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4 Stream automata and logics for linear time

As we already mentioned in the introduction in the theory of the modal µ-calculus and other
fixpoint logics a fundamental role is played by automata. As we will see further on, these
devices provide a very natural generalization to the notion of a formula. This chapter gives an
introduction to the theory of automata operating on (potentially infinite) objects. Whereas
in later chapters we will meet various kinds of automata for classifying trees and general
transition systems, here we confine our attention to the devices that operate on streams or
infinite words, these being the simplest nontrivial examples of infinite behavior.

Convention 4.1 Throughout this chapter (and the next), we will be dealing with some
finite alphabet C. Generic elements of C may be denoted as c, d, c0, c1, . . . , but often it will
be convenient to think of C as a set of colors. In this case we will denote the elements of C
with lower case roman letters that are mnemonic of the most familiar corresponding color (‘b’
for blue, ‘g’ for green, etcetera).

Definition 4.2 Given an alphabet C, a C-stream is just an infinite C-sequence, that is, a
map γ : ω → C from the natural numbers to C (see Appendix A). C-streams will also be
called infinite words or ω-words over C. Sets of C-streams are called stream languages or
ω-languages over C. �

Remark 4.3 This definition is consistent with the terminology we introduced in Chapter 1.
There we defined a ℘(P)-stream or stream model for P to be a Kripke model of the form
S = 〈ω, V,Succ〉, where Succ is the standard successor relation on the set ω of natural
numbers, and V : P → ℘(ω) is a valuation. If we represent V coalgebraically as a map
σV : ω → ℘(P) (cf. Remark 1.3), then in the terminology of Definition 4.2, S is indeed a
℘(P)-stream. �

4.1 Deterministic stream automata

We start with the most general definition of a deterministic stream automaton.

Definition 4.4 Given an alphabet C, a deterministic C-automaton is a quadruple A =
〈A, δ,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, δ : A × C → A
its transition function, and Acc ⊆ Aω its acceptance condition. The pair 〈A, δ〉 is called the
transition diagram of A.

Given an automaton A = 〈A, δ,Acc, aI〉, we may extend the map δ : A×C → A to a map
δ̂ : A× C∗ → A by putting

δ̂(a, ε) := a

δ̂(a, uc) := δ(δ̂(a, u), c).

We will write a
c→ a′ if a′ = δ(a, c), and a

w
� a′ if a′ = δ̂(a,w). In words, a

w
� a′ if there is a

w-labelled path from a to a′.

�



4-2 Stream automata

Example 4.5 The transition diagram and initial state of a deterministic automaton can
nicely be represented graphically, as in the picture below, where C = {b, r, g}:

����a0⇒ ����a1 ����a2

	

r, g

-b 	

r, g

~

r, g

}

b

	

b

�

An automaton comes to life if we supply it with input, in the form of a stream over
its alphabet: It will process this stream, as follows. Starting from the initial state aI , the
automaton will step by step pass through the stream, jumping from one state to another as
prescribed by the transition function.

Example 4.6 Let A0 be any automaton with transition diagram and initial state as given
above, and suppose that we give this device as input the stream α = brgbrgbrgbrgbrgb · · · .
Then we find that A0 will make an infinite series of transitions, determined by α:

a0
b→ a1

r→ a2
g→ a2

b→ a1 · · ·

Thus the machine passes through an infinite sequence of states:

ρ = a0a1a2a2a1a2a2a1a2a2 . . .

This sequence is called the run of the automaton on the word α — a run of A is thus an
A-stream.

For a second example, on the word α′ = brbgbrgrgrgrgrgr · · · the run of the automaton
A0 looks as follows:

a0
b→ a1

r→ a2
b→ a1

g→ a2
b→ a1

r→ a2
g→ a2

r→ a2
g→ · · ·

we see that from the sixth step onwards, the machine device remains circling in its state a2:
· · · a2

r→ a2
g→ a2

r→ · · · . �

Definition 4.7 The run of an automaton A = 〈A, δ,Acc, aI〉 on a C-stream γ = c0c1c2 . . . is
the infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �

Generally, whether or not an automaton accepts an infinite word, depends on the existence
of a successful run — note that in the present deterministic setting, this run is unique. In
order to determine which runs are successful, we need the acceptance condition.
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Definition 4.8 A run ρ ∈ Aω of an automaton A = 〈A, δ,Acc, aI〉 is successful with respect
to an acceptance condition Acc if ρ ∈ Acc.

An C-automaton A = 〈A, δ,Acc, aI〉 accepts a C-stream γ if the run of A on γ is successful.
The ω-language Lω(A) associated with A is defined as the set of streams that are accepted
by A. Two automata are called equivalent if they accept the same streams. �

A natural requirement on the acceptance condition is that it only depends on a bounded
amount of information about the run.

Remark 4.9 In the case of automata running on finite words, there is a very simple and
natural acceptance criterion. The point is that runs on finite words are themselves finite too.
For instance, suppose that in Example 4.6 we consider the run on the finite word brgb:

a0
b→ a1

r→ a2
g→ a2

b→ a1.

Then this runs ends in the state a1. In this context, a natural criterion for the acceptance
of the word abca by the automaton is to make it dependent on the membership of this final
state a1 in a designated set F ⊆ A of accepting states.

A structure of the form A = 〈A, δ, F, aI〉 with F ⊆ A may be called a finite word automa-
ton, and we say that such a structure accepts a finite word w if the unique state a such that

aI
w
� a belongs to F . The language L(A) is defined as the set of all finite words accepted by

A. �

4.2 Acceptance conditions

For runs on infinite words, a natural acceptance criterion would involve the collection of states
that occur infinitely often in the run.

Definition 4.10 Let α : ω → A be a stream over some finite set A. Given an element a ∈ A,
we define the frequency of a in α as #a(α) := |{n ∈ ω | α(n) = a}|. Based on this, we set
Occ(α) := {a ∈ A | #a(α) > 0} and Inf (α) := {a ∈ A | #a(α) = ω} �

In words, Occ(α) and Inf (α) denote the set of elements of A that occur in α at least once
and infinitely often, respectively.

Definition 4.11 Given a transition diagram 〈A, δ〉, we define the following types of accep-
tance conditions:

• A Muller condition is given as a collectionM⊆ ℘(A) of subsets of A. The corresponding
acceptance condition is defined as

AccM := {α ∈ Aω | Inf (α) ∈M}.

• A Büchi condition is given as a subset F ⊆ A. The corresponding acceptance condition
is defined as

AccF := {α ∈ Aω | Inf (α) ∩ F 6= ∅}.



4-4 Stream automata

• A parity condition is given as a map Ω : A→ ω. The corresponding acceptance condition
is defined as

AccΩ := {α ∈ Aω | max{Ω(a) | a ∈ Inf (α)} is even }.

Automata with these acceptance conditions are called Muller, Büchi and parity automata,
respectively. �

Of these three types of acceptance conditions, the Muller condition perhaps is the most
natural. It exactly and directly specifies the subsets of A that are admissible as the set Inf (ρ)
of a successful run. The Büchi condition is also fairly intuitive: an automaton with Büchi
condition F accepts a stream α if the run on α passes through some state in F infinitely
often. This makes Büchi automata the natural analog of the automata that operate on finite
words, see Remark 4.9.

The parity condition may be slightly more difficult to understand. The idea is to give
each state a of A a weight Ω(a) ∈ ω. Then any infinite A-sequence α = a0a1a2 . . . induces
an infinite sequence Ω(a0)Ω(a1) . . . of natural numbers. Since the range of Ω is finite this
means that there is a largest natural number Nα occurring infinitely often in this sequence,
Nα := max{Ω(a) | a ∈ Inf (α)}. Now, a parity automaton accepts an infinite word iff the
number Nρ of the associated run ρ is even.

At first sight, this condition will seem rather contrived and artificial. Nevertheless, for a
number of reasons the parity automaton is destined to play the leading role in these notes.
Most importantly, the distinction between even and odd parities directly corresponds to that
between least and greatest fixpoint operators, so that parity automata are the more direct
automata-theoretic counterparts of fixpoint formulas. An additional theoretic motivation to
use parity automata is that their associated acceptance games have some very nice game-
theoretical properties, as we will see further on.

Let us now first discuss some examples of automata with these three acceptance conditions.

Example 4.12 Suppose that we supply the device of Example 4.5 with the Büchi acceptance
condition F0 = {a1}. That is, the resulting automaton A0 accepts a stream α iff the run
of A0 passes through the state a1 infinitely often. For instance, A0 will accept the word
α = brgbrgbrgbrgbrgbrgb · · · , because the run of A0 is the stream a0a1a2a2a1a2a2a1a2a2 . . .
which indeed contains a1 infinitely many times. On the other hand, as we saw already, the
run of A0 on the stream α′ = brbgbrgrgrgrgrgr · · · loops in state a2, and so α′ will not be
accepted.

In general, it is not hard to prove that A0 accepts a C-stream γ iff γ contains infinitely
many b’s. �

Example 4.13 Consider the automaton A1 given by the following diagram and initial state:
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����a0 ����ab⇒ ����ag

����af ����ar

R

r, g

-b ~

g

}

b

?

b

	

r, g

6

g

@
@
@
@
@
@
@
@
@R

r

I

r

I

b, r, g

� b

As an example of a Muller acceptance condition, consider the set{
{a0} , {ag} , {ab, ag} , {ab, ar, ag}

}
The resulting automaton accepts those infinite streams in which every b is followed by a finite
number of r’s, followed by a g. To see this, here is a brief description of the intuitive meaning
of the states:

a0 represents the situation where the automaton has not encountered any b’s;

af is the ‘faulty’ state;

ab is the state where the automaton has just processed a b; it now has to pass through a
finite sequence of r’s, eventually followed by a g;

ar represents the situation where the automaton, after seeing a b, has processed a finite,
non-empty, sequence of r’s;

ag is the state where the automaton, after passing the last b, has fulfilled its obligation to
process a g.

We leave the details of the proof as an exercise to the reader. �

Example 4.14 For an example of a parity automaton, consider the transition diagram of
Example 4.5, and suppose that we endow the set {a0, a1, a2} with the priority map Ω given
by Ω(ai) = i. Given the shape of the transition diagram, it then follows more or less directly
from the definitions that the resulting automaton accepts an infinite word over C = {b, r, g}
iff it either stays in a0, or visits a2 infinitely often. From this one may derive that Lω(A)
consists of those C-streams containing infinitely many r’s or infinitely many g’s (or both). �

It is important to understand the relative strength of Muller, Büchi and parity automata
when it comes to recognizing ω-languages. The Muller acceptance condition is the more
fundamental one in the sense that the other two are easily represented by it.



4-6 Stream automata

Proposition 4.15 There is an effective procedure transforming a deterministic Büchi stream
automaton into an equivalent deterministic Muller stream automaton.

Proof. Given a Büchi condition F on a set A, define the corresponding Muller condition
MF ⊆ ℘(A) as follows:

MF := {B ⊆ A | B ∩ F 6= ∅}.

Clearly then, AccMF
= AccF . It is now immediate that any Büchi automaton A = 〈A, δ, F, aI〉

is equivalent to the Muller automaton 〈A, δ,MF , aI〉. qed

Proposition 4.16 There is an effective procedure transforming a deterministic parity stream
automaton into an equivalent deterministic Muller stream automaton.

Proof. Analogous to the proof of the previous proposition, we put

MΩ := {B ⊆ A | max(Ω[B]) is even },

and leave it for the reader to verify that this is the key observation in turning a parity
acceptance condition into a Muller one. qed

Interestingly enough, Muller automata can be simulated by devices with a parity condition.

Proposition 4.17 There is an effective procedure transforming a deterministic Muller stream
automaton into an equivalent deterministic parity stream automaton.

Proof. Given a Muller automaton A = 〈A, δ,M, aI〉, define the corresponding parity au-
tomaton A′ = 〈A′, δ′,Ω, a′I〉 as follows. The crucial concept used in this construction is that
of latest appearance records. The following notation will be convenient: given a finite sequence
in A∗, say, α = a1 . . . an, we let α̃ denote the set {a1, . . . , an}, and α[O/a] the sequence α
with every occurrence of a being replaced with the symbol O.

To start with, the set A′ of states is defined as the collection of those finite sequences over
the set A ∪ {O} in which every symbol occurs exactly once:

A′ = {a1 . . . akOak+1 . . . am | m = |A| and A = {a1, . . . , am}}.

The intuition behind this definition is that a state in A′ encodes information about the states
of A that have been visited during the initial part of its run on some word. More specifically,
the state a1 . . . akOak+1 . . . am encodes that the states visited by A are an+1, . . . , am (for some
n ≤ m, not necessarily n = k), and that of these, am is the state visited most recently, am−1

the one before that, etc. The symbol O marks the previous position of am in the list.
For a proper understanding of A′ we need to go into more detail. First, for the initial

position of A′, fix some enumeration d1, . . . , dm of A with aI = dm, and define

a′I := d1 . . . dmO.

For the transition function, consider a state α = a1 . . . akOak+1 . . . am in A′, and a color c ∈ C.
To obtain the state δ′(α, c), replace the occurrence of δ(am, c) in a1 . . . am with O, and make
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the state δ(am, c) itself the rightmost element of the resulting sequence. Thus the O in the
new sequence marks the latest appearance of the state δ(am, c). Formally, we put

δ′(a1 . . . akOak+1 . . . am, c) := (a1 . . . am)[O/δ(am, c)] · δ(am, c).

(Here we include the cases where k = 0 or k = m; these cover the situations where O appears
at, respectively, the beginning or the end of the word.) For an example, see 4.18 below.

Now consider the runs ρ and ρ′ of A and A′, respectively, on some C-stream γ. Recall
that Inf (ρ) denotes the set of states of A that are visited infinitely often during ρ. From a
certain moment on, ρ will only pass through states in Inf (ρ); let A continue its run until it
has passed through each state in Inf (ρ) at least one more time. It is not too hard to see that
there is some l such that from that same moment t on, ρ′ will only pass through states of the
form a1 . . . akOak+1 . . . am such that the states in Inf (ρ) are those that form the final segment
al+1 . . . am of the sequence a1 . . . am.

We now arrive at the role of the special symbol O. Since O marks the previous position
of am, all states occurring to its right after time t must belong to the set Inf (ρ). In other
words, we have

Inf (ρ′) ⊆ {αOβ ∈ A′ | β̃ ⊆ Inf (ρ)}.

Furthermore, among the states αOβ ∈ Inf (ρ′), the ones with the longest tail β (i.e., with
maximal |β|), are exactly the ones where Inf (ρ) is identical to β̃. Obviousy, these will be of
interest for the definition of the acceptance condition of A′. To make the discussion somewhat
more precise, define, for a subset Q of the state space A′, Q := {αOβ ∈ Q | |β̃′| ≤ |β̃| for all
α′Oβ′ ∈ Q}. That is, Q consists of the sequences αOβ ∈ Q where β takes maximal length.
Then one may show that

αOβ ∈ Inf (ρ′) implies β̃ = Inf (ρ). (40)

This shows how to encode the success of runs of A in a parity condition for A′. Putting

Ω(αOβ) :=

{
2 · |β|+ 1 if β̃ 6∈ M,

2 · |β|+ 2 if β̃ ∈M,

we ensure that the states in Inf (ρ′) receive maximal priority, and that this priority is even.

We now have the following chain of equivalences:

A accepts γ

⇐⇒ Inf (ρ) ∈M (definition acceptance A)

⇐⇒ β̃ ∈M whenever αOβ ∈ Inf (ρ′) (statement (40))

⇐⇒ max{Ω(αOβ) | αOβ ∈ Inf (ρ′)} is even (as discussed above)

⇐⇒ A′ accepts γ. (definition acceptance A′)

Clearly this establishes the equivalence of A and A′. qed
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Example 4.18 With A1 the Muller automaton of Example 4.13, here are some examples of
the transition function δ′ of its parity equivalent A′:

δ′(abaragafa0O, b) := Oaragafa0ab δ′(Oaragafa0ab, b) := aragOa0abaf
δ′(abaragafa0O, r) := abaragafOa0 δ′(Oaragafa0ab, r) := Oagafa0abar
δ′(abaragafa0O, g) := abaragafOa0 δ′(Oaragafa0ab, g) := arOafa0abag

Likewise, a few examples of the priority map:

Ω(abaragafOa0) := 4
Ω(agafa0abOar) := 3
Ω(afara0Oabag) := 6
Ω(afa0Oabarag) := 8

As the initial state of A′, one could for instance take the sequence araragafa0O. �

The following example shows that, in the case of deterministic stream automata, the
recognizing power of Muller and parity automata is strictly stronger than that of Büchi
automata.

Example 4.19 Consider the following language over the alphabet C = {b, r}:

L = {α ∈ Cω | r 6∈ Inf (α)}.

That is, L consists of those C-streams that contain at most finitely many red items (that
is, the symbol r occurs at most finitely often). We will give both a Muller and a parity
automaton to recognize this language, and then show that there is no Büchi automaton for
L.

It is not difficult to see that there is a deterministic Muller automaton recognizing this
language. Consider the automaton A2 given by the following diagram,

����ab⇒ ����ar	

b

~

r

}

b

	

r

and Muller acceptance condition M2 := {{ab}}. It is straightforward to verify that the run
of A2 on an {b, r}-stream α keeps circling in ab iff from a certain moment on, α only produces
b’s.

For a parity automaton recognizing L, endow the diagram above with the priority map
Ω2 given by Ω2(ab) = 0, Ω2(ar) = 1. With this definition, there can only be one set of
states of which the maximum priority is even, namely, the singleton {ab}. Hence, this parity
acceptance condition is the same as the Muller condition {{ab}}.

However, there is no deterministic Büchi automaton recognizing L. Suppose for contra-
diction that L = Lω(A), where A = 〈A, δ, F, aI〉 is some Büchi automaton. Since the stream
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α0 = bbb . . . belongs to L, it is accepted by A. Hence in particular, the run ρ0 of A on α0 will
pass some state f0 ∈ F after a finite number, say n0, of steps.

Now consider the stream α1 = bn0rbbb . . .. Since runs are uniquely determined, the initial
n0 steps of the run ρ1 of A on α1 are identical to the first n0 steps of A on α0, and so ρ1 also
passes through f0 after n0 steps. But since α1 belongs to L too, it too is accepted by A. Thus
on input α1, A will visit a state in F infinitely often. That is, we may certainly choose an
n1 ∈ ω such that ρ1 passes through some state f1 ∈ F after n0 + n1 + 1 steps. Now consider
the stream α2 = bn0rbn1rbbb . . ., and analyze the run ρ2 of A on α2. Continuing like this, we
can find positive numbers n0, n1, . . . such that for every k ∈ ω, the stream

αk = bn0rbn1 . . . rbnkrbbb . . . ∈ L, for all k. (41)

Consider the stream
α = (bn0r)(bn1r) . . . (bnkr) . . .

Containing infinitely many r’s, α does not belong to L. Nevertheless, it follows from (41)
that the run ρ of A on α passes through the states f0, f1, . . . as described above. Since F is
finite, there is then at least one f ∈ F appearing infinitely often in this sequence. Thus we
have found an f ∈ F that is passed infinitely often by ρ, showing that A accepts α. This
gives the desired contradiction. �

Remark 4.20 Since it is easy to see that the complement

L = {α ∈ Cω | r ∈ Inf (α)}

of the language studied in Example 4.19 is recognized by a Büchi automaton, the example
also shows that the class of Büchi recognizable stream languages is not closed under taking
complementations. �

4.3 Nondeterministic automata

Nondeterministic automata generalize deterministic ones in that, given a state and a color,
the next state is not uniquely determined, and in fact need not exist at all.

Definition 4.21 Given an alphabet C, a nondeterministic C-automaton is a quadruple A =
〈A,∆,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, ∆ : A×C → ℘(A) its
transition function of A, and Acc ⊆ Aω its acceptance condition. �

As a consequence, the run of a nondeterministic automaton on a stream is no longer
uniquely determined either.

Definition 4.22 Given a nondeterministic automaton A = 〈A,∆,Acc, aI〉, we define the
relations → ⊆ A × C × A and � ⊆ A × C∗ × A in the obvious way: a

c→ a′ if a′ ∈ ∆(a, c),

a
ε
� a′ if a = a′, and a

wc
� a′ if there is a a′′ such that a

w
� a′′

c→ a′. A run of a nondeterministic
automaton A = 〈A,∆,Acc, aI〉 on an C-stream γ = c0c1c2 . . . is an infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �
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Now that runs are no longer unique, an automaton may have both successful and un-
successful runs on a given stream. Consequently, there is a choice to make concerning the
definition of the notion of acceptance.

Definition 4.23 A nondeterministic C-automaton A = 〈A,∆,Acc, aI〉 accepts a C-stream γ
if there is a successful run of A on γ. �

Further concepts, such as the language recognized by an automaton, the notion of equiv-
alence of two automata, and the Büchi, Muller and parity acceptance conditions, are defined
as for deterministic automata. Also, the transformations given in the Propositions 4.15, 4.16
and 4.17 are equivalence-preserving for nondeterministic automata just as for deterministic
one. Different from the deterministic case, however, is that nondeterministic Büchi automata
have the same accepting power as their Muller and parity variants.

Proposition 4.24 There is an effective procedure transforming a nondeterministic Muller
stream automaton into an equivalent nondeterministic Büchi stream automaton.

Proof. Let A = 〈A,∆,M, aI〉 be a nondeterministic Muller automaton. The idea underlying
the definition of the Büchi equivalent A′ is that A′, while copying the behavior of A, guesses
the set M = Inf (ρ) of a successful run of A, and at a certain (nondeterministically chosen)
moment confirms this choice by moving to a position of the form (a,M,∅). In order to make
sure that not too many streams are accepted, the device has to keep track which of the states
in M have been visited by A, resetting this counter to the empty set every time when all
M -states have been passed.

In some more detail, A′ consists of a copy of A, together with, for every set M ∈ M, a
part AM which, roughly spoken, corresponds to a copy of A from which all states outside of
M have been removed, and whose states record the part of M that recently has been visited.

A′ := A ∪
⋃

M∈M
{(a,M,P ) | a ∈M,P ⊆M},

a′I := aI

∆′(a, c) := ∆(a, c) ∪
⋃

M∈M
{(b,M,∅) | b ∈ ∆(a, c) ∩M}

∆′((a,M,P ), c) :=

{
{(b,M, P ∪ {a}) | b ∈ ∆(a, c) ∩M} if P ∪ {a} 6= M,
{(b,M,∅) | b ∈ ∆(a, c) ∩M} if P ∪ {a} = M.

F :=
⋃

M∈M
{(a,M,P ) ∈ A′ | P = ∅}.

We leave it as an exercise for the reader to verify that the resulting automaton is indeed
equivalent to A. qed

We now turn to the determinization problem for stream automata. In the case of automata
operating on finite words, it is not difficult to prove that nondeterminism does not really
add recognizing power: any nondeterministic automaton A may be ‘determinized’, that is,
transformed into an equivalent deterministic automaton Ad.
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Remark 4.25 Finite word automata (see Example 4.9) can be determinized by a fairly
simple subset construction.

Let A = 〈A,∆, F, aI〉 be a nondeterministic word automaton. A run of A on a finite word

w = c1 · · · cn is defined as a finite sequence a0a1 · · · an such that a0 = aI and ai
ci→ ai+1 for all

i < n. A accepts a finite word w if there is a successful run, that is, a run a0a1 · · · an ending
in an accepting state an.

Given such a nondeterministic automaton, define a deterministic automaton A+ as follows.
For the states of A+ we take the macro-states of A, that is, the nonempty subsets of A. The
deterministic transition function δ is given by

δ(P, c) :=
⋃
a∈P

∆(a, c).

In words, δ(P, c) consists of those states that can be reached from some state in P by making
one a-step in A. The accepting states of A+ are those macro-states that contain an accepting
state from A: F+ := {P ∈ A+ | P ∩ F 6= ∅}, and its initial state is the singleton {aI}.

In order to establish the equivalence of A and A+, we need to prove that for every word
w, A has an accepting run on w iff the unique run of A+ on w is successful. The key claim in
this proof is the following statement:

δ̂({aI}, w) = {a ∈ A | aI
w
�A a}. (42)

stating that δ̂({aI}, w) consists of all the states that A can reach from aI on input w. We
leave the straightforward inductive proof of (42) as an exercise for the reader.

The equivalence of A and A+ then follows by the following chain of equivalences, for any

finite word w: A+ accepts w iff δ̂({aI}, w) ∈ F+ iff δ̂({aI}, w) ∩ F 6= ∅ iff aI
w
�A a for some

a ∈ F iff A accepts w. �

Unfortunately, the class of Büchi automata does not admit such a determinization pro-
cedure. As a consequence of Proposition 4.24 above, and witnessed by the Examples 4.19
and 4.26, the recognizing power of nondeterministic Büchi automata is strictly greater than
that of their deterministic variants.

Example 4.26 For a nondeterministic Büchi automaton recognizing the language

L = {α ∈ Cω | r 6∈ Inf (α)}

of Example 4.19, consider the automaton given by the following picture:

����a0⇒ �������a1

	

b, r

-b 	

b

In general, the Büchi acceptance condition F ⊆ A of an automaton A is depicted by the set
of states with double circles. So in this case, F = {a1}. �



4-12 Stream automata

There is positive news as well. A key result in automata theory states that when we turn
to Muller and parity automata, nondeterminism does not increase recognizing power. This
result follows from Proposition 4.24 and Theorem 4.27 below.

Theorem 4.27 There is an effective procedure transforming a nondeterministic Büchi stream
automaton into an equivalent deterministic Muller stream automaton.

The proof of Theorem 4.27 will be given in the next section. As an important corollary
we mention the following Complementation Lemma.

Proposition 4.28 Let A be a nondeterministic Muller or parity automaton. Then there is
an automaton A of the same kind, such that Lω(A) is the complement of the language LωA.

Leaving the proof of this proposition as an exercise for the reader, we finish this section
with a summary of the relative power of the automata concept in the diagram below. Arrows
indicate the reducibility of one concept to another, ‘D’ and ‘ND’ are short for ‘deterministic’
and ‘nondeterministic’, respectively.

D Büchi =⇒ D Muller ⇐⇒ D parity

⇓ m m

ND Büchi ⇐⇒ ND Muller ⇐⇒ ND parity

Having established these equivalences we naturally arrive at the following definition.

Definition 4.29 Let C be a finite set. A C-stream language L ⊆ Cω is called ω-regular if
there exists a C-stream automaton A = (A,∆,Ω, aI) such that L = Lω(A), where A is either
a (deterministic/nondeterministic) Muller or parity automaton, or a nondeterministic Büchi
automaton. �

4.4 Determinization of stream automata

This section is devoted to the proof of Theorem 4.27, which is based on a modification of the
subset construction of Remark 4.25.

I more information on determinization/simulation to be supplied

Remark 4.30 This modification will have to be fairly substantial: As we will see now,
Theorem 4.27 cannot be proved by a straightforward adaptation of the subset construction
discussed in Remark 4.25. Consider the Büchi automaton A given by the following picture:

����a0⇒ �������a1

	

b, r

-r 	

b
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We leave it for the reader to verify that Lω(A) consists of those streams of bs and rs that
contain at least one and at most finitely many red items. In particular, the stream rω =
rrrrr . . . is rejected, while the stream rbω = rbbbb . . . is accepted.

Now consider a deterministic automaton A+ of which the transition diagram is given by
the subset construction. Then the run of the automaton A+ on rω is identical to its run on
rbω:

a0{a0, a1}{a0, a1}{a0, a1} . . .

In other words, no matter which acceptance condition we give to A+, the automaton will
accept either both rω and rbω, or neither. In either case Lω(A+) will be different from Lω(A).

As a matter of fact, it will be instructive to see in a bit more detail how the runs of A on
rω and rbω, respectively, appear as ‘traces’ in the run of A+ on these two streams:

&%
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Clearly, where the second run contains one single trace that corresponds to a successful
run of the automaton A, in the first run, all traces that reach a successful state are aborted
immediately. These two pictures clarify the subtle but crucial distinctions that get lost if we
try to determinize via a straightforward subset construction. �

In Safra’s modification of the subset construction, the states of the deterministic au-
tomaton are finite, structured collections of macro-states; more specifically, if we order these
macro-states by the inclusion relation we obtain a certain tree structure. The key idea un-
derlying this modification is that at each step of the run, those elements of a macro-state
that are accepting (i.e., members of the Büchi set of the original automaton), will be given
some special treatment. Ultimately this enables one to single out the runs with a sequence of
macro-states containing a good trace (that is, an infinite sequence of states constituting an
accepting run of the nondeterministic automaton).

For the formal definition of Safra trees, we recall that we call two distinct nodes in a tree
are called siblings if they have the same parent, and that, where � denotes the parent-child
relation, its transitive closure denotes the ancestor/descendant relation. That is, if s�+ t we
call s a descendant of t, and t an ancestor of s. Furthermore, we recall that, where s and t
are distinct nodes that are not related by the ancestor/descendant relation, there is a unique
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pair of siblings (s′, t′) such that s and t are either equal to or descendants of, respectively, s′

and t′; we call this pair the ancestral sibling pair of (s, t).

Definition 4.31 An ordered tree is a structure 〈S, r,�, <H〉 such that 〈S,�〉 is a tree with
root r; � is the ‘child-of’ relation, with s� t denoting that s is a child of t; and <H is a sibling
ordering relation, that is, a strict partial order on S that totally orders the children of every
node; if s <H t we may say that s is older than t. Given two distinct nodes s and t such that
neither s �∗ t nor t �∗ s, we say that s is to the left of t if the unique ancestral sibling pair
(s′, t′) of (s, t) is such that s′ <H t′.

A Safra tree over a setB is a pair (S,L) where S is a finite ordered tree, and L : S → ℘+(B)
is a labelling assigning a non-empty macrostate L(s) to every node s in such a way that (i)
for every node s, the set

⋃
{L(t) | t� s} is a proper subset of L(s), and (ii) L(s) ∩ L(t) = ∅

if s and t are siblings. �

It is not hard to see that for any Safra tree (S,L) and for every state b ∈ B, b belongs
to some label set of the tree iff it belongs to the label of the root. And, if b belongs to the
label of the root, then there is a unique node s ∈ S, the so-called lowest node of b, such that
b ∈ L(s) but s has no child t with b ∈ L(t). From these observations one easily derives that

|S| ≤ |B|, (43)

for every Safra tree over the set B.

We now turn to the details of the Safra construction.

Definition 4.32 Let B be a nondeterministic Büchi automaton B = 〈B, bI ,∆, F 〉. We will
define a deterministic Muller automaton BS = 〈BS , aI , δ,M〉.

Assume that B has n states, and let N := {1, . . . , 2n}; we will think of N as the set of
(potential) nodes of a Safra tree. The carrier BS will consist of the collection of all colored
Safra trees over B, that is, all triples (S,L, θ) such that (S,L) is a Safra tree over B with
S ⊆ N , and θ is a map coloring nodes of the tree either white or green. The initial state of
BS will be the Safra tree consisting of a single white node 1 labelled with the singleton {bI}.

For the transition function on BS , take an arbitrary colored Safra tree (S,L, θ). On input
c ∈ C, the deterministic transition function δ on BS transforms (S,L, θ) into a new colored,
labelled Safra tree, by performing the sequence of actions below. (Note that at intermediate
stages of this process, the structures may violate the conditions of Safra trees.)

1. Make macro-move Apply the power set construction to the individual nodes: for each
node s, replace its label L(s) ⊆ B with the set L′(s) :=

⋃
a∈L(s) ∆(a, c).

2. Separate accepting states For each node s ∈ S such that L′(s) contains accepting states,
add a new3 node s′ ∈ N \ S to S as the youngest child of s, and label s′ with the set
 L′(s′) := L′(s) ∩ F . (Such an s′ can be canonically chosen as the smallest n ∈ N such
that n 6∈ S).

3Observe that by (43) and the definition of N , there will always be sufficiently many nodes in N such that
at least one element of N is left as a ‘spare’ node, possibly to be used at a later stage.
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3. Merge traces For each node s, remove those members from its label that already belong to
the label of a state to the left of s (3a). After that remove all nodes with empty labels
(3b).

4. Mark successful nodes For each (remaining) node s of which the label is identical to the
union of the labels of its children, remove all proper descendants of s, and mark s by
coloring it green. All other nodes are colored white.

For the Muller acceptance conditionM of BS , put M ∈M if there is some s ∈ {0, . . . , 2n}
such that s is present as a node of every tree in M , and s is colored green in some tree in M .
�

Example 4.33 I Example to be supplied

�

The following proposition states that the size of the Safra automaton is exponentially
bounded.

Proposition 4.34 Let B be a nondeterministic Büchi automaton with n states. Then |BS |
has at most 2O(n∗log(n)) states.

Proof. We will prove the Proposition by showing there are at most (2n+1)7n coloured Safra
trees over a set B of size n. For this purpose we represent coloured Safra trees in terms of
functions. Recall that N = {1, . . . , 2n} denotes the set of (potential) nodes of a Safra tree.

• To start with, the parent relation � of a Safra tree can be represented by a parent
function p : N → N ∪ {0} which maps every non-root node in the tree to its unique
parent, and every other element of N to 0. There are at most (2n+ 1)2n of such maps.

• Similarly, the sibling order <H can be represented by a map from N → N ∪ {0} which
maps any node which has older siblings to the youngest of these, and every other node
to 0. Again, there at most (2n+ 1)2n of such maps.

• The macro-state labelling L of a Safra can be represented by the function m : B →
N ∪ {0} which maps a state b ∈ B to 0 if b 6∈ L(r) (i.e., b is not present in the Safra
tree), and to the unique-lowest node s in the tree such that b ∈ L(s), otherwise. The
number of these maps is therefore bounded by (2n+ 1)n.

• Finally, for reasons of similarity, the colouring map θ can be represented as a map from
N to N ∪ {0} which maps s ∈ N to 0 if it coloured green, and to 1 if it is either white
or not present in the tree. Hence there are at most (2n+ 1)2n of such maps.

Every coloured Safra tree can thus be represented as a quadruple of maps from either N
or B to N ∪ {0}, and so the number of these trees is bounded by (2n + 1)2n ∗ (2n + 1)2n ∗
(2n+ 1)n ∗ (2n+ 1)2n = (2n+ 1)7n. qed

It is obvious from the construction that BS is a deterministic automaton, so what is left
of the proof of Theorem 4.27 is to establish the equivalence of B and BS .
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Proposition 4.35 Let B be a nondeterministic Büchi automaton. Then

Lω(B) = Lω(BS).

Proof.(Sketch) For the inclusion ⊆, assume that there is a successful run ρ = b0b1 . . . of B
on some C-stream γ = c0c1 . . . . Consider the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on γ. Here each (Si, Li, θi) is a Safra tree with labeling Li and coloring θi. We claim
that there is an object s which after some initial phase belongs to each Safra tree of σ, and
which is marked green infinitely often. The basic idea underlying the proof of this claim is to
‘follow’ the run ρ as a trace through the successive trees of σ.

First note that at every stage i, the state bi of ρ belongs to the label Li(ri) of the root
ri of the Safra tree Si. It follows that the root always has a non-empty label, and hence it
is never removed; thus we have r0 = r1 = . . ., and so, with r := r0, we have already found a
node r such that r is present in every Safra tree in Inf (σ). Now if r is colored green infinitely
often, we are done.

So suppose that this is not the case. In other words, after a certain moment i, r will no
longer be marked. Since ρ = (bi)i∈ω is by assumption a successful run of B, it passes infinitely
often through a successful state. Hence we may consider the first time j > i for which bj is
an accepting state. But if bj ∈ F , then in step 2 of stage j it has been put in the label set of
a new child, say, s, of r. In step 3a, bj may be removed from the label set of s, but only in
case it was already present in the label set of an older sibling of s. It is not hard to see that
in step 3b or 4, bj will not be removed from the label sets it belongs to after step 3a.

We claim that in fact

for all k ≥ j, bk ∈ Lk(sk), for some child sk of r. (44)

The proof of this claim rests on the observation that bk can only fail to be a member of
the set

⋃
{Lk(s) | s�k r} in case r is a successful node in Sk, and we assumed that this was

not the case. (Here �k denotes the child relation in the Safra tree Sk.) Now note that the
merging of traces (as described in step 3a of the procedure) may cause states to be moved to
the label set of a sibling, but only to an older one. Such a shift can thus only happen finitely
often, so that after some stage j1 there is a node s such that

for all k > j1 : s ∈ Sk, s�k r, and bk ∈ Lk(s). (45)

We can now repeat the argument with this s taking the role of r: either s itself is marked
green infinitely often, or eventually, at some stage l, the ρ-state bl ∈ F will be placed at the
next level, and remain there. Since the depth of the Safra trees involved is bounded, there
must be some node s which after some initial phase belongs to each Safra tree in σ, and which
is marked infinitely often.

For the opposite inclusion ⊇, suppose that the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on the input stream γ = c0c1 . . . is successful. Then by definition there is some node
s ∈ N = {0, . . . , 2n} which after some initial phase will belong to each Safra tree in σ and
which will subsequently be marked green infinitely often, say at the stages k1 < k2 < · · · .
For each i > 0, let Ai denote the macro-state of s at stage ki, that is: Ai := Lki(s).
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For natural numbers p and q, let γ[p, q) denote the finite word cp · · · cq−1, so that γ is
equal to the infinite concatenation

γ = γ[0, k1) · γ[k1, k2) · γ[k2, k3) · · ·

Since our construction is a refinement of the standard subset construction of Remark 4.25,
by (42) it easily follows from the definitions of δ that for every state a ∈ A1 there is a
γ[0, k1)-labeled path from bI to a, or briefly:

for all a ∈ A1 we have bI
γ[0,k1)
� a. (46)

With a little more effort, crucially involving the conditions for marking nodes, and the
rules governing the creation and maintenance of nodes, one may prove that

for all i > 0 and for all a ∈ Ai+1 there is an a′ ∈ Ai such that a′
γ[ki,ki+1)
�F a. (47)

Here a′
γ[ki,ki+1)
�F a means that there is a γ[ki, ki+1)-labelled path from a′ to a which passes

through some state in F . Details of this proof are left as an exercise to the reader.
The remainder of the proof consists of finding a successful run of B on γ as the concate-

nation of a run segment given by (46) and infinitely many run segments given by (47). For
this we use König’s Lemma.

Defining A0 := {bI}, we will construct a tree, all of whose nodes are pairs of the form
(a, i) with a ∈ Ai. As the (unique) parent of a node (a, i+ 1) we pick one of the pairs (a′, i)
given by (46) (in case i = 0) or (47) (in case i > 0). Obviously this is a well-formed, infinite,
finitely branching tree. So by König’s Lemma, there is an infinite branch (a0, 0)(a1, 1) · · · .
By construction, we have a0 = bI , while for each i ≥ 0 there is a γ[ki, ki+1)-labelled path in B
from ai to ai+1 which passes through some accepting state of B. The infinite concatenation
of these paths gives a run of B on γ, which visits infinitely often an accepting state of B, and
hence by finiteness of B, it visits some state of B infinitely often. Clearly then this run is
accepting. qed

4.5 Logic and automata

I discuss the relation between stream automata, the linear µ-calculus, and monadic

second-order logic;

I discuss linear time logic

4.6 A coalgebraic perspective

In this section we introduce a coalgebraic perspective on stream automata. We have two
reasons for doing so. First, we hope that this coalgebraic presentation will facilitate the
introduction, further on, of automata operating on different kinds of structures. And second,
we also believe that the coalgebraic perspective, in which the similarities between automata
and the objects they classify comes out more clearly, makes it easier to understand some of
the fundamental concepts and results in the area.

In this context, it makes sense to consider a slightly wider class than streams only.
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Definition 4.36 A C-flow is a pair S = 〈S, σ〉 with σ : S → C × S. Often we will write
σ(s) = (σC(s), σ0(s)). If we single out an (initial) state s0 ∈ S in such a structure, we obtain
a pointed C-flow (S, s0). �

Example 4.37 Streams over an alphabet C can be seen as pointed C-flows: simply identify
the word γ = c0c1c2 . . . with the pair (〈ω, λn.(cn, n+1)〉, 0). Conversely, with any pointed flow
〈S, s〉 we may associate a unique stream γS,s by inductively defining s0 := s, si+1 := σ0(si),
and putting γS(n) := σC(sn). �

It will be instructive to define the following notion of equivalence between flows. As its
name already indicates, we are dealing with the analog of the notion of a bisimulation between
two Kripke models. Since flows, having a deterministic transition structure, are less complex
objects than Kripke models, the notion of bisimulation is also, and correspondingly, simpler.

Definition 4.38 Let S and S′ be two C-flows. Then a nonempty relation Z ⊆ S × S′ is a
bisimulation if the following holds, for every (s, s′) ∈ Z:

(color) σC(s) = σ′C(s′);

(successor) (σ0(s), σ′0(s′)) ∈ Z.

Two pointed flows (S, s) and (S′, s′) are called bisimilar, notation: S, s ↔ S′, s′ if there is
some bisimulation Z linking s to s′. In case the flows S and S′ are implicitly understood, we
may drop reference to them and simply call s and s′ bisimilar. �

As an example, it is not hard to see that any pointed flow (S, s) is bisimilar to the stream
γS,s that we may associate with it (see Example 4.37). Restricted to the class of streams,
bisimilarity means identity.

Definition 4.39 A stream is called regular if it is bisimilar to a finite pointed flow. �

Associated is a new perspective on nondeterministic stream automata which makes them
very much resemble these flows. Roughly speaking the idea is this. Think of establishing a
bisimulation between two pointed flows in terms of one structure 〈A, aI , α〉 classifying the
other, 〈S, sC , σ〉.

Now on the one hand make a restriction in the sense that the classifying flow must be
finite, but on the other hand, instead of demanding its transition function to be of the form
α : A→ C×A, allow objects α(a) to be sets of pairs in C×A, rather than single pairs. That
is, introduce non-determinism by letting the transition map ∆ of A be of the form

∆ : A→ ℘(C ×A). (48)

Remark 4.40 This presentation (48) of nondeterminism is completely equivalent to the one
given earlier. The point is that there is a natural bijection between maps of the above kind,
and the ones given in Definition 4.21 as the transition structure of nondeterministic automata:

A→ ℘(C ×A) ∼= (A× C)→ ℘(A). (49)
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To see why this is so, an easy proof suffices. Using the principle of currying we can show that

A→ ((C ×A)→ 2) ∼= (A× C ×A)→ 2 ∼= (A× C)→ (A→ 2),

where the first and last set can be identified with respectively the left and right hand side of
(49) using the bijection between subsets and their characteristic functions.

Concretely, we may identify a map ∆ : (A×C)→ ℘(A) with the map ∆′ : A→ ℘(C×A)
given by

∆′(a) := {(c, a′) | a′ ∈ ∆(a, c)}. (50)

�

Thus we arrive at the following reformulation of the definition of nondeterministic au-
tomata. Note that with this definition, a stream automaton can be seen as a kind of ‘multi-
stream’ in the sense that every state harbours a set of potential ‘local realizations’ as a
flow. Apart from this, an obvious difference with flows is that stream automata also have an
acceptance condition.

Definition 4.41 A nondeterministic C-stream automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A→ ℘(C×A) is the transition function, Acc ⊆ Aω is the acceptance condition,
and aI ∈ A is the initial state of the automaton. �

Finally, it makes sense to formulate the notion of an automaton accepting a flow in terms
that are related to that of establishing the existence of a bisimulation. The nondeterminism
can nicely be captured in game-theoretic terms — note however, that here we are dealing
with a single player only.

In fact, bisimilarity between two pointed flows can itself be captured game-theoretically,
using a trivialized version of the bisimilarity game for Kripke models of Definition 1.26.
Consider two flows A and S. Then the bisimulation game B(A,S) between A and S is defined
as a board game with positions of the form (a, s) ∈ A×S, all belonging to ∃. At position (a, s),
if a and s have a different color, ∃ loses immediately; if on the other hand αC(a) = σC(s),
then as the next position of the match she ‘chooses’ the pair consisting of the successors of a
and s, respectively. These rules can concisely be formulated as in the following Table:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {(α0(a), σ0(s)) | αC(a) = σC(s)}

Finally, the winning conditions of the game specify that ∃ wins all infinite games. We leave
it for the reader to verify that a pair (a, s) ∈ A× S is a winning position for ∃ iff a and s are
bisimilar.

In order to proceed, however, we need to make a slight modification. We add positions
of the form (α, s) ∈ (C × A) × S, and insert an ‘automatic’ move immediately after a basic
position, resulting in the following Table.

Position Player Admissible moves

(a, s) ∈ A× S - {(α(a), s)}
(α, s) ∈ (C ×A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}



4-20 Stream automata

The acceptance game of a nondeterministic automaton A and a flow S can now be formu-
lated as a natural generalization of this game.

Definition 4.42 Given a nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 and a
pointed flow S = 〈S, s0, σ〉, we now define the acceptance game A(A, S) as the following board
game.

Position Player Admissible moves

(a, s) ∈ A× S ∃ {(α, s) ∈ (C ×A)× S | α ∈ ∆(a)}
(α, s) ∈ (C ×A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}

Table 7: Acceptance game for nondeterministic stream automata

Its positions and rules are given in Table 7, whereas the winning conditions of infinite
matches are specified as follows. Given an infinite match of this game, first select the sequence

(a0, s0)(a1, s1)(a2, s2) . . .

of basic positions, that is, the positions reached during play that are of the form (a, s) ∈ A×S.
Then the match is winning for ∃ if the ‘A-projection’ a0a1a2 . . . of this sequence belongs to
Acc. �

Definition 4.43 A nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts a
pointed flow S = 〈S, s0, σ〉 if the pair (aI , s0) is a winning position for ∃ in the game A(A, S).
�

The following proposition states that the two ways of looking at nondeterministic au-
tomata are equivalent.

Proposition 4.44 Let A = 〈A, aI ,∆,Acc〉, with ∆ : (A× C)→ ℘(A) be a nondeterministic
C-automaton, and let A′ be the nondeterministic C-stream automaton 〈A, aI ,∆′,Acc〉, where
∆′ : A→ ℘(C ×A) is given by (50). Then A and A′ are equivalent.

In the sequel we will identify the two kinds of nondeterministic automata, speaking of
the coalgebraic presentation 〈A, aI ,∆′ : A → ℘(C × A),Acc〉 of an automaton 〈A, aI ,∆ :
(A× C)→ ℘(A),Acc〉.

Notes

The idea to use finite automata for the classification of infinite words originates with Büchi.
In [4] he used stream automata with (what we now call) a Büchi acceptance condition to
prove the decidability of the second-order theory of the natural numbers (with the successor
relation). In the subsequent development of the theory of stream automata, other acceptance
conditions were introduced. The Muller condition is named after the author of [15]. The
invention of the parity condition, which can be seen as a refinement of the Rabin condition,
is usually attributed to Emerson & Jutla [6], Mostowski [14], and/or Wagner.



Lectures on the modal µ-calculus 4-21

The first construction of a deterministic equivalent to a nondeterministic Muller automa-
ton was given by McNaughton [12]. The construction we presented in section 4.4 is due to
Safra [20]. Finally, the coalgebraic perspective on stream automata presented in the final
section of this chapter is the author’s.

Exercises

Exercise 4.1 Provide Büchi automata recognizing exactly the following stream languages:

(a) La = {α ∈ {a, b, c}ω | a and b occur infinitely often in α}

(b) Lb = {α ∈ {a, b, c}ω | any a in α is eventually followed by a b}

(c) Lc = {α ∈ {a, b}ω | between any two a’s is an even number of b’s}

(d) Ld = {α ∈ {a, b, c}ω | ab and cc occur infinitely often in α}

Exercise 4.2 Let C be a finite set. Show that the class of ω-regular languages over C is
closed under the Boolean operations, i.e., show that

(a) If L ⊆ Cω is ω-regular then its complement L := {γ ∈ Cω | γ 6∈ L} is ω-regular.

(b) If L1 and L2 are ω-regular C-stream languages, then L1 ∪ L2 is ω-regular.

(c) If L1 and L2 are ω-regular C-stream languages, then L1 ∩ L2 is ω-regular.

Exercise 4.3 Observe that Büchi automata can also be seen as finite automata operating
on finite words (see Example 4.9.

(a) Show the following, for any deterministic Büchi automaton A:

Lω(A) = {α ∈ Σω | infinitely many prefixes of α belong to L(A)}.

(b) Does this hold for nondeterministic Büchi automata as well?

Exercise 4.4 Let C and D be finite sets and let f : C → D be a function. The function
f can be extended to a function f : Cω → Dω in the obvious way by putting f(γ) :=
f(c0)f(c1)f(c2) . . . ∈ Dω for any C-stream γ ∈ Cω. For a given C-stream language L ⊆ Cω

we define
f(L) := {f(γ) | γ ∈ L} ⊆ Dω.

(a) Show that L ⊆ Cω is ω-regular implies f(L) ⊆ Dω is ω-regular.

(b) Show that there is a C-stream language L ⊆ Cω such that L = Lω(A) for some de-
terministic Büchi automaton A and such that f(L) ⊆ Dω is not recognizable by any
deterministic Büchi automaton.

Exercise 4.5 Prove that nondeterministic Büchi automata have the same recognizing power
as their Muller variants by showing that the automata A′ and A in the proof of Proposition 4.24
are indeed equivalent.
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Exercise 4.6 Consider the language Ld of exercise 4.1.

(a) Give a clear description of the complement Ld of Ld.

(b) Give a nondeterministic Büchi automaton recognizing exactly the language Ld.

(c) Prove that there is no deterministic Büchi automaton recognizing the language Ld.
(Hint: use the theorem from Exercise 4.3.)

Exercise 4.7 Provide deterministic Muller automata recognizing the following languages:

(a) Ld of exercise 4.1.

(b) La = {α ∈ {a, b, c}ω | between every pair of a’s is an occurrence of bb or cc }.

Exercise 4.8 (regularity) Let C be a finite set, and let L ⊆ Cω be a stream language over
C. Prove that if L is ω-regular, then it contains a stream of the form uvω where u ∈ C∗ and
v ∈ C+.

Exercise 4.9 Describe the languages that are recognized by the following Muller automata
(presented in tabular form, with ⇒ indicating the initial state):

(a)

A a b

⇒ q0 q1 q2

q1 q0 q2

q2 q1 q0

with F := {{q0, q1}, {q0, q2}}.

(b) The same automaton as in (a) but with F := {{q1, q2}, {q0, q1, q2}}.

(c)

A a b c

⇒ q0 q1 q0 q0

q1 q0 q2 q0

q2 q0 q0 q3

q3 q0 q0 q0

with F := {{q0}, {q0, q1}, {q0, q1, q2}}.

Exercise 4.10 Prove (47) in the proof of Proposition 4.35. That is, show that

for all i > 0 and for all a ∈ Ai+1 there is an a′ ∈ Ai such that a′
γ[ki,ki+1)
�F a.

Can you also prove that, conversely,

for all i > 0 and for all a ∈ Ai there is an a′ ∈ Ai+1 such that a′
γ[ki,ki+1)
�F a?
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