposite implication 4)⇒ 1), assume that there is a /0-chain ϕ = χ0 /0χ1 /0 · · ·/0

χn = ψ as in the formulation of 4). One may then show by a straightforward induction that
ϕ Pf χi, for all i ≥ 0.

For the implication 2)⇒ 4), assume that ϕ P ψ and FV (ϕ)∩BV (ψ) = ∅. It follows from
ϕ P ψ that there is a /0-chain ϕ = χ0 /0 χ1 /0 · · · /0 χn = ψ. Now suppose for contradiction
that one of the formulas χi would be of the form χi = ηy.ρi with y ∈ FV (ϕ). Then we would
find y ∈ FV (ϕ) ∩ BV (ψ), contradicting the assumption that FV (ϕ) ∩ BV (ψ) = ∅.

2-30 The modal µ-calculus

In order to prove the implication 4) ⇒ 3), it suffices to show, for any n, that if (χi)0≤i≤n
is an /0-chain of length n + 1 such that no χi has the form χi = ηy.ρi with y ∈ FV (χ0),
then χn �C χ0. We will prove this claim by induction on n. Clearly the case where n = 0 is
trivial.

For the inductive step we consider a chain

χ0 /0 χ1 /0 · · · /0 χn /0 χn+1

such that no χi has the form χi = ηy.ρi with y ∈ FV (χ0), and we make a case distinction as
to the nature of χn+1. Clearly χn+1 cannot be an atomic formula.

If χn+1 is of the form ρ0 ~ ρ1 with ~ ∈ {∧,∨}, then since χn /0 χn+1, the first formula
must be of the form χn = ρi with i ∈ {0, 1}. But since it follows by the induction hypothesis
that χn �C χ0, we obtain from χn+1 →C χn that χn+1 �C χ0 as required. The case where
χn+1 is of the form ♥ρ with ♥ ∈ {3,2} is handled similarly.

This leaves the case where χn+1 = λy.ρ is a fixpoint formula. Then since χn /0 χn+1

it must be the case that χn = ρ. Furthermore, it follows from the assumption in 4) that
y 6∈ FV (χ0). From this it is not so hard to see that

χ0 /0 χ1[χn+1/y] /0 · · · /0 χn[χn+1/y]

is a /0-chain to which the induction hypothesis applies. It follows that χn[χn+1/y] �C χ0.
From this and the observation that χn+1 →C χn[χn+1/y] we find that χn+1 �C χ0 indeed.
This finishes the proof of the implication 4) ⇒ 3).

Finally, it follows from Proposition 2.42(1) that ψ �C ϕ implies FV (ϕ) ∩ BV (ψ) ⊆
FV (ψ) ∩ FV (ψ) = ∅. From this the implication 3) ⇒ 2) is immediate. qed

As a nice application of the notion of a free subformula, the following proposition states
that under some mild conditions, the substitution operation [ξ/x] is in fact injective.

Proposition 2.59 Let ϕ0, ϕ1 and ξ be formulas such that ξ is free for x in both ϕ0 and ϕ1,
and not a free subformula of either ϕi. Then

ϕ0[ξ/x] = ϕ1[ξ/x] implies ϕ0 = ϕ1. (20)

Proof. We first observe that, with ϕ0, ϕ1, ξ and x as in the statement of the proposition, it
holds that

ϕ0[ξ/x] = ϕ1[ξ/x] implies that x ∈ FV (ϕ0) iff x ∈ FV (ϕ1). (21)

This is in fact easy to see: if x ∈ FV (ϕ0) \ FV (ϕ1), then we would obtain a contradiction
from ξ Pf ϕ0[ξ/x] = ϕ1[ξ/x] = ϕ1.

We now turn to (20), which we will prove by a straightforward induction on the complexity
of ϕ0. Note that by (21) we only need to worry if x ∈ FV (ϕ0) ∩ FV (ϕ1); if this is not the
case then (20) holds trivially.

In particular, this means that the base step of the inductive proof of (20) is reduced to
the case where ϕ0 = ϕ1 = x, so that (20) holds trivially.

Lectures on the modal µ-calculus 2-31

For the inductive step we first consider the case where ϕ0 is of the form ψ0 ∧χ0. Then we
obtain ϕ0[ξ/x] = ψ0[ξ/x] ∧ χ0[ξ/x]. But if ϕ1[ξ/x] = ψ0[ξ/x] ∧ χ0[ξ/x] and ξ 6Pf ϕ1, it must
be the case that ϕ1 is of the form ϕ1 = ψ1∧χ1, with ψ1[ξ/x] = ψ0[ξ/x] and χ1[ξ/x] = χ0[ξ/x].
By the induction hypothesis we obtain ψ0 = ψ1 and χ0 = χ1, so that ϕ0 = ϕ1 indeed.

The cases for disjunction and the modal operators are very similar to this, so we omit the
details.

This leaves the case where ϕ0 is of the form ϕ0 = ηy.ψ0. Restricting to the case where
x ∈ FV (ϕ0) ∩ FV (ϕ1) we may assume that x and y are distinct variables, so we have
ϕ0[ξ/x] = ηy.ψ0[ξ/x]. But it follows from ηy.ψ0[ξ/x] = ϕ1[ξ/x] and ξ 6Pf ϕ1, that ϕ1 must
be of the form ϕ1 = ηy.ψ1 for some formula ψ1 with ψ0[ξ/x] = ψ1[ξ/x]. Thus the inductive
hypothesis yields that ψ0 = ψ1, which immediately implies that ϕ0 = ϕ1 as required. qed

The expansion map

The most important observation here concerns the existence of a surjective map from Sf (ξ)
to Cl(ξ), at least for a clean formula ξ. Recall that, given a clean formula ξ, we define the
dependency order <ξ on the bound variables of ξ as the least strict partial order such that
x <ξ y if δx / δy and y P δx.

Definition 2.60 Writing BV (ξ) = {x1, . . . , xn}, where we may assume that i < j if xi <ξ xj ,
we define the expansion expξ(ϕ) of a subformula ϕ of ξ as:

expξ(ϕ) := ϕ[ηx1x1.δx1/x1] . . . [ηxnxn.δxn/xn].

That is, we substitute first x1 by ηx1x1.δx1 in ϕ; in the resulting formula, we substitute x2

by ηx2x2.δx2 , etc. If no confusion is likely we write exp(ϕ) instead of expξ(ϕ). A proposition
letter p is active in ϕ if p occurs in δy for some y >ξ x, or equivalently, if p occurs in expξ(ϕ).
�

Without proof we mention the following result.

Proposition 2.61 Let ξ ∈ µML be a clean formula and S a pointed Kripke structure. Then
for all subformulas ϕ P ξ and all states s in S we have

(ϕ, s) ∈Win∃(E(ξ,S)) iff S, s g expξ(ϕ).

The proposition below states that, for a clean formula ξ, the expansiom map is a surjection
from its set of subformulas of ξ to its closure. As an immediate corollary we obtain that the
size of Cl(ξ) is bounded by that of Sf (ξ).

Proposition 2.62 Let ξ be a clean µML-formula. Then

Cl(ξ) = {expξ(ϕ) | ϕ P ξ}. (22)

Proof. For the time being we confine ourselves to a brief sketch. For the inclusion ⊆ it
suffices to show that the set {expξ(ϕ) | ϕ P ξ} has the relevant closure properties. This is a
fairly routine proof. For the opposite inclusion it suffices to prove that expξ(ϕ) ∈ Cl(ξ), for
every ϕ ∈ Sf (ξ), which can be done by a straightforward induction. qed •

2-32 The modal µ-calculus

Notes

The modal µ-calculus was introduced by D. Kozen [10]. Its game-theoretical semantics goes
back to at least Emerson & Jutla [6] (who use alternating automata as an intermediate step).
As far as we are aware, the bisimulation invariance theorem, with the associated tree model
property, is a folklore result. The bounded tree model property is due to Kozen & Parikh [11].

There are various ways to make the notion of alternation depth precise; we work with the
most widely used definition, which originates with Niwiński [16].

I More notes to be supplied.

Exercises

Exercise 2.1 Express in words the meaning of the following µ-calculus formula:

νx.µy.(p ∧2x) ∨ (p ∧2y).

Exercise 2.2 (defining modal µ-formulas) Give a modal µ-formula ϕ(p, q) such that for
all transition systems S, and all states s0 in S:

S, s0 g ϕ(p, q) iff there is a path s0Rs1 . . . Rsn (n ≥ 0) such that S, sn g p
and S, si g q for all i with 0 ≤ i < n.

Exercise 2.3 (characterizing winning strategies)
A board is a structure B = 〈B0, B1, E〉 such that B0∩B1 = ∅ and E ⊆ B2, where B = B0]B1

is a set of objects called positions. A match on B consists of the players 0 and 1 moving a
token from one position to another, following the edge relation E. Player i is supposed to
move the token when it is situated on a position in Bi. Suppose in addition that B is also
partitioned into green and red positions, B = G]R.

We will use a modal language to describe this structure, with the modalities being in-
terpreted by the edge relation E, the proposition letter p0 and r referring to the positions
belonging to player 0, and the red positions, respectively. That is, V (p0) = B0 and V (r) = R.

(a) Consider the game where player 0 wins as soon as the token reaches a green position.
(That is, all infinite matches are won by player 1. Player 0 wins if player 1 gets stuck, or
if the token reaches a green position; player 1 wins a finite match if player 0 gets stuck.)
Show that the formula ϕa = µx.r ∨ (p0 ∧ 3x) ∨ (p0 ∧ 2x) characterizes the winning
positions for player 0 in this game, in the sense that for any position b ∈ B, we have

B, V, b g ϕ iff player 0 has a w.s. in the game starting at position b.

(b) Now consider the game where player 0 wins if she manages to reach a green position
infinitely often. (More precisely, infinite matches are won by 0 iff a green position is
reached infinitely often; finite matches are lost by a player is he/she gets stuck.) Give
a formula ϕb that characterizes the winning positions in this game.

Lectures on the modal µ-calculus 2-33

Exercise 2.4 (characterizing fairness) Let D = {a, b} be the set of atomic actions, and
consider the following formula ξ, with subformulas as indicated:

ξ = νx.µy.νz.

δ︷ ︸︸ ︷
2ax︸︷︷︸
α1

∧ (2a⊥ ∨2by)︸ ︷︷ ︸
α2

∧ 2bz︸︷︷︸
α3

Fix an LTS S = (S,Ra, Rb, V). We say that the transition a is enabled at state s of S if
S, s g 3a>.

Show that ξ expresses some kind of fairness condition, i.e., the absence of a path starting
at s on which a is enabled infinitely often, but executed only finitely often. More precisely,

prove that S, s g ξ iff there is no path of the form s0
d0→ s1

d1→ s2 · · · such that s = s0,
di ∈ {a, b} for all i, a is enabled at si for infinitely many i, but di = a for only finitely many
i.

Exercise 2.5 (filtration) Recall that, given a finite, closed set of formulas Σ and a model
S = (S,R, V), we say that a model S′ = (S′, R′, V ′) is a filtration of S through Σ if there is a
surjective map f : S → S′ such that:

a) for all proposition letters p ∈ Σ: u ∈ V (p) iff f(u) ∈ V ′(p).
b) uRv implies f(u)R′f(v)
c) if 3ϕ ∈ Σ and f(u)R′f(v), then S, v g ϕ implies S, u g 3ϕ
d) f(u) = f(v) if and only if u and v satisfy precisely the same formulas in Σ.
Say that a formula ξ of the µ-calculus admits filtration if, for every model S, there is a

finite set of formulas Σ containing ξ, and a filtration S′ of S through Σ such that S′, f(s) g ϕ
iff S, s g ϕ, for each s in S and each ϕ ∈ Σ.

Prove that the formula µx.2x does not admit filtration.

Exercise 2.6 We write ϕ |= ψ to denote that ψ is a local consequence of ϕ, that is, if for all
pointed Kripke models (S, s) it holds that S, s g ϕ implies S, s g ψ.

(a) Show that µx.νy. α(x, y) |= νy.µx. α(x, y), for all formulas α.

(b) Show that µx.µy. α(x, y) ≡ µy.µx. α(x, y), for all formulas α.

(c) Show that µx.(x ∨ γ(x)) ∧ δ(x) |= µx.γ(x) ∧ δ(x), for all formulas γ, δ.

Exercise 2.7 (boolean µ-calculus) Show that the least and greatest fixpoint operators do
not add expressive power to classical propositional logic, or, in other words, that the modality-
free fragment of the modal µ-calculus is expressively equivalent to classical propositional logic.
(Hint: use Exercise 2.6(c).)

Exercise 2.8 (co-induction) Let ϕ,ψ be any two clean formulas of the modal µ-calculus
such that ψ is free for x in ϕ; it will also be convenient to assume that ψ is not a subformula
of ϕ. Show by a game semantic argument that the following so-called ‘co-induction principle’
holds for greatest fixpoints: if ψ |= ϕ[ψ/x], then ψ |= νx.ϕ also. Here we write ‘|=’ for the
local consequence relation, as in Exercise 2.6.

2-34 The modal µ-calculus

Exercise 2.9 (traces)

(a) Let ξ = ηxχ be a tidy fixpoint formula, and let ϕ be a subformula of its unfolding.
Show that either ϕ P ξ or ξ P ϕ.

Hint: prove that every subformula α P χ satisfies the following:

if ϕ P α[ξ/x] then ϕ P ξ or ξ P ϕ.

(b) Let τ : ξn →C . . .→C ξ1 be a finite trace of tidy formulas. Show that there is a unique
ξ ∈ {ξ1, . . . , ξn} such that ξ P ξi, for all i. Moreover, if ξ1 is a fixpoint formula then so
is ξ.

(c) Let τ be an infinite trace of tidy formulas, and let Inf (τ) be the set of formulas that
occur infinitely often on τ . Show that there is a unique formula ξ ∈ Inf (τ) which is a
subformula of every formula in Inf (τ). Furthermore, prove that ξ is a fixpoint formula.

Exercise 2.10 (injectivity of substitution) Prove Proposition 2.59.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical
Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, chapter C.5, pages 739–
782. North-Holland Publishing Co., Amsterdam, 1977.

[2] J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut & Instituut
voor Grondslagenonderzoek, University of Amsterdam, 1976.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[4] J.R. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel, editor,
Proceedings of the International Congress on Logic, Methodology and the Philosophy of Science,
pages 1–11. Stanford University Press, 1962.

[5] A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides. Oxford
University Press, 1997.

[6] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract).
In Proceedings of the 32nd Symposium on the Foundations of Computer Science, pages 368–377.
IEEE Computer Society Press, 1991.

[7] D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related results. In Pro-
ceedings of the Twentieth International Symposium on Mathematical Foundations of Computer
Science, MFCS’95, volume 969 of LNCS, pages 552–562. Springer, 1995.

[8] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional µ-calculus
w.r.t. monadic second-order logic. In Proceedings of the Seventh International Conference on
Concurrency Theory, CONCUR ’96, volume 1119 of LNCS, pages 263–277, 1996.

[9] B. Knaster. Un théorème sur les fonctions des ensembles. Annales de la Societé Polonaise de
Mathematique, 6:133–134, 1928.

[10] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–354,
1983.

[11] D. Kozen and R. Parikh. A decision procedure for the propositional µ-calculus. In Proceedings of
the Workshop on Logics of Programs 1983, LNCS, pages 313–325, 1983.

[12] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

[13] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999. (Erratum
published Ann.P.Appl.Log. 99:241–259, 1999).

[14] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In
A. Skowron, editor, Computation Theory, LNCS, pages 157–168. Springer-Verlag, 1984.

[15] D.E. Muller. Infinite sequences and finite machines. In Proceedings of the 4th IEEE Symposium
on Switching Circuit Theory and Logical Design, pages 3–16, 1963.

[16] D. Niwiński. On fixed point clones. In L. Kott, editor, Proceedings of the 13th International
Colloquium on Automata, Languages and Programming (ICALP 13), volume 226 of LNCS, pages
464–473, 1986.

[17] D. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference,
pages 167–183. Springer, 1981.

R-2 References

[18] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer Science,
pages 46–57, 1977.

[19] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th IEEE Symposium on
Computer Science, pages 109–121, 1976.

[20] S. Safra. On the complexity of ω-automata. In Proceedings of the 29th Symposium on the
Foundations of Computer Science, pages 319–327. IEEE Computer Society Press, 1988.

[21] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathe-
matics, 5:285–309, 1955.

[22] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus. In
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science (LICS’95), pages
14–24. IEEE Computer Society Press, 1995.

[23] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus. Infor-
mation and Computation, 157:142–182, 2000.

[24] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200:135–183, 1998.

