
3 Fixpoints

The game-theoretic semantics of the modal µ-calculus introduced in the previous chapter has
some attractive characteristics. It is intuitive, relatively easy to understand, and, as we shall
see further on, it can be used to prove some important properties of the formalism. However,
it has some drawbacks as well. For instance, the evaluation games of the previous chapter
have only been defined for formulas that are either clean or tidy. The game semantics can
be extended to arbitrary formulas but this will make the game somewhat more involved, in
particular if we want to define evaluation games for formulas that are not in negation normal
form.

Furthermore, the game-theoretical semantics is not compositional ; that is, the meaning
of a formula is not defined in terms of the meanings of its subformulas. These shortcomings
vanish in the algebraic semantics that we are about to introduce. In order to define this term,
we first consider an example.

Example 3.1 Recall that in Example 2.1, we informally introduced the formula µx.p_3dx
as the smallest fixpoint or solution of the ‘equation’ x ⌘ p _3dx.

To make this intuition more precise, we have to look at the formula � = p _ 3dx as an
operation. The idea is that the value (that is, the extension) of this formula is a function
of the value of x, provided that we keep the value of p constant. Varying the value of x
boils down to considering ‘x-variants’ of the valuation V of S = hS,R, V i. Let, for X ✓ S,
V [x 7! X] denote the valuation that is exactly like V apart from mapping x to X, and let
S[x 7! X] denote the x-variant hS,R, V [x 7! X]i of S. Then [[�]]S[x 7!X] denotes the extension
of � in this x-variant. It follows from this that the formula � induces the following function
�Sx on the power set of S:

�Sx(X) := [[�]]S[x7!X].

In our example we have

�Sx(X) = V (p) [hRi(X).

Now we can make precise why µx.p_3dx is a fixpoint formula: its extension, the set [[µx.p_
3dx]], is a fixpoint of the map �Sx:

[[µx.p _3dx]] = V (p) [hRi([[µx.p _3dx]]).

In fact, as we shall see in this chapter, the formulas µx.p_3dx and ⌫x.p_3dx are such that
their extensions are the least and greatest fixpoints of the map �Sx, respectively. �

It is worthwhile to discuss the theory of fixpoint operators at a more general level than
that of modal logic. Before we turn to the definition of the algebraic semantics of the modal
µ-calculus, we first discuss the general fixpoint theory of monotone operations on complete
lattices.

3-2 Fixpoints

3.1 General fixpoint theory

Basics

In this chapter we assume some familiarity2 with partial orders and lattices (see Appendix A).

Definition 3.2 Let P and P0 be two partial orders and let f : P ! P 0 be some map. Then f
is called monotone or order preserving if f(x) 0 f(y) whenever x y, and antitone or order
reversing if f(x) �0 f(y) whenever x y. �

Definition 3.3 Let P = hP,i be a partial order, and let f : P ! P be some map. Then
an element p 2 P is called a prefixpoint of f if f(p) p, a postfixpoint of f if p f(p), and
a fixpoint if f(p) = p. The sets of prefixpoints, postfixpoints, and fixpoints of f are denoted
respectively as PRE(f), POS(f) and FIX(f).

In case the set of fixpoints of f has a least (respectively greatest) member, this element
is denoted as LFP.f (GFP.f , respectively). These least and greatest fixpoints may also be
called extremal fixpoints. �

The following theorem is a celebrated result in fixpoint theory.

Theorem 3.4 (Knaster-Tarski) Let C = hC,
W
,
V
i be a complete lattice, and let f : C ! C

be monotone. Then f has both a least and a greatest fixpoint, and these are given as

LFP.f =
^

PRE(f), (23)

GFP.f =
_

POS(f). (24)

Proof. We will only prove the result for the least fixpoint, the proof for the greatest fixpoint
is completely analogous.

Define q :=
V
PRE(f), then we have that q x for all prefixpoints x of f . From this

it follows by monotonicity that f(q) f(x) for all x 2 PRE(f), and hence by definition of
prefixpoints, f(q) x for all x 2 PRE(f). In other words, f(q) is a lower bound of the set
PRE(f). Hence, by definition of q as the greatest such lower bound, we find f(q) q, that
is, q itself is a prefixpoint of f .

It now su�ces to prove that q f(q), and for this we may show that f(q) is a prefixpoint
of f as well, since q is by definition a lower bound of the set of prefixpoints. But in fact, we
may show that f(y) is a prefixpoint of f for every prefixpoint y of f — by monotonicity of f
it immediately follows from f(y) y that f(f(y)) f(y). qed

Another way to obtain least and greatest fixpoints is to approximate them from below
and above, respectively.

Definition 3.5 Let C = hC,
W
,
V
i be a complete lattice, and let f : C ! C be some map.

Then by ordinal induction we define the following maps on C:

f0
µ(c) := c, f0

⌫ (c) := c,
f↵+1
µ (c) := f(f↵

µ (c)) f↵+1
⌫ (c) := f(f↵

⌫ (c)),
f�
µ (c) :=

W
↵<� f

↵
µ (c) f�

⌫ (c) :=
V

↵<� f
↵
⌫ (c),

2Readers lacking this background may take abstract complete lattices to be concrete power set algebras.

Lectures on the modal µ-calculus 3-3

where � denotes an arbitrary limit ordinal. �

Proposition 3.6 Let C = hC,
W
,
V
i be a complete lattice, and let f : C ! C be monotone.

Then f is inductive, that is, f↵
µ (?) f�

µ (?) for all ordinals ↵ and � such that ↵ < �.

Proof. We leave this proof as an exercise to the reader. qed

Given a set C, we let |C| denote its cardinality or size.

Corollary 3.7 Let C = hC,
W
,
V
i be a complete lattice, and let f : C ! C be monotone.

Then there is some ↵ of size at most |C| such that LFP.f = f↵
µ (?).

Proof. By Proposition 3.6, f is inductive, that is, f↵
µ (?) f�

µ (?) for all ordinals ↵ and �
such that ↵ < �. It follows from elementary set theory that there must be two ordinals ↵,� of
size at most |C| such that f↵

µ (?) = f�
µ (?). From the definition of the approximations it then

follows that there must be an ordinal ↵ such that f↵
µ (?) = f↵+1

µ (?), or, equivalently, f↵
µ (?)

is a fixpoint of f . To show that it is the smallest fixpoint, one may prove that f�
µ (?) LFP.f

for every ordinal �. This follows from a straightforward ordinal induction. qed

Definition 3.8 Let C = hC,
W
,
V
i be a complete lattice, and let f : C ! C be monotone.

The least ordinal ↵ such that f↵
µ (?) = f↵+1

µ (?) is called the unfolding ordinal of f . �

3.2 Boolean algebras

In the special case that the complete lattice is in fact a (complete) boolean algebra, there is
more to be said.

Dual maps

In the case of monotone maps on complete boolean algebras, the least and greatest fixed
points become interdefinable, using the notion of (boolean) duals of maps.

Definition 3.9 A complete boolean algebra is a structure B = hB,
W
,
V
,�i such that hB,

W
,
V
i

is a complete lattice and hB,_,^,�,?,>i is a boolean algebra, where _ and ^ are the binary
versions of

W
and

V
, respectively, and ? :=

W
?, > :=

V
?. �

In a boolean algebra B, the complementation operation � : B ! B is an antitone (order-
reversing) map such that x^�x = ? and x_�x = > for all x 2 B. If B is complete it holds
that �

W
X =

V
{�x | x 2 X} and �

V
X =

W
{�x | x 2 X}.

Definition 3.10 Let B = hB,
W
,
V
,�i be a complete boolean algebra. Given a map f : B !

B, the function f@ : B ! B given by

f@(b) := �f(�b).

is called the (boolean) dual of f . �

3-4 Fixpoints

Proposition 3.11 Let B = hB,
W
,
V
,�i be a complete boolean algebra, and let g : B ! B be

monotone. Then g@ is monotone as well, (g@)@ = g, and

LFP.g@ = �GFP.g,

GFP.g@ = �LFP.g.

Proof. We only prove that LFP.g@ = �GFP.g, leaving the other parts of the proof as
exercises to the reader.

First, note that by monotonicity of g@ , the Knaster-Tarski theorem gives that

LFP.g@ =
^

PRE(g@).

But as a consequence of the definitions, we have that

b 2 PRE(g@) () �b 2 POS(g).

From this it follows that

LFP.g@ =
^

{b | �b 2 POS(g)}

=
^

{�a | a 2 POS(g)}

= �
_

POS(g)

= �GFP.g

which finishes the proof of the Theorem. qed

Further on we will see that Proposition 3.11 allows us to define negation as an abbreviated
operator in the modal µ-calculus.

Games

In case the boolean algebra in question is in fact a power set algebra, a nice game-theoretic
characterization of least and greatest fixpoint operators can be given.

Definition 3.12 Let S be some set and let F : }(S) ! }(S) be a monotone operation.
Consider the unfolding games Uµ(F) and U⌫(F). The positions and admissible moves of
these two graph games are the same, see Table 6.

Position Player Admissible moves
s 2 S 9 {A 2 }(S) | s 2 F (A)}
A 2 }(S) 8 A

Table 6: Unfolding games for F : }(S) ! }(S)

The winning conditions of finite matches are standard (the player that got stuck loses
the match). The di↵erence between Uµ(F) and U⌫(F) shows up in the winning conditions of
infinite matches: 9 wins the infinite matches of U⌫(F), but 8 those of Uµ(F). �

Lectures on the modal µ-calculus 3-5

Observe that the positions in a match of the unfolding game alternate between ‘state
positions’ s, where 9 needs to pick a subset A ✓ S such that s belongs to F (A), and ‘subset
positions’ A, of which 8 has to pick an element.

Example 3.13 In fact, we have already seen an example of the unfolding game U⌫ in the
bisimilarity game of Definition 1.26. Given two Kripke models S and S0, consider the map
F : }(S ⇥ S0) ! }(S ⇥ S) given by

F (Z) := {(s, s0) 2 S ⇥ S0 | Z is a local bisimulation for s and s0},

then it is straightforward to verify that B(S, S0) is nothing but the unfolding game U⌫(F). �

The following proposition substantiates the slogan that ‘⌫ means unfolding, µ means finite
unfolding’.

Theorem 3.14 Let S be some set and let F : }(S) ! }(S) be a monotone operation. Then

1. GFP.F = {s 2 S | s 2 Win9(U⌫(F))},

2. LFP.F = {s 2 S | s 2 Win9(Uµ(F))},

Proof. For the inclusion ◆ of part 1, it su�ces to prove that W := S \ Win9(U⌫(F)) is a
postfixpoint of F :

W ✓ F (W). (25)

Let s be an arbitrary point in W , and suppose that 9’s winning strategy tells her to choose
A ✓ S at position s. Then no matter what element s1 2 A is picked by 8, 9 can continue the
match and win. Hence, all elements of A are winning positions for 9. But from A ✓ W it
follows that F (A) ✓ F (W), and by the legitimacy of 9’s move A at s it holds that s 2 F (A).
We conclude that s 2 F (W), which proves (25).

For the converse inclusion ✓ of part 1 of the proposition, take an arbitrary point s 2
GFP.F . We need to provide 9 with a winning strategy in the unfolding game U⌫(F) starting
at s. This strategy is actually as simple as can be: 9 should always play GFP.F . Since
GFP.F = F (GFP.F), this strategy prescribes legitimate moves for 9 at every point in GFP.F .
And, if she sticks to this strategy, 9 will stay alive forever and thus win the match, no matter
what 8’s responses are.

For the second part of the theorem, let W denote the set W := S\Win9(Uµ(F)) of states
in S that are winning positions for 9 in Uµ(F). We first prove the inclusion W ✓ LFP.F .
Clearly it su�ces to show that all points outside the set LFP.F are winning positions for 8.

Consider a point s 62 LFP.F . If s 62 F (A) for any A ✓ S then 9 is stuck, hence loses
immediately, and we are done. Otherwise, suppose that 9 starts a match of Uµ(F) by playing
some set B ✓ S with s 2 F (B). We claim that B is not a subset of LFP.F , since otherwise we
would have F (B) ✓ F (LFP.F) ✓ LFP.F ; which would contradict the fact that s 62 LFP.F .
But if B 6✓ LFP.F then 8 may continue the match by choosing a point s1 2 B \LFP.F . Now
8 can use the same strategy from s1 as he used from s, and so on. This strategy guarantees
that either 9 gets stuck after finitely many rounds (in case 8 manages to pick an sn for which

3-6 Fixpoints

there is no A such that sn 2 F (An)), or else the match will last forever. In both cases 8 wins
the match.

For the opposite inclusion ✓ of part 2, it su�ces to show that W is a prefixpoint of F ,
that is, F (W) ✓ W . For that purpose, let s 2 S be such that s 2 F (W). In order to show
that s 2 W we need to provide 9 with a winning strategy in Uµ(F), starting at s. But this
is straightforward: since s 2 F (W), the set W itself is a legitimate move for 9 at position s.
Then, after 8 picks some element t 2 W , she can simply continue with her strategy in Uµ(F)
that is winning when starting at position t. qed

3.3 Vectorial fixpoints

Suppose that we are given a finite family {C1, . . . ,Cn} of complete lattices, and put C =Q
1inCi. Given a finite family of monotone maps f1, . . . , fn with fi : C ! Ci, we may

define the map f : C ! C given by f(c) := (f1(c), . . . , fn(c)). Monotonicity of f is an easy
consequence of the monotonicity of the maps fi separately, and so by completeness of C, f
has a least and a greatest fixpoint. In this context we will also use vector notation, for
instance writing

µ

0

BBB@

x1
x2
...
xn

1

CCCA
.

0

BBB@

f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

1

CCCA

for LFP.f . An obvious question is whether one may express these multi-dimensional fixpoints
in terms of one-dimensional fixpoints of maps that one may associate with f1, . . . , fn.

The answer to this question is positive, and the basic observation facilitating the compu-
tation of multi-dimensional fixpoints is the following so-called Bekič principle.

Proposition 3.15 Let D1 and D2 be two complete lattices, and let fi : D1 ⇥ D2 ! Di for
i = 1, 2 be monotone maps. Then

⌘

✓
x
y

◆
.

✓
f1(x, y)
f2(x, y)

◆
=

✓
⌘x.f1(x, ⌘y.f2(x, y))
⌘y.f2(⌘x.f1(x, y), y)

◆

where ⌘ uniformly denotes either µ or ⌫.

Proof. Define D := D1 ⇥ D2, and let f : D ! D be given by putting f(d) := (f1(d), f2(d)).
Then f is clearly monotone, and so it has both a least and a greatest fixpoint.

By the order duality principle it su�ces to consider the case ⌘ = µ of least fixed points
only. Suppose that (a1, a2) is the least fixpoint of f , and let b1 and b2 be given by

⇢
b1 := µx.f1(x, µy.f2(x, y)),
b2 := µy.f2(µx.f1(x, y), y).

Then we need to show that a1 = b1 and a2 = b2.
By definition of (a1, a2) we have

⇢
a1 = f1(a1, a2),
a2 = f2(a1, a2),

Lectures on the modal µ-calculus 3-7

whence we obtain ⇢
µx.f1(x, a2) a1 and
µy.f2(a1, y) a2,

From this we obtain by monotonicity that

f2(µx.f1(x, a2), a2) f2(a1, a2) = a2,

so that we find b2 a2 by definition of b2. Likewise we may show that b1 a1.
Conversely, by definition of b1 and b2 we have

✓
b1
b2

◆
=

✓
f1(b1, µy.f2(b1, y))
f2(µx.f1(x, b2), b2)

◆
.

Then with c2 := µy.f2(b1, y), we have b1 = f1(b1, c2). Also, by definition of c2 as a fixpoint,
c2 = f2(b1, c2). Putting these two identities together, we find that

✓
b1
c2

◆
=

✓
f1(b1, c2)
f2(b1, c2)

◆
= f

✓
b1
c2

◆
.

Hence by definition of (a1, a2), we find that a1 b1 (and that a2 c2, but that is of less
interest now). Analogously, we may show that a2 b2. qed

Proposition 3.15 allows us to compute the least and greatest fixpoints of any monotone
map f on a finite product of complete lattices in terms of the least and greatest fixpoints of
operations on the factors of the product, through a elimination method that is reminiscent of
Gaussian elimination in linear algebra.

To see how it works, suppose that we are dealing with lattices C1, . . . ,Cn+1,C and maps
f1, . . . , fn+1, f , just as described above, and that we want to compute ⌘~x.f , that is, find the
elements a1, . . . , an+1 such that

0

BBB@

a1
a2
...

an+1

1

CCCA
= ⌘

0

BBB@

x1
x2
...

xn+1

1

CCCA
.

0

BBB@

f1(x1, . . . , xn, xn+1)
f2(x1, . . . , xn, xn+1)

...
fn+1(x1, . . . , xn, xn+1)

1

CCCA

We may define
gn+1(x1, . . . , xn) := ⌘xn+1.fn+1(x1, . . . , xn+1),

and then use Proposition 3.15, with D1 = C1 ⇥ · · ·⇥ Cn, and D2 = Cn+1, to obtain
0

BBB@

a1
a2
...
an

1

CCCA
= ⌘

0

BBB@

x1
x2
...
xn

1

CCCA
.

0

BBB@

f1(x1, . . . , xn, gn+1(x1, . . . , xn))
f2(x1, . . . , xn, gn+1(x1, . . . , xn))

...
fn(x1, . . . , xn, gn+1(x1, . . . , xn))

1

CCCA

We may then inductively assume to have obtained the tuple (a1, . . . , an). Finally, we may
compute an+1 := gn+1(a1, . . . , an).

Observe that in case Ci = Cj for all i, j and the operations fi are all term definable in
some formal fixpoint language, then each of the components ai of the extremal fixpoints of f
can also be expressed in this language.

3-8 Fixpoints

3.4 Algebraic semantics for the modal µ-calculus

Basic definitions

In order to define the algebraic semantics of the modal µ-calculus, we need to consider formulas
as operations on the power set of the (state space of a) transitions system, and we have to
prove that such operations indeed have least and greatest fixpoints. In order to make this
precise, we need some preliminary definitions.

Definition 3.16 Given an LTS S = hS, V,Ri and subset X ✓ S, define the valuation V [x 7!
X] by putting

V [x 7! X](y) :=

⇢
V (y) if y 6= x,
X if y = x.

Then, the LTS S[x 7! X] is given as the structure hS, V [x 7! X], Ri. �

Now inductively assume that [[']]S has been defined for all LTSs. Given a labelled
transition system S and a propositional variable x 2 P, each formula ' induces a map
'S
x : }(S) ! }(S) defined by

'S
x(X) := [[']]S[x 7!X]

Example 3.17 a) Where 'a = p _ x we have ('a)Sx(X) = [[p _ x]]S[x7!X] = V (p) [X.
b) Where 'b = x we have ('b)Sx(X) = [[x]]S[x7!X] = S \X.
c) Where 'c = p _3dx we find ('c)Sx(X) = [[p _3dx]]S[x 7!X] = V (p) [hRdiX.
d) Where 'd = 3dx we find ('d)Sx(X) = [[3dx]]S[x 7!X] = hRdi(S \X). �

Remark 3.18 Clearly, relative to a model S, X is a fixpoint of 'S
x i↵ X = 'S

x(X); a prefix-
point i↵ 'S

x(X) ✓ X and a postfixpoint i↵ X ✓ 'S
x(X).

Writing S � ' for S = [[']]S, an alternative but equivalent way of formulating this is to
say that in S, X is a prefixpoint of a formula '(x) i↵ S[x 7! X] � ' ! x, a postfixpoint i↵
S[x 7! X] � x ! ', and a fixpoint i↵ S[x 7! X] � x $ '. �

Example 3.19 Consider the formulas of Example 3.17.
a) The sets V (p) and S are fixpoints of 'a, as is in fact any X with V (p) ✓ X ✓ S.
b) Since we do not consider structures with empty domain, the formula x has no fixpoints

at all. (Otherwise X would be identical to its own complement relative to some nonempty
set S.)

c) Two fixpoints of 'c were already given in Example 2.1.
d) Consider any model Z = hZ, S, V i based on the set Z of integers, where S = {(z, z+1) |

z 2 Z} is the successor relation. Then the only two fixpoints of 'd are the sets of even and
odd numbers, respectively. �

In particular, it is not the case that every formula has a least fixpoint. If we can guarantee
that the induced function 'S

x of ' is monotone, however, then the Knaster-Tarski theorem
(Theorem 3.4) provides both least and greatest fixpoints of 'S

x. Precisely for this reason, in
the definition of fixpoint formulas, we imposed the condition in the clauses for ⌘x.', that x
may only occur positively in '. As we will see, this condition on x guarantees monotonicity
of the function 'S

x.

Lectures on the modal µ-calculus 3-9

Definition 3.20 Given a µMLD-formula ' and a labelled transition system S = hS, V,Ri, we
define the meaning [[']]S of ' in S, together with the map 'S

x : }(S) ! }(S) by the following
simultaneous formula induction:

[[?]]S = ? [[>]]S = S
[[p]]S = V (p) [[p]]S = S \ V (p)
[[' _]]S = [[']]S [[[]]S [[' ^]]S = [[']]S \ [[]]S

[[3d']]S = hRdi[[']]S [[2d']]S = [Rd][[']]S

[[µx.']]S =
T
PRE('S

x) [[⌫x.']]S =
S

POS('S
x)

The map 'S
x, for x 2 Prop, is given by 'S

x(X) = [[']]S[x 7!X]. �

Theorem 3.21 Let ' be an µMLD-formula, in which x occurs only positively, and let S be a
labelled transition system. Then [[µx.']]S = LFP.'S

x, and [[⌫x.']]S = GFP.'S
x.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we can
prove that 'S

x is monotone in x if all occurrences of x in ' are positive. We leave the details
of this proof to the reader (see Exercise 3.2). qed

Negation in the modal µ-calculus

It follows from the definitions that the set µMLD is closed under taking negations. Informally,
let ⇠' be the result of simultaneously replacing all occurrences of > with ?, of p with p and
vice versa (for free variables p), of ^ with _, of 2d with3d, of µx with ⌫x, and vice versa, while
leaving occurrences of bound variables unchanged. As an example, ⇠(µx.p _3x) = ⌫x.p^2x.
Formally, it is easiest to define ⇠' via the boolean dual of '.

Definition 3.22 Given a modal fixpoint formula ', we define its boolean dual '@ inductively
as follows:

?@ := > >@ := ?
p@ := p (p)@ := p
(' _)@ := '@ ^ @ (' ^)@ := '@ _ @

(3d')@ := 2d'@ (2d')@ := 3d'@

(µx.')@ := ⌫x.'@ (⌫x.')@ := µx.'@

Based on this definition, we define the formula ⇠' as the formula '@ [p ⌦ p | p 2 FV (')]
that we obtain from '@ by replacing all occurrences of p with p, and vice versa, for all free
proposition letters p 2 FV ('). �

Example 3.23 Here are two examples:

' := µx.p _3(x ^ q) := ⌫p µx.p _3(x ^ q)
'@ := ⌫x.p ^2(x _ q) @ := µp ⌫x.p ^2(x _ q)
⇠' := ⌫x.p ^2(x _ q) ⇠ := µp ⌫x.p ^2(x _ q)

Note the di↵erence between ⇠' and ⇠ with respective to the propositional variable p, which
is free in ' but bound in . �

3-10 Fixpoints

The following proposition states that the operation ⇠ functions as a standard boolean
negation. We let ⇠SX := S \X denote the complement of X in S.

Proposition 3.24 Let ' be a modal fixpoint formula. Then ⇠' corresponds to the negation
of ', that is,

[[⇠']]S = ⇠S [[']]
S (26)

for every labelled transition system S.

Proof. We first show, by induction on ', that '@ corresponds to the boolean dual of '.
For this purpose, given a labelled transition system S = (S,R, V), we let S⇠ denote the
complemented model, that is, the structure (S,R, V ⇠), where V ⇠(p) := ⇠SV (p). Then we
claim that

[['@]]S = ⇠S [[']]
S⇠ , (27)

and we prove this statement by induction on the complexity of '. Leaving all other cases as
exercises for the reader, we concentrate on the inductive case where ' is of the form µx. . In
this case the left hand side of (27) evaluates to

[[(µx.)@]]S = [[⌫x. @]]S (Definition (µx.)@)

= GFP.(@)Sx (Theorem 3.21)

while for the right hand side we find

⇠S [[µx.]]
S⇠ = ⇠SLFP.

S⇠
x (Theorem 3.21)

= GFP.(S⇠
x)@ (Proposition 3.11)

In other words, to prove (27) it su�ces to show that

(@)Sx = (S⇠
x)@ . (28)

To this aim, take an arbitrary subset U of S. Applying the map on the left hand side of (28)
to U , we find

(@)Sx(U) = [[@]]S[x 7!U],

while the map on the right hand side yields

(S⇠
x)@(U) = ⇠S

S⇠
x (⇠SU) = ⇠S [[]]

(S⇠[x 7!⇠SU]) = ⇠S [[]]
(S[x 7!U])⇠ ,

so that by the inductive hypothesis we find that (@)Sx(U) = (S⇠
x)@(U), as required to prove

(28), and thus (27).
In other words, we have shown that the formula '@ indeed behaves as the boolean dual

of '. To see that, likewise, the formula ⇠' behaves as the negation of ', we now show how
to derive (26) from (27). First observe that for any formula � we have

[[�[p ⌦ p | p 2 FV (�)]]]S = [[�]]S
⇠
. (29)

But then, taking '@ for �, we find that

[[⇠']]S = [['@ [p ⌦ p | p 2 FV (')]]]S = [['@]]S
⇠
= ⇠S [[']]

(S⇠)⇠ = ⇠S [[']]
S,

where the first equality holds by the definition of ⇠', the second by (29), the third equality
is (27), and the fourth equality follows from the trivial observation that (S⇠)⇠ = S. qed

Lectures on the modal µ-calculus 3-11

Remark 3.25 It follows from the Proposition above that we could indeed have based the
language of the modal µ-calculus on a smaller alphabet of primitive symbols. Given a set D of
atomic actions, we could have defined the set of modal fixpoint formulas using the following
induction:

' ::= ? | p | ¬' | ' _ ' | 3d' | µx.'

where p and x are propositional variables, d 2 D, and in µx.', all free occurrences of x must
be positive (that is, under an even number of negation symbols). Here we define FV (¬') =
FV (') and BV (¬') = BV (').

In this set-up, the constant > and the connectives ^ and 2d are defined using the standard
abbreviations, while for the greatest fixpoint operator we may put

⌫x.' := ¬µx.¬'(¬x).

Note the triple use of the negation symbol here, which can be explained by Proposition 3.11
and the observation that we may think of ¬'(¬x) as the formulas '@ . �

Other immediate consequences

Earlier on we defined the notions of clean and guarded formulas.

Proposition 3.26 Every fixpoint formula is equivalent to a clean formula, and hence, to a
tidy one.

Proof. We leave this proof as an exercise for the reader. qed

Proposition 3.27 Every fixpoint formula is equivalent to a guarded formula.

Proof.(Sketch) We prove this proposition by formula induction. Clearly the only nontrivial
case to consider concerns the fixpoint operators. Consider a formula of the form ⌘x.�(x),
where �(x) is guarded and clean, and suppose that x has an unguarded occurrence in �.

First consider an unguarded occurrence of x in �(x) inside a fixpoint subformula, say, of
the form ✓y.�(x, y). By induction hypothesis, all occurrences of y in �(x, y) are guarded.
Obtain the formula � from � by replacing the subformula ✓y.�(x, y) with �(x, ✓y.�(x, y)).
Then clearly � is equivalent to �, and all of the unguarded occurrences of x in � are outside
of the scope of the fixpoint operator ✓.

Continuing like this we obtain a formula ⌘x.�(x) which is equivalent to ⌘x.�(x), and in
which none of the unguarded occurrences of x lies inside the scope of a fixpoint operator. That
leaves ^ and _ as the only operation symbols in the scope of which we may find unguarded
occurrences of x.

From now on we only consider the case where ⌘ = µ, leaving the very similar case where
⌘ = ⌫ as an exercise. Clearly, using the laws of classical propositional logic, we may bring the
formula � into conjunctive normal form

(x _ ↵1(x)) ^ · · · ^ (x _ ↵n(x)) ^ �(x), (30)

3-12 Fixpoints

where all occurrences of x in ↵1, . . . ,↵n and � are guarded. (Note that we may have � = >,
or ↵i = ? for some i.)

Clearly (30) is equivalent to the formula

�0(x) := (x _ ↵(x)) ^ �(x),

where ↵ = ↵1 ^ · · · ^ ↵n. Thus we are done if we can show that

µx.�0(x) ⌘ µx.↵(x) ^ �(x). (31)

Since ↵^� implies �0, it is easy to see (and left for the reader to prove) that µx.↵^� implies
µx.�0. For the converse, it su�ces to show that ' := µx.↵(x) ^ �(x) is a prefixpoint of �0(x).
But it is not hard to derive from ' ⌘ ↵(') ^ �(') that

�0(') = (' _ ↵(')) ^ �(') ⌘ ((↵(') ^ �(')) _ ↵(')) ^ �(') ⌘ ↵(') ^ �(') ⌘ ',

which shows that ' is in fact a fixpoint, and hence certainly a prefixpoint, of �0(x). qed

Combining the proofs of the previous two propositions one easily shows the following.

Proposition 3.28 Every fixpoint formula is equivalent to a clean, guarded formula, and
hence, to a tidy, guarded one.

Remark 3.29 The equivalences of the above propositions are in fact e↵ective in the sense
that there are algorithms for computing an equivalent clean and/or guarded equivalent to an
arbitrary formula in µML. It is an interesting question what the complexity of these algorithms
is, and what the minimum size of the equivalent formulas is. We will return to this issue later
on, but already mention here that there are formulas that are exponentially smaller than
any of their clean equivalents. The analogous question for guarded transformations, i.e.,
constructions that provide guarded equivalents to an arbitrary formula, is open. �

3.5 Adequacy

In this section we prove the equivalence of the two semantic approaches towards the modal µ-
calculus. Since the algebraic semantics is usually taken to be the more fundamental notion, we
refer to this result as the Adequacy Theorem stating, informally, that games are an adequate
way of working with the algebraic semantics.

We first consider the subformula game.

Theorem 3.30 (Adequacy of the subformula game) Let ⇠ be a clean µMLD-formula. Then
for all labelled transition systems S and all states s in S:

s 2 [[⇠]]S () (⇠, s) 2 Win9(E(⇠, S)). (32)

Proof. The theorem is proved by induction on the complexity of ⇠. We only discuss the
inductive steps where ⇠ is of the form ⌘x.� (with ⌘ denoting either µ or ⌫), leaving the other
cases as exercises to the reader.

Lectures on the modal µ-calculus 3-13

Preparatory observations Our proof for these inductive cases will involve three games:
the unfolding game for �Sx, and the evaluation games for ⇠ and �, respectively. It is based on
two key observations: One concerns the nature of the unfolding game for �Sx and its role in
the semantics for ⌘x.�; the other observation concerns the similarity between the evaluation
games for ⇠ and for �.

1. Starting with the first observation, note that by definition of the algebraic semantics
of the fixpoint operators, the set [[⌘x.�]]S is the least/greatest fixed point of the map
�Sx : }(S) ! }(S), and that by our earlier Theorem 3.14 on unfolding games, we have

[[⌘x.�]]S = Win9(U⌘(�Sx)) \ S. (33)

Hence, in order to prove (32), it su�ces to show that, for any state s0:

s0 2 Win9(U⌘(�Sx)) () (⇠, s0) 2 Win9(E(⇠, S)). (34)

In other words, the crucial tasks in the proof of this inductive step concern the trans-
formation of a winning strategy for 9 in the unfolding game U⌘(�Sx)@s0 to a winning
strategy for her in the evaluation game E(⇠, S)@(⇠, s0), and vice versa.

Given the importance of the unfolding game for �Sx then, let us look at it in a bit more
detail. Note that a round of this game, starting at position s 2 S, consists of 9 picking
a subset A ✓ S that is subject to the constraint that s 2 �Sx(A) = [[�]]S[x 7!A]. But here
the inductive hypothesis comes into play: it implies that, for all A ✓ S, we have

s 2 �Sx(A) () (�, s) 2 Win9(E(�, S[x 7! A])). (35)

In other words, each round of the unfolding game for the map �Sx crucially involves the
evaluation game for the formula �, played on some x-variant S[x 7! A] of S.

2. This leads us to the comparison between the games G := E(⇠, S) and GA := E(�, S[x 7!
A]). The second key observation in the inductive step for the fixpoint operators is that
these games are very similar indeed. For a start, the positions of the two games are
essentially the same. Positions of the form (⇠, t), which exist in the first game but not
in the second, are the only exception — but in G, any position (⇠, t) is immediately
and automatically succeeded by the position (�, t) which does exist in the second game.
What is important is that the positions for 9 are exactly the same in the two games,
and thus we may apply her positional strategies for the one game in the other game
as well. The only real di↵erence between the games shows up in the rule concerning
positions of the form (x, u). In GA, x is a free variable (x 2 FV (�)), so in a position
(x, u) the game is over, the winner being determined by u being a member of A or not.
In G however, x is bound, so in position (x, u), the variable x will get unfolded to �.

Combining these two observations, the key insight in the proof of (34) will be to think of
E(⇠, S) as a variant of the unfolding game U := U⌘(�Sx) where each round of U corresponds to
a version of the game GT , with T being the subset of S picked by 9 in U . We are now ready
for the details of the proof of (34).

3-14 Fixpoints

For the direction from left to right of (34), suppose that 9 has a winning strategy
in the game U starting at some position s0. Without loss of generality (see Exercise 3.7) we
may assume that this strategy is positional. Thus we may represent it as a map T : S !
}(S), where we will write Ts rather than T (s). By the legitimacy of this strategy, for every
s 2 Win9(U) it holds that s 2 �Sx(Ts). So by the inductive hypothesis (35), for each such s
we may assume the existence of a winning strategy fs for 9 in the game GTs@(�, s). Given
the similarities between the games G and GTs (see the discussion above), this strategy is also
applicable in the game G@(�, s), at least, until a new position of the form (x, t) is reached.

This suggests the following strategy g for 9 in G@(⇠, s0):

1. after the initial automatic move, the position of the match is (�, s0); 9 first plays her
strategy fs0 ;

2. each time a position (x, s) is reached, the match automatically moves to position (�, s),
where we distinguish cases:

(a) if s 2 Win9(U) then 9 continues with fs;

(b) if s /2 Win9(U) then 9 continues with a random strategy.

First we show that this strategy guarantees that whenever a position of the form (x, s) is
visited, s belongs to Win9(U), so that case (b) mentioned above never occurs. The proof is by
induction on the number of positions (x, s) that have been visited already. For the inductive
step, if s is a winning position for 9 in U , then, as we saw, fs is a winning strategy for 9 in
the game GTs@(�, s). This means that if a position of the form (x, t) is reached, the variable
x must be true at t in the model S[x 7! Ts], and so t must belong to the set Ts. But by
assumption of the map T : S ! }(S) being a winning strategy in U , any element of Ts is
again a member of Win9(U).

In fact we have shown that every unfolding of the variable x in G marks a new round in
the unfolding game U . To see why the strategy g guarantees a win for 9 in G@(⇠, s0), consider
an arbitrary G@(⇠, s0)-match ⇡ in which 9 plays g. Distinguish cases.

First suppose that x is unfolded only finitely often. Let (x, s) be the last basic position in
⇡ where this happens. Given the similarities between the games G and GTs , the match from
this moment on can be seen as both a g-guided G-match and an fs-guided GTs-match. As we
saw, fs is a winning strategy for 9 in the game GTs@(�, s). But since no further position of
the form (x, t) is reached, and G and GTs only di↵er when it comes to x, this means that ⇡ is
also a win for 9 in G.

If x is unfolded infinitely often during the match ⇡, then by the fact that ⇠ = ⌘x.�, it is
the highest variable that is unfolded infinitely often. We have to distinguish the case where
⌘ = ⌫ from that where ⌘ = µ. In the first case, 9 is the winner of the match ⇡, and we are
done. If ⌘ = µ, however, x is a least fixpoint variable, and so 9 would lose the match ⇡.
We therefore have to show that this situation cannot occur. Suppose for contradiction that
s1, s2, . . . are the positions where x is unfolded. Then it is easy to verify that the sequence
s0Ts0s1Ts1 . . . constitutes a U -match in which 9 plays her strategy T . But this is not possible,
since T was assumed to be a winning strategy for 9 in the least fixpoint game U = Uµ(�Sx).

Lectures on the modal µ-calculus 3-15

For the direction from right to left of (34), we will show how each positional winning
strategies f for 9 in G induces a positional strategy for her in U , and that this strategy Uf is
winning for her starting at every position s 2 W := {s 2 S | (⇠, s) 2 Win9(G)}.

So fix a positional winning strategy f for 9 in G; that is, 9 is guaranteed to win any
f -guided match starting at a position (', t) 2 Win9(G). Observe that, as discussed above, we
may and will treat f as a positional strategy in each of the games GA as well.

Given a state s 2 W , we let Tf (s) be the strategy tree induced by f in GA@(�, s), where A
is some arbitrary subset of S. That is, the nodes of Tf consist of all f -guided finite matches
in GA that start at (�, s). In more detail, the root of this tree is the single-position match
(�, s); to define the successor relation of Tf , let ⌃ be an arbitrary f -guided match starting
at position first(⌃) = (�, s). If last(⌃) is a position owned by 9, then ⌃ will have a single
successor in Tf , viz., the unique extension of ⌃ with the position f(⌃) picked by f . On the
other hand, if last(⌃) is owned by 8, then every possible continuation ⌃ · b, where b is an
admissible position picked by 8, is a successor of ⌃.

We let Uf (s) be the set of states u such that the position (x, u) occurs as the last element
(x, u) = last(⌃) of some match ⌃ in Tf (s). It is easy to see that any GA-match ⌃ ending in
a position of the form (x, u), is finished immediately, and thus provides a leaf of the tree Tf .
It is also an easy consequence of the definitions that, whenever t 2 Uf (s) for some s 2 W ,
then there is an f -guided match ⌃s,t such that first(⌃s,t) = (�, s) and last(⌃s,t) = (x, t). Note
that this match ⌃s,t can be seen both as a (full) GA-match and as a (partial) G-match.

Given our definition of a set Uf (s) ✓ S for every s 2 W , in e↵ect we have defined a map

Uf : W ! }(S).

Claim 1 Viewing this map Uf as a positional strategy for 9 in U , we claim that in fact it is
a winning strategy for her in U@s0.

Proof of Claim We need two auxiliary claims on Uf . First we observe that

if s 2 W then s 2 �Sx(Uf (s)). (36)

For a proof of (36), it is obvious from the definition of Uf (s) that f is a positional winning
strategy for 9 in GUf (s) = E(�, S[x 7! Uf (s)]) starting at (�, s). But then by the inductive

hypothesis on � we obtain that S[x 7! Uf (s)], s � �, or, equivalently, s 2 �Sx(Uf (s)).
Second, we claim that

if s 2 W then Uf (s) ✓ W. (37)

To see this, first note that if s 2 W then by definition (⇠, s) 2 Win9(G); but from this it is
immediate that (�, s) 2 Win9(G), and since we assumed f to be a positional winning strategy
for 9 in G, it follows by definition of Uf (s) that for every u 2 Uf (s) the position (x, u) is
winning for 9 in Win9(G). But from this it is easy to derive that both (�, u) and (⇠, u) are
winning position for 9 in G as well. The latter fact then shows that u 2 W and since u was
an arbitrary element of Uf (s), (37) follows.

We can now prove that Uf is a winning strategy for 9 in U@s0. First of all, it follows
from (36) that Uf (s) is a legitimate move in U for every position s 2 W . From this and (37)
we may conclude that 9 never gets stuck in an Uf -guided U -match starting at s0; that is, she

3-16 Fixpoints

wins every finite Uf -guided U -match. In case ⌘ = ⌫ this su�ces, since in UG⌫(�Sx) all infinite
matches are won by 9.

Where ⌘ = µ we have a bit more work to do, since in this case all infinite matches of Uµ(�Sx)
are won by 8. Suppose for contradiction that ⌃ = s0Uf (s0)s1Uf (s1) · · · would be an infinite
Uf -guided match of Uµ(�Sx). Then for every i 2 ! we have that si+1 2 Uf (si), so that there
is a partial f -guided match ⌃i = ⌃sisi+1 with first(⌃i) = (�, si) and last(⌃i) = (x, si+1). But
then it is straightforward to verify that the infinite match ⌃G := ⌃0 ·⌃1 ·⌃2 · · · we obtain by
concatenating the individual f -guided matches ⌃i, constitutes an infinite f -guided G-match
with first(⌃G) = first(⌃0) = (⇠, s0). Since the highest fixpoint variable unfolded infinitely
often during ⌃G obviously would be x, this match would be lost by 9. Here we arrive at the
desired contradiction, since (⇠, s0) 2 Win9(G), and f was assumed to be a positional winning
strategy in G. J

qed

Convention 3.31 In the sequel we will use the Adequacy Theorem without further notice.
Also, we will write S, s � ' in case s 2 [[']]S, or, equivalently, S, s �g '.

I Adequacy of the closure game to be discussed and proved.

Theorem 3.32 (Adequacy of the closure game) Let ⇠ be a tidy µMLD-formula. Then
for all labelled transition systems S and all states s in S:

s 2 [[⇠]]S () (⇠, s) 2 Win9(Ec(⇠, S)). (38)

Proof.

I ...

By induction on the length of formulas, we will show that every tidy formula ' has the
following property:

all formulas ⇠ 2 Cl(') satisfy (32). (39)

We only consider the case where ' is a fixpoint formula, say, it of the form ' = ⌘x . Note
that the formula may not be tidy, but we can work with a formula 0 := [x0/x], where x0

is a fresh variable. This formula is tidy, and shorter than ', so that the inductive hypothesis
applies to it.

We now distinguish cases. If ' is a derivative of 0 then we have Cl(') ✓ Cl(0) so that
(??) is immediate by the inductive hypothesis on 0.

I In the sequel we will therefor assume that ' 62 Cl(0).

qed

Notes

What we now call the Knaster-Tarski Theorem (Theorem 3.4) was first proved by Knaster [9]
in the context of power set algebras, and subsequently generalized by Tarski [21] to the
setting of complete lattices. The Bekič principle (Proposition 3.15) stems from an unpublished
technical report.

Lectures on the modal µ-calculus 3-17

I more notes and references to be supplied

As far as we know, the results in section 3.2 on the duality between the least and the
greatest fixpoint of a monotone map on a complete boolean algebra, are folklore. The char-
acterization of least and greatest fixpoints in game-theoretic terms is fairly standard in the
theory of (co-)inductive definitions, see for instance Aczel [1]. The equivalence of the algebraic
and the game-theoretic semantics of the modal µ-calculus (here formulated as the Adequacy
Theorem ??) was first established by Emerson & Jutla [6].

Exercises

Exercise 3.1 Prove Proposition 3.6: show that monotone maps on complete lattices are
inductive.

Exercise 3.2 Prove Theorem 3.21.
(Hint: given complete lattices C and D, and a monotone map f : C ⇥D ! C, show that the
map g : D ! C given by

g(d) := µx.f(x, d)

is monotone. Here µx.f(x, d) is the least fixpoint of the map fd : C ! C given by fd(c) =
f(c, d).)

Exercise 3.3 Let F : }(S) ! }(S) be some monotone map. A collection D 2 }}(S)
of subsets of S is directed if for every two sets D0, D1 2 D, there is a set D 2 D with
Di ✓ D for i = 0, 1. Call F (Scott) continuous if it preserves directed unions, that is, if
F (

S
D) =

S
D2D F (D) for every directed D.

Prove the following:

(a) F is Scott continuous i↵ for all X ✓ S: F (X) =
S
{F (Y) | Y ✓! X}.

(Here Y ✓! X means that Y is a finite subset of X.)

(b) If F is Scott continuous then the unfolding ordinal of F is at most !.

(c) Give an example of a Kripke frame S = hS,Ri such that the operation [R] is not
continuous.

(d) Give an example of a Kripke frame S = hS,Ri such that the operation [R] has clos-
ing/unfolding ordinal ! + 1.

Exercise 3.4 By a mutual induction we define, for every finite set P of propositional vari-
ables, the fragment µMLCP by the following grammar:

' ::= p | | ' _ ' | ' ^ ' | 3' | µq.'0,

where p 2 P, 2 µML is a P-free formula, and '0 2 µMLCP[{q}.

Prove that for every Kripke model S, every formula ' 2 µMLCP , and every proposition
letter p 2 P, the map 'S

p : }(S) ! }(S) is continuous.

3-18 Fixpoints

Exercise 3.5 Let F : }(S) ! }(S) be a monotone operation, and let �F be its unfolding
ordinal. Sharpen Corollary 3.7 by proving that the cardinality of �F is bounded by |S| (rather
than by |}(S)|).

Exercise 3.6 The proof of Theorem 3.14 is based on the characterisation of least fixed points
as the intersection of all prefixpoints, and similarly, of greatest fixpoints as the union of all
postfixpoints. Can you also prove the theorem using the characterisation of least- and greatest
fixpoints via ordinal approximations?

Exercise 3.7 Prove that the unfolding game of Definition 3.12 satisfies positional deter-
minacy. That is, let Uµ(F) be the least fixpoint unfolding game for some monotone map
F : }(S) ! }(S). Prove the existence of two positional strategies f9 : S ! }(S) and
f8 : }(S) ! S such that for every position p of the game, either f9 is a winning strategy for
9 in Uµ(F)@p, or else f8 is a winning strategy for 8 in Uµ(F)@p.

Exercise 3.8 Let C be a complete boolean algebra and let f : C ! C be a monotone map.
Pick an element d 2 C and let µx.f(x) be the least fixpoint of f .

(a) Show that d ^ µx.f(x) = ? i↵ d ^ µx.f(x ^ ¬d) = ?, where µx.f(x ^ ¬d) denotes the
smallest fixpoint of the map sending any element x 2 C to f(x ^ ¬d).

(b) Conclude that, for any formula of the form µx.' and an arbitrary formula �: the formula
� ^ µx.' is satisfiable i↵ the formula � ^ µx.'[x ^ ¬�/x] is satisfiable. (A formula ' is
called satisfiable if there exists a pointed Kripke model such that S, s � '.)

I add exercise on the closure ordinal of a formula

I add exercise on (complete) additivity

