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5 Parity games

A large part of the theory of modal fixpoint logic involves nontrivial concepts and results
from the theory of infinite games. In this chapter we discuss some of the highlights of this
theory in a fair amount of detail. This allows us to be rather informal about game-theoretic
concepts in the rest of the notes.

5.1 Board games

The games that we are dealing with here can be classified as board or graph games. They are
played by two agents, here to be called 0 and 1.

Definition 5.1 If � 2 {0, 1} is a player, then � denotes the opponent 1� � of �. �

A board game is played on a board or arena, which is nothing but a directed graph, the
nodes of which are usually referred to as positions. A match or play of the game consists
of the two players moving a token across the board, following the edges of the graph. To
regulate this, the collection of graph nodes, usually referred to as positions of the game, is
partitioned into two sets, one for each player. Thus with each position we may associate a
unique owner : the player whose turn it is to move when the token lies on this position.

Definition 5.2 A board or arena is a structure B = hB0, B1, Ei, such that B0 and B1

are disjoint sets, and E ✓ B
2, where B := B0 [ B1. We will make use of the notation

E[p] for the set of admissible or legitimate moves from a board position p 2 B, that is,
E[p] := {q 2 B | (p, q) 2 E}. Positions not in E[p] will sometimes be referred to as illegitimate
moves with respect to p. A position p 2 B is a dead end if E[p] = ?. If p 2 B, we let �p
denote the (unique) player such that p 2 B�p , and say that p belongs to �p, or that it is �p’s
turn to move at p. �

Remark 5.3 Occasionally it will be convenient to represent a board in an alternative yet
equivalent manner, viz., as a triple B = hB,E,�i such that (B,E) is a graph and � : B !
{0, 1} is a map assigning a player to each position in B. It is obvious how to switch from one
presentation to another. �

A match of the game may in fact be identified with the sequence of positions visited during
play, and thus corresponds to a path through the graph. We refer to the Appendix A for some
notation concerning paths.

Definition 5.4 A path through a board B = hB0, B1, Ei is a nonempty (finite or infinite)
sequence ⇡ 2 B

1 such that E⇡i⇡i+1 whenever applicable. A full or complete match or play
through B is either an infinite B-path, or a finite B-path ⇡ ending with a dead end (i.e.
E[last(⇡)] = ?).

A partial match is a finite path through B that is not a full match; in other words, the
last position of a partial match is not a dead end. We let PM denote the set of all partial
matches, and PM� the set of partial matches such that � is the player whose turn it is to
move at the last position of the match. In the sequel, we will denote this player as �⇡; that
is, �⇡ := �last(⇡). �
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Each full or completed match is won by one of the players, and lost by their opponent;
that is, there are no draws. A finite match ends if one of the players gets stuck, that is, is
forced to move the token from a position without successors. Such a finite, completed, match
is lost by the player who got stuck.

If neither player ever gets stuck, an infinite match arises. The flavor of a board game is
very much determined by the winning conditions of these infinite matches.

Definition 5.5 Given a board B, a winning condition is a map W : B
! ! {0, 1}. An

infinite match ⇡ is won by W (⇡). A board game is a structure B = hB0, B1, E,W i such that
hB0, B1, Ei is a board, and W is a winning condition on B. �

Although the winning condition given above applies to all infinite B-sequences, it will
only make sense when applied to matches. We have chosen the above definition because it is
usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The
following definition introduces some terminology and notation.

Definition 5.6 An initialized board game is a pair consisting of a board game B and a
position q on the board of B; such a pair is usually denoted B@q.

Given a (partial) match ⇡, its first element first(⇡) is called the starting position of the
match. We let PM�(q) denote the set of partial matches for � that start at position q. �

It is sometimes convenient to represent an (initialised) game by its game tree.

Remark 5.7 Let a be a position in a board game B = (B0, B1, E,W ). The game tree of B
at a is given as the tree TB

a := (PM(b), ~E, a), where ~E is the relation

~E := {(⇡,⇡ · b) | b 2 E[last(⇡)]},

and a is the one-node match starting and ending at a. That is, TB
a is the unravelling of the

frame (B,E) around a. Clearly, full matches of B@a correspond to branches of TB
a , with finite

matches corresponding to childless nodes, and infinite matches to infinite branches.
One may think of TB

a itself as a board game BT
a by partitioning its nodes in the obvious

way: PM(a) = PM0(a) ] PM1(a), and formulating the obvious winning conditions. We will
usually confine our attention to the version of this game that is initialised at the root a. �

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a
player is a method that the player uses to decide how to continue partial matches when it
is their turn to move. More precisely, a strategy is a function mapping partial plays for the
player to new positions. It is a matter of definition whether one requires a strategy to always
assign moves that are legitimate, or not; here we will not make this requirement. For the
following definition, recall that < denotes the initial segment relation on sequences (and thus,
on matches).
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Definition 5.8 Given a board game B = hB0, B1, E,W i and a player �, a �-strategy, or a
strategy for �, is a map f : PM� ! B. In case we are dealing with an initialized game B@q,
then we may take a strategy to be a map f : PM�(q)! B. A match ⇡ is consistent with or
guided by a �-strategy f if for any partial match ⇡0 < ⇡ with last(⇡0) 2 B�, the next position
on ⇡ (after ⇡0) is indeed the element f(⇡0).

A �-strategy f is surviving in B@q if the moves that it prescribes to f -guided partial
matches in PM�@q are always admissible to �, and winning for � in B@q if in addition all
f -guided full matches starting at q are won by �. A position q 2 B is winning for � if � has a
winning strategy for the game B@q; the collection of all winning positions for � in B is called
the winning region for � in B, and denoted as Win�(B). �

Intuitively, f being a surviving strategy in B@q means that � never gets stuck in an
f -guided match of B@q, and so guarantees that � can stay in the game forever.

Remark 5.9 Where f is a surviving for player � in B@a, we may represent f as the pruned
subtree of the game tree TB

a that is based on those nodes that correspond to f -guided matches
of B@a. In this so-called strategy tree Tf

a we have

~Ef [⇡] :=

⇢
~E[⇡] if ⇡ 2 PM�

{⇡ · f(⇡)} if ⇡ 2 PM�.

for any node ⇡ 2 PM(a). �

Convention 5.10 Observe that we allow strategies that prescribe illegitimate moves. In
practice, it will often be convenient to extend the definition of a strategy even further to
include maps f that are partial in the sense that they are only defined on a proper subset of
PM�. We will only permit ourselves such a sloppiness if we can guarantee that f(⇡) is defined
for every ⇡ 2 PM� that is consistent with the partial �-strategy f , so that the situation where
the partial strategy actually would fail to suggest a move, will never occur.

It is easy to see that a position in a game B cannot be winning for both players. On the
other hand, the question whether a position p is always a winning position for one of the
players, is a rather subtle one. Observe that in such games the two winning regions partition
the game board.

Definition 5.11 The game B on the board B is determined if Win0(B)[Win1(B) = B; that
is, each position is winning for one of the players. �

It turns out that the axiom of choice implies the existence of infinite games that admit
positions from which neither player has a winning strategy.

I Add some more detail, including a remark on the axiom of determinacy in set theory.

In principle, when deciding how to move in a match of a board game, players may use
information about the entire history of the match played thus far. However, it will turn out
to be advantageous to work with strategies that are simple to compute. Particularly nice
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are so-called positional strategies, which only depend on the current position (i.e., the final
position of the partial play). Although their importance is sometimes overrated, positional
strategies are convenient to work with, and they will be critically needed in the proofs of some
of the most fundamental results in the automata-theoretic approach to fixpoint logic.

Definition 5.12 A strategy f is positional or history-free if f(⇡) = f(⇡0) for any ⇡,⇡0 with
last(⇡) = last(⇡0). �

Convention 5.13 A positional �-strategy may be represented as a map f : B� ! B.

As a slight generalisation of positional strategies, finite-memory strategies can be com-
puted using only a finite amount of information about the history of the match. More details
can be found in Exercise 5.2.

Before finishing this section we note that any set of positions on a board naturally induces
a subboard, based on the restricted edge relation, and similarly for games.

Definition 5.14 Given a board B = hB0, B1, Ei, a subset A ✓ B determines the following
subboard BA := hA \ B0, A \ B1, E�Ai, where E�A := E \ (A ⇥ A) is the restriction of E to
A. Similarly, if W : B! ! {0, 1} is a winning condition on B, we let W�A : A! ! {0, 1}
denote the restriction of W to the set A

! ✓ B
!, and with B = hB0, B1, E,W i, we define

BA := hA \B0, A \B1, E�A,W�Ai as the subgame induced by A. �

Note that, in the setting of this definition, a position b 2 A may be a dead end in BA but
not in B. More in general, a winning strategy for one of the players in BA@b is not necessarily
a winning strategy for this player in B@b.

5.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning conditions
in terms of the set of positions that occur infinitely often in a given match. But in the case of
an infinite board, there may be matches in which no position occurs infinitely often (or more
than once, for that matter). Nevertheless, we may still define winning conditions in terms of
objects that occur infinitely often, if we make use of finite colorings of the board. If we assign
to each position b 2 B a color, taken from a finite set C of colors, then we may formulate
winning conditions in terms of the infinite color sequence induced by an infinite match.

Definition 5.15 A coloring of B is a function � : B ! C assigning to each position p 2 B

a color �(p) taken from some finite set C of colors. By putting �(p0p1 · · · ) := �(p0)�(p1) · · ·
we can naturally extend such a coloring � : B ! C to a map � : B! ! C

!. �

Now if � : B ! C is a coloring, for any infinite sequence ⇡ 2 B
!, the map � � ⇡ 2 C

!

forms the associated sequence of colors. Most if not all interesting types of graph games have
winning conditions that can be expressed in terms of this induced sequence. An interesting
example is given by the so-called regular games, that is, board games where the winning
condition is given as an !-regular language over some colouring of the board.
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Definition 5.16 An infinite game B = hB0, B1, E,W i is called (!-)regular if there exists
an !-regular language L over some finite alphabet C and a colouring � : B ! C, such that
player 0 wins a match ⇡ = (pi)i<! 2 B

! precisely if the induced sequence (�(pi))i<! 2 C
!

belongs to L. �

In Exercise 5.2 the reader is asked to prove that these regular games are determined,
and that we may assume that the winning strategies of each player in a regular game are
finite-memory strategies.

A special kind of regular game is given by the Muller game. Here, the definition of the
winning condition is based on the observation that if an infinite game has an associated
colouring, then for any infinite match there must be a nonempty set of colours that occur
infinitely often in this stream.

Definition 5.17 Let B be a board and � : B ! C a coloring of B. Given an infinite sequence
⇡ 2 B

!, we let Inf �(⇡) denote the set of colors that occur infinitely often in the sequence
� � ⇡.

A Muller condition is a collection M ✓ }(C) of subsets of C. The corresponding winning
condition is defined as the following map WM : B! ! {0, 1}:

WM(⇡) :=

⇢
0 if Inf �(⇡) 2M
1 otherwise.

A Muller game is a board game of which the winning conditions are specified by a Muller
condition. �

In words, player 0 wins an infinite match ⇡ = p0p1 · · · if the set of colors one meets
infinitely often on this path, belongs to the Muller collection M. It is not di�cult to see
that Muller games can be presented as regular games, and thus inherit the properties of
determinacy and the existence of winning strategies that require only a finite amount of
memory.

These results becomes even nicer if the Muller condition allows a formulation in terms of
a priority map. In this case, as colors we take natural numbers. Note that by definition of a
coloring, the range ⌦[B] of the coloring function ⌦ is finite. This means that every nonempty
subset of ⌦[B] has a maximal element. Hence, every match determines a unique natural
number, namely, the ‘maximal color’ that one meets infinitely often during the match. Now
the parity winning condition states that the winner of an infinite match is 0 if this number is
even, and 1 if it is odd. More succinctly, we formulate the following definition.

Definition 5.18 Let B be some set; a priority map on B is a coloring ⌦ : B ! !, that
is, a map of finite range. A parity game is a board game B = hB0, B1, E,W⌦i in which the
winning condition is given by

W⌦(⇡) := max(Inf ⌦(⇡)) mod 2.

Such a parity game is usually denoted as B = hB0, B1, E,⌦i. �
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I Many examples

As a variation of the above parity game, we sometimes consider a version where the
priority map is only partial.

Definition 5.19 Let B = (B,E,�) be a board. A partial priority map ⌦ for B is a partial

map ⌦ : B
�! ! such that ⌦[B] is finite and Dom(⌦) is cycle-critical in B, that is, every cycle

in B contains at least one position in Dom(⌦). To define the winning conditions for these
games, we observe that the set Inf ⌦(⇡) is non-empty, for any infinite match ⇡, so that we
may define

W⌦(⇡) := max(Inf ⌦(⇡)) mod 2,

just as in the case of a total priority map, A ppm-parity game is a game of the form
(B0, B1, E,W!), where W is induced by a partial priority map ⌦ for B. �

Obviously, any standard parity game corresponds to a ppm-parity game where the priority
map is total. Conversely, it is straightforward to transform a ppm-parity game into a standard
parity game — we leave the details for the reader.

The key property that makes parity games so interesting and nice to work with is that
they enjoy positional determinacy, as we will prove in section 5.4. First, however, we turn to
the special case of so-called reachability games.

5.3 Reachability games and attractor sets

Reachability games are a special kind of board games. They are played on a board such as
described in section 5.1, but also feature a special set of positions. The aim of the game is for
one player to move the token into this special set and for the other to avoid this to happen.

Definition 5.20 Fix a board B and a subset A ✓ B. The reachability game R�(B, A) is
defined as the game over B in which � wins as soon as a position in A is reached or if � gets
stuck. On the other hand, � wins if he can manage to keep the token outside of A infinitely
long, or if � gets stuck. �

As an example, if A = ?, in order to win the game R�(B, A) for player � it simply su�ces
to stay alive forever, while � can only win by forcing � to get stuck.

Remark 5.21 If we want reachability games to fit the format of a board game exactly, we
have to modify the board, as follows. Given a reachability game R�(B, A), define the board
B0 := hB0

0, B
0
1, E

0i by putting:

B
0
� := B� \A

B
0
� := B� [A

E
0 := {(p, q) 2 E | p 62 A}.

In other words, B0 is like B except that all positions in A are now dead ends, assigned to
player �. This means that � gets stuck in a position belonging to A. Furthermore, the
winning conditions of such a game are very simple: simply define W : B! ! {0, 1} as the
constant function mapping all infinite matches to �. This can easily be formulated as a parity
condition. �
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Since reachability games can thus be formulated as very simple parity games, the follow-
ing theorem, stating that reachability games enjoy positional determinacy, can be seen as a
warming up exercise for the general case. Alternatively, reachability can be seen as an unfold-
ing game for some monotone functional over the power set of the board, so that its positional
determinacy follows from X . We leave the proof details as an exercise for the reader.

Theorem 5.22 (Positional determinacy of reachability games) Let R be a reachabil-
ity game. Then there are positional strategies f0 and f1 for 0 and 1, respectively, such that
for every position q there is a player � such that f� is a winning strategy for � in R@q.

Definition 5.23 The winning region for � in R�(B, A) is called the attractor set of � for
A in B, notation: AttrB�(A). In the sequel we will fix a positional winning strategy for � in
R�(B, A) and denote it as attrB�(A). �

If no confusion arises, we will generally drop the superscript referring to the board, writing
Attr�(A) and attr�(A) instead of AttrB�(A) and attrB�(A). Note that �-attractor sets always
contain all points from which � can make sure that � gets stuck. Furthermore, it is easy to
see that in attr�(A)-guided matches the token never leaves Attr�(A) (at least if the match
starts inside Attr�(A)!).

Proposition 5.24 Let B be some board. Then AttrB� is a closure operation on }(B), i.e.

1. A ✓ A
0 implies AttrB�(A) ✓ AttrB�(A

0),

2. A ✓ AttrB�(A),

3. AttrB�(Attr
B
�(A)) = AttrB�(A).

Proof. For part 1, simply observe that any strategy for � that forces the token eventually to
A, at the same time forces the token into A

0. Part 2 is immediate by the definitions.
For part 3, we only need to prove the inclusion ✓, since the opposite inclusion follows

from part 2. Take some arbitrary position b 2 AttrB�(Attr
B
�(A)). That is, � has some strategy

f that is guaranteed to eventually lead the token into AttrB�(A). Suppose then that � uses
this strategy, and as soon as the match has arrived to AttrB�(A), she switches to the attractor
strategy for A. It should be obvious that this is a winning strategy in the reachability game
of A, starting from a. qed

A kind of counterpart to attractor sets are closed sets. In words, a set A is �-closed if �
has the power to keep the token inside A while not getting stuck.

Definition 5.25 Given a board B, we call a subset A ✓ B �-closed (or a �-trap) if E[b] ✓ A

for all b 2 A \B�, while E[b] \A 6= ? for all b 2 A \B�. �

Note that a �-closed set does not contain �-endpoints and that � will therefore never get
stuck in a �-closed set. We conclude this section with a useful proposition.
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Proposition 5.26 Let B be a board and A ✓ B an arbitrary subset of B. Then the following
assertions hold.

1. If A is �-closed then so is AttrB�(A).

2. The complement of AttrB�(A) is �-closed.

3. The union
S
{Ai | i 2 I} of an arbitrary collection of �-closed sets is again �-closed.

4. If A is �-closed in B then any C ✓ A is �-closed in B i↵ C is �-closed in BA.

5. If C ✓ B is �-closed, then AttrBC
� (A \ C) ✓ AttrB�(A) \ C.

Proof. All statements are easily verified and thus the proof is left to the reader. qed



Lectures on the modal µ-calculus 5-9

5.4 Positional Determinacy of Parity Games

Probably the most attractive property of parity games is that we may always assume that
players have a positional winning strategy starting from any of their winning positions.

Definition 5.27 A board game B = hB0, B1, E,W i enjoys positional determinacy if B =
Win0(B)[Win1(B), and there are positional strategies f0 and f1 such that for each player �
and every b 2Win�(B), the strategy f� is winning for � in B@b. �

Theorem 5.28 (Positional Determinacy of Parity Games) Let B be a parity game. Then
B enjoys positional determinacy.

Related to positional determinacy, and an important tool in the proof of Theorem 5.28
is the notion of a player’s paradise. In words, a subset A ✓ B is a �-paradise if � has a
positional strategy f which guarantees, for any position a 2 A, both that she wins the game
B@a, and that the token stays in A. Thus in particular, a �-paradise is �-closed.

Definition 5.29 Given a board game B, we call a �-closed set A a �-paradise if there exists
a positional winning strategy f : A \B� ! A. �

The importance of this notion is clear from the following proposition. We omit its proof
since it is straightforward.

Proposition 5.30 Let B be some board game. Then B enjoys positional determinacy i↵ its
board can be partitioned into a 0-paradise and a 1-paradise.

The remainder of this section is organized as follows. We first give a straightforward
proof the positional determinacy of parity games in the finite case. In the next subsection
we discuss the notion of a paradise in more detail, and in the final subsection we apply our
findings to prove Theorem 5.28 in the general setting.

5.4.1 Positional determinacy of parity games: the finite case

In the case where B is based on a finite board, we can give a relatively straightforward proof
of positional determinacy.

Proposition 5.31 Let B be a finite parity game. Then its board can be partitioned into a
0-paradise and a 1-paradise.

Proof. Let B = (B0, B1, E) be the board of B, and let ⌦ be its priority map. We will prove
this proposition by induction on d, the maximal parity in the game (i.e. d := max(⌦[B])). If
d = 0 we are dealing with a reachability game (namely R1(B,?)), and so the result follows
by Theorem 5.22.

We thus focus on the inductive case, where d � 1. Without loss of generality we may
assume that d is even — in the case where d is odd we proceed in a similar way. The key
observation in the finite case is that we may use an inner induction on the size |B| of B, that
is, the number of its positions.
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Define M := {b 2 X | ⌦(b) = d} to be the set of all positions in B that actually reach the
maximum priority d and let M+ := AttrB0 (M) be its attractor set. Note that M , and hence
also M

+, must be nonempty.
We may apply the (outer or inner) inductive hypothesis to the subgame H of B that is

based on the set B \ M
+. Let A0 and A1, respectively, be the winning regions for the two

players of H, with positional winning strategies, respectively, g0 and g1. Furthermore, let
A

+
1 := AttrB0 (M) be the attractor set of A1 (with respect to the full board B). Note that

whereas A1 must be disjoint from M
+, the set A+

1 may overlap with M
+, and even with M .

We now make a case distinction as to whether A+
1 is empty or not.

Case A
+
1 6= ?. In this case we may apply the (inner) induction hypothesis to the subgame

B� of B that is based on the complement B \ A
+
1 of A+

1 . This gives us a partition of
the board of B� into winning regions W

�

0 and W
�

1 , together with positional winning
strategies f

�

0 and f
�

1 such that for every position b 2 W
�
� , the strategy f� is winning

for � in B�@b.

Claim 1 1) W0 := W
�

0 is a 0-paradise in B, with positional winning strategy f
�

0 ;

2) W1 := W
�

1 [A
+
1 is a 1-paradise in B, with positional winning strategy f1 given by:

f1(b) :=

8
<

:

g1(b) if b 2 A1

attrB1 (A1)(b) if b 2 A
+
1 \A1

f
�

1 (b) if b 2W
�

1 .

Proof of Claim We leave the verification of part (1) as an exercise for the reader. For
the second part, consider an arbitrary f1-guided match ⇡ starting from some position
b 2 W

1. If b 2 A1, it should be clear that ⇡ stays in A1: player 1 will keep the token
there, while player 0 cannot leave A1 since it is 1-closed. It follows that ⇡ is a g1-guided
H-match; it is thus won by 1 in H, and hence, also in B. It is then easy to see that f1
is also winning when the match starts at some b 2 A

+
1 \ A1 — we leave the details for

the reader.

Finally then, if b 2 W
�

1 , then it is not hard to show that ⇡ will stay in W
�

1 , unless
player 0 manages to move the token out of there. However, player 0 will not be able to
move the token to a position in W

�

0 — if so, the position from which this were possible
would itself belong to W

�

0 . The only way out for player 0, then, is to move the token to
a position in A

+
1 ; but if she does so then her opponent simply switches to the positional

winning strategy described in the above paragraph. Hence every match that leaves W�

1
is won by player 1. But if the match stays in W

�

1 , it is clearly a win for him as well. J

Case A
+
1 = ?. Clearly this implies that also A1 = ?, and that E[b] 6= ?, for any position

b 2 B0. We may thus pick an element k(b) 2 E[b], for any b 2 B0. Furthermore, A1

being empty implies that every position in B \M+ is winning for 0 in H. This means
in particular, that g0(b) is defined for every b 2 B0 \ M

+. We now claim that every
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position in B is winning for player 0, and that she may use the positional strategy f0,
which is defined by putting, for b 2 B0:

f0(b) :=

8
<

:

k(b) if b 2M

attrB1 (M)(b) if b 2M
+ \M

g0(b) if b 2 B \M+
.

We leave the proof of this claim as an exercise for the reader.

qed

5.4.2 Paradises

As mentioned, the proof of positional determinacy for parity games in the general case is
slightly more involved. We need the following proposition which establishes some basic facts
about paradises. In this section we also provide some further observations about paradises
that will be of use when we discuss algorithms for solving parity games in section 5.5.

Proposition 5.32 Let B(B,⌦) be a parity game. Then the following hold:

1. The union
S
{Pi | i 2 I} of an arbitrary set of �-paradises is again a �-paradise.

2. There exists a largest �-paradise.

3. If P is a �-paradise then so is Attr�(P ).

Proof. The main point of the proof of part (1) is that we somehow have to uniformly choose
a strategy on the intersection of paradises, such that we will end up following the strategy of
only one paradise. For this purpose, we assume that we have a well-ordering on the index set
I (i.e., for the infinite case we assume the Axiom of Choice).

For the details, assume that {Pi | i 2 I} is a family of paradises, and let fi be the positional
winning strategy for Pi. Note that P :=

S
{Pi | i 2 I} is �-closed by Proposition 5.26. Assume

that < is a well-ordering of I, so that for each q 2 P there is a minimal index min(q) such
that q 2 Pmin(q). Define a positional strategy on P by putting

f(q) := fmin(q)(q).

This strategy ensures at all times that the token either stays in the current paradise, or
else it moves to a paradise of lower index, and so, any match where � plays according to f will
proceed through a sequence of �-paradises of decreasing index. Because of the well-ordering,
this decreasing sequence of paradises cannot be strictly decreasing, and thus we know that
after finitely many steps the token will remain in the paradise where it is, say, Pj . From
that moment on, the match is continued as an fj-guided match inside Pj , and since fj is by
assumption a winning strategy when played inside Pj , this match is won by �.

Part (2) of the proposition should now be obvious: clearly the union of all �-paradises is
the greatest �-paradise.
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In order to prove part (3) we need to show that there exists a positional winning strategy
for � starting from any position in Attr�(P ). The principal idea is to first move to P by
attr�(P ) and once there to follow the positional winning strategy in P . Let f 0 be the winning
strategy for P , we then define the following strategy f on Attr�(P ) by

f(p) :=

⇢
f
0(p) if p 2 P

attr�(P )(p) otherwise.

A match consistent with this strategy will stay in Attr�(P ) because this set is �-closed and
f(p) 2 Attr�(P ) for all p 2 Attr�(P ). It is winning because if ever the match arrives at
a point p 2 P then play continues as if the match were completely in P ; and since f

0 was
supposed to be a winning strategy for � this play is won by �. If we start outside P we will
at first follow the strategy attr�(P ) which will ensure that � either wins or that the token
ends up in P , in which case � will also win. qed

Below we list some properties of paradises that will become useful in the next section.
The proof of the first proposition is left as a (fairly straightforward) exercise for the reader.

Proposition 5.33 Let B = (B,⌦) be a parity game, and let D ✓ B be a �-paradise, witnessed
by a positional winning strategy f . Then the following hold:

1. Let C ✓ B be �-closed. If D ✓ C then D is also a �-paradise in BC .

2. If A ✓ B is such that A\D = ? then D is a �-paradise in BX , where X := B\AttrB�(A).

3. if A ✓ B is �-closed then D \A is a �-paradise in BA.

In each case, the statement is witnessed by the positional strategy f (restricted to the domain
D \A, in the third item).

For the following proposition, recall that in a parity game B = (B0, B1, E,⌦), ⌦�1[d]
denotes the set of positions of priority d.

Proposition 5.34 Let B = (B0, B1, E,⌦) be a parity game, and let D ✓ B be a nonempty
�-paradise in B. Write d := max

�
⌦[D]

�
, and assume that � is the opponent of d mod 2.

Then D has a nonempty subset C ✓ D which is a �-paradise, both in B and in BD, and which
does not overlap with AttrB�(⌦

�1[d]).

Proof. Let f be player �’s positional winning strategy for D. Every f -guided B-match
⇡ starting from some b 2 D stays in D, and therefore, the set Occ(⌦[⇡]) of all priorities
encountered during ⇡ satisfies max

�
Occ(⌦[⇡])

�
 d. Define

C :=
�
b 2 D | max

�
Occ(⌦[⇡])

�
< d for every f -guided match ⇡ of B@b

 
,

that is, C consists of those position in D for which � can guarantee that f -guided matches
never pass a position of priority d (or higher).

Clearly then, C is a �-paradise (both in B and in BD), witnessed by the strategy f

(restricted to C). We also claim that C is nonempty, for otherwise there would be, for every
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a 2 D, a finite f -guided match ⇡, starting at a and ending at a position a
0 2 D such that

⌦(a0) = d. But then we may easily construct, starting from an arbitrary position in D, an
f -guided match that passes a d-position infinitely often; this match would then be won by d

mod 2 = �, clearly contradicting our assumptions on f .
It remains to show that C does not overlap with the �-attractor set of ⌦�1[d], so assume

for contradiction that a 2 C\AttrB�(⌦�1[d]). Now suppose that � plays her strategy f against
her opponent’s attractor strategy, starting at this position a. The resulting match must reach
a state in ⌦�1[d], but cannot leave D (with f being its paradise strategy). But then a cannot
be an element of C, contradicting our assumption. qed

5.4.3 Positional determinacy of parity games: the general case

In this subsection we prove the positional determinacy of arbitrary (that is, not necessarily
finite) parity games.

Proposition 5.35 Let B be a parity game. Then its board can be partitioned into a 0-paradise
and a 1-paradise.

Proof. We will prove this proposition by induction on d, the maximal parity in the game
(i.e. d = max(⌦[B])). The base case of the induction is the same as in the finite case, so
we move to the case where d � 1. Let � := d mod 2, that is, � wins an infinite play ⇡ if
max(Inf (⇡)) = max(⌦[B]) = d. Let P� be the maximal �-paradise, with associated positional
strategy f . It now su�ces to show that X := B \ P� is a �-paradise. This proof is depicted
in Figure 3.

First we shall show that X is �-closed. By proposition 5.32(3) it follows that Attr�(P�) is
itself also a �-paradise. By maximality of P� and the fact that Attr� is a closure operation,
it follows that P� = Attr�(P�). Thus by Proposition 5.26(2) we see that X, being the
complement of a �-attractor set is �-closed indeed.

Consider BX , the subgame of B induced by X. Define M := {b 2 X | ⌦(b) = d} to be the
set of all points in X with priority d and let Z := X \AttrBX

� (M). Since Z is the complement
of a �-attractor set in BX it is �-closed in BX .

By the induction hypothesis we can split the subgame BZ into a 0-paradise Z0 and a
1-paradise Z1, see the picture. The positional winning strategies in these paradises we call f0
and f1 respectively. (All notions are with regard to the game BZ .) We claim that

Z� = ?. (51)

To prove this, we first show that P�[Z� is a �-paradise in B. Consider the following strategy
g for �:

g(b) :=

⇢
f(b) if b 2 P�

f�(b) if b 2 Z�.

It is left as an exercise for the reader to show that this is indeed a positional winning strategy
for � in B, which in addition keeps the token inside P� [ Z�. By the definition of P� as the
maximal �-paradise, we see that P� = P� [Z� and since P� and Z� are disjoint we conclude
that Z� must be empty indeed. This proves (51).
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P�

M

AttrBX
� (M)

Z� Z�

Figure 3: The proof of Proposition 5.35 in a picture

But from Z� = ? it immediately follows that Z = Z�, so that we find

X = Z� [AttrBX
� (M).

Recall that X is �-closed, so that for each b 2 X \ B�, we may pick an arbitrary element
k(b) 2 E[b] \X. Now define the following strategy h in B for � on X.

h(b) :=

8
<

:

k(b) if b 2M

attr�(M)(b) if b 2 AttrBX
� (M) \M

f�(b) if b 2 Z� = Z.

It is left as an exercise for the reader to show that h is indeed a winning strategy for � in B
and that it keeps the token in X. qed
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5.5 Algorithms for solving parity games

Solving a parity game means to determine the players’ winning regions in the game; by
determinacy it su�ces to determine the winning region of one player. In the case of a finite
game, there is an obvious interest in finding e�cient algorithms for this task — one of the
reasons for this interest lies in the connection with the model checking problem for the modal
µ-calculus that we will discuss in the next Chapter. The algorithmic angle also brings up
the theoretical issue of the computational complexity of solving parity games, one of the most
important open problems in the area. These algorithmic and complexity theoretic aspects of
parity games form the topic of this section. Before going into the details we mention some
notational and terminological conventions that apply in this section.

Convention 5.36 In this section it will be convenient to admit the empty game: this allows
for much simpler formulation of the recursion base of our algorithms. Furthermore, in the
context of a fixed ambient game B, we will write Attr�(A,D) rather than AttrBD(A) for the
attractor set of A in the subgame BD, and similarly we use Attr(B, A) as the notation for
the attractor set AttrB(A). We will also frequently be sloppy about the distinction between
a subset and the game it induces.

5.5.1 A quadratic algorithm for reachability games

We first consider the special case where the parity game is actually a reachability game; that
is, we are interested in algorithms for computing attractor sets. The following theorem states
that these games can be solved in linear time if we measure the board by its nunber of edges;
obviously this algorithm is then quadratic in terms of the number of positions.

Theorem 5.37 Let B = (B0, B1, E) be some board B and let A ✓ B be a set of positions.
Then there is an algorithm R that computes the attractor set Attr(B, A) and terminates in
time O(|E|).

I Provide the algorithm and prove the theorem

5.5.2 An algorithm for solving parity games

As our starting point we take the algorithm Z of Figure 4, which is basically the algorithmic
presentation of our proof for positional determinacy in the finite case (Proposition 5.31).
Based on some ambient parity game B, Z computes, given a subgame G of B with priorities
up to some even number d, a subset solve0(G, d) of G which constitutes exactly player 0’s
winning region in BG. Dually, in case d is odd Z computes a subset solve1(G, d) consisting
of player 1’s winning region .

The correctness of Z is secured by the proof of Proposition 5.31, so we refrain from giving
details here. For a rough complexity analysis of Z, we focus on its recursive calls. We will
think of the first of these, in line 4, as the main recursion, and of the second, in line 7, as
an iteration — this perspective can be made precise by replacing the second recursive call
with a while-loop. The depth of the main recursion is bounded by d, while the number of
iterations is bounded by n. This means, basically, that the algorithm is polynomial in n, but
exponential in d.
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Algorithm Z: solve0(G, d)
1. if G = ? then return G

2. Md := {b 2 G | ⌦(b) = d}
3. H := G \Attr0(Md, G)
4. A1 := solve1(H, d� 1)
5. G1 := G \Attr1(A1, G)
6. W0 := solve0(G1, d)
7. return W0

Figure 4: Basic algorithm Z for solving parity games

5.5.3 A quasi-polynomial algorithm for solving parity games

Interestingly, the algorithm Z for solving parity games that we discussed in the previous
subsection can be upgraded to a so-called quasi-polynomial algorithm.

An algorithm is said to take quasi-polynomial time if its time complexity is quasi-polynomially
bounded. This means that there is some constant c such that the algorithm, when given an
input of size n, is guaranteed to stop after at most

2O((logn)c) (52)

computation steps. Note that if we take c = 1 in (52) we obtain the class of all polynomial
functions — the degree of the polynomial is given by the constant that is hidden in the
O-notation. If c > 1 the function will not be polynomial, but its growth rate will still be
substantially smaller than exponential.

The idea underlying the upgrade of Z is that, instead of each recursive call of the procedure
solve� completely solving a subgame, the algorithm will be based on a weaker assumption,
viz., that each call of solve� returns a partition of the board that separates small paradises
of the two players, up to a size specified by a pair or explicit parameters. The key observation
is then that, in order to find all paradises for player � of size, say, up to p, it su�ces to search
for all paradises of size up to bp/2c, and at most one paradise of size � bp/2c. (Recall that
bqc denotes the largest natural number smaller than or equal to q.)

The quasi-polynomical upgrade L of Z is presented in Figure 5. Based on some ambient
parity game B, L computes a function solve0 as follows. Given a subset G of B, again
with priorities up to some even number d, L returns a subset solve0(G, d, p0, p1) ✓ G which
contains all 0-paradises in BG of size up to p0, and which does not intersect with any 1-
paradise in BG of size up to p1. Dually, L computes a map solve1(G, d, p1, p0) for player 1
and odd d.

The main observation about L is that it makes three recursive calls, which compute three
‘successive’ subsets of G: G ◆ G1 ◆ G2 ◆ G3. The goal is then that G3 contains all 0-
paradises of size up to p0; and that the three recursive calls of L collect all 1-paradises of size
 p1 in G\G3, by successively fishing in G\G1, G1 \G2, and G2 \G3. Crucially, the first and
third recursive call use only half of the precision parameter for 1-paradises: only the second
call asks for full precision. The key step in the correctness proof of L is that the first two
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Algorithm L: solve0(G, d, p0, p1)
1. if p1 = 0 then return G

2. if p0 = 0 then return ?
3. if d = 0 then return Attr0(G,?)
4. G1 := solve0(G, d, p0, bp1/2c)
5. Md := {b 2 G1 | ⌦(b) = d}
6. H := G1 \Attr0(Md, G1)
7. A1 := solve1(H, d�1, p1, p0)
8. G2 := G1 \Attr1(A1, G1)
9. G3 := solve0(G2, d, p0, bp1/2c)
10. return G3

Figure 5: Quasi-polynomial algorithm L for solving parity games

recursive calls have already collected over the half of any 1-paradise of size p0, so that the
final call takes care of what is left.

Theorem 5.38 Let B = (B0, B1, E,⌦) be a finite parity game, let d � max
�
Ran[⌦]

�
and let

� := d mod 2. Then for any G ✓ B, the algorithm L returns a set solve�(G, d, p�, p�) of
nodes such that

(i) solve�(G, d, p�, p�) contains each �-paradise in BG of size up to p�; and
(ii) solve�(G, d, p�, p�) does not overlap with any �-paradise in BG of size up to p�.

Proof. By induction on the sum d+ p0 + p1 we will prove the statements (i) and (ii), as well
as the following statement:

(iii) the set solve�(B, d, p�, p�) is �-closed.

As the basis of the induction we take the cases where at least one of d, p0 or p1 is zero.
Since in any of these cases the proof is trivial, we may focus on the inductive case, where we
may assume that d, p0 and p1 are all bigger than zero. Without loss of generality we assume
that d is even, so that � = 0. In the case where d is odd we proceed in a completely analogous
way.

We start with proving the statement (iii). By the induction hypothesis we find that G1 is
0-closed in G, and that G3 is 0-closed in G2. Hence by Proposition 5.26(4) it su�ces to show
that G2 is 0-closed in G1. But this follows by Proposition 5.26(2), since G2 is the complement
in G1 of a 1-attractor set.

In order to prove statement (i), let D be a 0-paradise in G of size at most p0; we need to
show that D ✓ G3. This proof is depicted in Figure 6.

By the induction hypothesis we have D ✓ G1. Moreover, D is a 0-paradise in G1: this
follows from Proposition 5.33(3) and the fact that G1 = G \ Attr1(G \ G1, G), being the
complement of a 0-attractor, is 1-closed in G. We now claim that

D is a 0-paradise in G2. (53)
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Figure 6: The proof of Theorem 5.38, part (i)

To prove this, we first observe that since H, being the complement of a 0-attractor set, is
1-closed in G1, the intersection D

0 := D\H is a 0-paradise in H by Proposition 5.33(3). But
since |D0|  |D|  p0, by the induction hypothesis we find D

0 \A1 = ?; but then by A1 ✓ H

clearly we also have D \ A1 = D \H \ A1 = D
0 \ A1 = ?. It follows that D is a 0-paradise

in G2 by Proposition 5.33(2). This proves (53).
But this means that we are done since by the induction hypothesis, D being a 0-paradise

in G2 implies that D ✓ G3 as required.

Finally, we address statement (ii). Let D be a 1-paradise in G of size at most p1; we need
to show that D has no overlap with G3. This proof is depicted in Figure 7.

Figure 7: The proof of Theorem 5.38, part (ii)

Let S be the union of all 1-paradises in D of size at most bp1/2c, and let A := Attr1(S,D)
be its 1-attractor set in D. We first show that

A \G1 = ?. (54)

But since D is 0-closed in G, by Proposition 5.26(5) we find that A ✓ Attr1(S,G) and that
every 1-paradise in D is also a 1-paradise in G. Hence by the induction hypothesis we get
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S \ G1 = ?. But since G1 is 0-closed, the set A ✓ Attr1(S,G) does not overlap with G1.
This proves (54).

Now if A = D we are done since then we have D \ G3 = A \ G3 ✓ A \ G1 = ?. In the
sequel we may therefor assume that A ⇢ D. This implies that D \A, being 0-closed in D, is
a (non-empty) 1-paradise in D \A by Proposition 5.33(3). Then by Proposition 5.34, the set
D \A contains a nonempty 1-paradise C such that C \M = ?. We now claim that

C [A is a 1-paradise in G, of size greater than bp1/2c. (55)

We first show that C[A is a 1-paradise in D. To witness this, player 1 may use her positional
winning strategy for positions in D \ A, the attractor strategy in D towards A for positions
in A \S, and the assumed positional winning strategy for any position in the 1-paradise S in
D.

But D is 0-closed in G, and so this strategy works for 1 in G as well, for all nodes in C[A.
It remains to show that C [ A is of size greater than bp1/2c. Suppose for contradiction that
|C [ A|  bp1/2c; then by definition of S we would find C [ A ✓ S, and since S ✓ A this
would contradict the fact that C is a nonempty subset of D \ A. This finishes the proof of
(55).

Our next claim is that
(C [A) \G2 = ?. (56)

Since G1 is 1-closed in G, by Proposition 5.33(3) the set (C[A)\G1 = C\G1 is a 1-paradise
in G1, and, containing no vertices in M , also in H. Hence by the induction hypothesis,
the set (C [ A) \ G1 does not intersect G2 (here we use that (C [ A) \ G1 ✓ D, so that
|(C [A) \G1|  |D|  p1). This proves (56).

But since G2 is 0-closed in G (as we saw in the proof of item (iii)), by Proposition 5.33(3)
the set D \G2 is a 1-paradise in G2. The key observation is now that because D \G2 has no
overlap with C [A and |C [A| > bp1/2c, the size of D\G2 can be at most bp1/2c. But then
a simple application of the induction hypothesis yields (D \G2) \G3 = ?, which obviously
implies D \G3 = ?. qed

With the correctness of L established, we turn to its complexity analysis. The theorem
below states that L terminates in quasi-polynomial time, using quadratic space. In its proof
we use the following arithmetical fact.

Proposition 5.39 For any pair k, ` of natural numbers we have
✓
k

`

◆

✓
ek

`

◆`

.

Proof. Starting from the well-known fact that e` =
P

1

⌘=0
`j

j! , we find that ``

`! < e
`, and from

this we immediately infer that 1
`! <

e`

``
. This gives

�k
`

�
 k`

`! 
�
ek
`

�`
. qed

Theorem 5.40 Let B be a parity game with n positions and maximal priority d. Then the
algorithm L computes the winning regions of B in time

2O
�
logn·log

�
1+ d

logn

��
,
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and space O(n2).

Proof. LetR(d, `) be the maximum number of calls to solve0 and solve1 during an execution
of solve�, where � = d mod 2 and ` := blog p0c+ blog p1c. We only consider the cases where
p0, p1 � 1, so that we have ` � 0.

By induction on d+ ` we show that

R(d, `)  2`+1 ·
✓
d+ `

`

◆
� 1. (57)

We take the basis of this induction to be the cases where d = 0; here we may easily verify
(57) by calculating R(d, `) = 0  2`+1 � 1 = 2`+1 ·

�0+`
`

�
� 1.

In the inductive step of the proof we may then assume that d � 1, so that a straightforward
inspection of the algorithm shows that R(d, `)  1 + 2 · R(d, ` � 1) + R(d� 1, `). This leads
to the following calculation:

R(d, `)  1 + 2 ·R(d, `� 1) +R(d� 1, `)

 2 · 2(`�1)+1 ·
✓✓

d+ (`� 1)

`� 1

◆
� 1

◆
+ 2`+1 ·

✓
(d� 1) + `

`

◆
� 1 (induction)

= 2`+1 ·
✓✓

d+ (`� 1)

`� 1

◆
+

✓
d+ (`� 1)

`

◆◆
� 1

= 2`+1 ·
✓
d+ `

`

◆
� 1

as required for proving (57).

We now apply the inequality
�k
`

�

�
ek
`

�`
from Proposition 5.39 for k = d+ ` and obtain

R(d, `)  2`+1 ·
✓
e · (d+ `)

`

◆`

 2 ·
✓
2e · (d+ `)

`

◆`

 2 · 2`·
�
1+log e+log(1+ d

` )
�

In a parity game with n vertices, we start with ` = 2 · blog nc, finding

R(d, 2 · blog nc)  2 · 22·blognc·
�
1+log e+log(1+ d

2·blognc )
�

Finally, the cost of each call, apart from the recursive calls, is dominated by the construction
of the attractor sets in the lines 6 and 8. Since we obtain by Theorem 5.37 that there are
algorithms for computing attractor set that runs in time quadratic in the size of the vertices,
this means that the run time of L is bounded by

n
2 · 2 · 22·blognc·

�
1+log e+log(1+ d

2·blognc )
�

and hence in 2O
�
logn·log

�
1+ d

logn

��
as stated by the theorem.

I say something about space complexity

qed
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Remark 5.41 Generally the index of a parity game is small when compared to its size. If
we have d = O(log n) the complexity of L is bounded by 2O(logn). This means that it runs in
polynomial time, where the degree of the polynomial that provides an upper bound is ‘hidden’
in the O-notation. �

I Add some exercises:
o Z in EXPTIME
o also compute positional winning strategies
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5.6 Game equivalence

In this section we explore some notions of equivalence for board games. In this setting we
will frequently represent a board as a triple B = hB,E,�i, where � : B ! {0, 1} is a map
assigning a player to each position in B.

5.6.1 Simple shadow games

In this book we often use the technique of ‘shadow matching’ to supply a player � with a
winning strategy in some initialised game B@b, using a winning strategy for � in some similar,
related initialised game B0@b

0. These proofs follow a common pattern that we bring out here,
starting with the notion of a (simple) shadow simulation. For its definition we recall the
definition of the lifted version eZ ✓ A

1 ⇥B
1 of a relation Z ✓ A⇥B:

eZ :=
��

(ai)0i<, (bi)0i<�

�
|  = � and (ai, bi) 2 Z, for all i

 
.

Definition 5.42 Let B = hB,E,�,W i and B0 = hB0
, E

0
,�

0
,W

0i be board games. A relation
Z ✓ B

0 ⇥B is called a (simple) shadow simulation if it meets the following conditions:

1. Z repects players: if (b0, b) 2 Z then �0(b0) = �(b);

2. Z respects winners: for finite matches we require that if (b0, b) 2 Z then we have E0[b] =
? i↵ E[b] = ?; for infinite matches we require that (⇡0,⇡) 2 eZ implies W 0(⇡0) = W (⇡).

Given a shadow simulation Z, any pair (⇡0,⇡) 2 eZ is called a shadow pair, where we refer to
⇡
0 as a shadow match of ⇡. �

Shadow simulations can be used to transfer winning strategies from one game to another.
The key idea here is that a player may win a match of a B0-game by maintaining a safe
connection with a shadow match of B that is guided by her winning strategy.

Definition 5.43 Let B = hB,E,�,W i and B0 = hB0
, E

0
,�

0
,W

0i be board games, linked by a
shadow simulation Z ✓ B

0 ⇥B. Furthermore, let f 0 be a strategy for � which is winning for
each of her winning positions in B0. Then a shadow pair (⇡0,⇡) is called safe for � (relative
to f) if first(⇡0) 2Win�(B0) and ⇡0 is f 0-guided.

We say that Z satisfies the safe continuation condition (scc) with respect to f , if for every
safe shadow pair (⇡0,⇡), we have, writing a := first(⇡) and a

0 := first(⇡0):
1) if a 2 B� then (f 0(⇡0), b) 2 Z, for some b 2 E[a];
2) if a 2 B� then for all b 2 E[a] there is some b

0 2 Z such that (b0, b) 2 Z. �

The key result about shadow simulations is the following; we leave its proof as an exercise
for the reader.

Theorem 5.44 (Shadow Play Theorem) Let B = hB,E,�,W i and B0 = hB0
, E

0
,�

0
,W

0i
be board games, linked by a shadow simulation Z ✓ B

0⇥B, and let f 0 be a strategy for � which
is winning for each of her winning positions in B0. Furthermore, assume that Z satisfies the
safe continuation conditions with respect to f . Then for every pair (b, b0) 2 Z we find that
b
0 2Win�(B0) implies b 2Win�(B).
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Note that the safe continuation condition refers to both matches of the shadow pair. The
following example may clarify why this is needed.

Example 5.45 Let B,B0
, f

0 and Z be as in Definition 5.43. Call a B-match ⇡ safe if it is part
of a safe shadow pair (⇡0,⇡). Furthermore, say that Z satisfies the weak safe continuation
condition (wscc) if every safe B-match ⇡ is either full, and won by �, or else it has a safe
extension. The following example reveals that this does not su�ce to transfer f 0 to a winning
strategy in B.

We compare two models S = (S,R, V ) and S0 = (S0
, R

0
, V

0), where S = S
0 := ! [ {1},

R
0 = >, R = > [ {(1,1)}, and V = V

0 is arbitrary. These models can be used to show
that bisimilarity does not coincide with equivalence in the basic modal language, but they
are also of interest here. Clearly we have, with ' := µx.2x that S,1 � ' while S0,1 6� '.
In game-theoretic terms, writing B := E(', S) and B0 := E(', S0), we find (',1) 2 Win9(B)
but (',1) 62Win9(B0). Now consider the relation

Z :=
n�

( , s), ( , s)
�
| s 2 S, 2 Cl(')

o
[
n�

( , n), ( ,1)
�
| n 2 !, 2 Cl(')

o
.

The point is that Z satisfies the weak safe continuation condition, while obviously, the position
(',1) is linked to itself by Z. This provides a counterexample to the weaker version of
Theorem 5.44 where we merely require Z to satisfies the wscc. �

I discuss generalisations: may link � to their opponent as well

5.6.2 Covers

A very tight link between two games arises if one is a cover of the other. Intuitively, B is a
cover of B0 if it is some kind of (finitary) unravelling of B0, witnessed by some cover map f .
In order to define the conditions on these cover maps, we remind the reader of the following
notation: where f : B ! B

0 is some map, and ⇡ 2 B
1 is some (finite or infinite) B-sequence,

say, ⇡ = (bi)0i<, we let f � ⇡ denote the B
0-sequence f � ⇡ := (fbi)0i<.

Definition 5.46 Let B = hB,E,�i and B0 = hB0
, E

0
,�

0i be two boards. Then we call a
function f : B ! B

0 a cover map for B and B0 if f is surjective and satisfies the following
conditions:

1) f restricts to a bijection between the sets E[b] and E
0[fb], for every b 2 B;

2) f respects ownership: �0(fb) = �(b), for every b 2 B.
For two board games B = hB,E,�,W i and B0 = hB0

, E
0
,�

0
,W

0i, we call a function f : B ! B
0

a cover map if f is a cover map for the underlying boards, and in addition we have
3) f respects winners: W (⇡) = W (f � ⇡), for every infinite B-match ⇡.

In the case of initialised games, we call B@b a cover of B0@b
0 if there is a cover map f with

4) f(b) = b
0.

If f is a cover map from B to B0, we write f : B ⇣ B0, say that B covers B0 through f , and
we call B a cover of B0. We use similar terminology and notation for initialised games. �
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Cover maps resemble bounded morphisms between Kripke models, but the bijection con-
dition on successor sets is much stronger than the back- and forth condition of bounded
morphisms.

We gather some basic facts about covers and cover maps. Our first observation is that,
if f is a cover map from B to B0, then for any position b 2 B there is a 1-1 correspondence
between B-paths starting at b and B0-paths starting at fb.

Proposition 5.47 Let B = hB,E,�i and B0 = hB0
, E

0
,�

0i be two boards, and let f : B ⇣ B
0

be a cover map. Then for any path ⇡0 in B0 and every b 2 B such that f(b) = first(⇡0), there
is a unique path ⇡ in B such that ⇡0 = ⇡ � f .

At the level of games, Proposition 5.47 means that the cover map induces a bijection
between the matches of an initialised game and any of its covers. Formulated in terms of
game trees, we even find an isomorphism, which is sometimes taken as a reason to identify a
game with its covers.

Proposition 5.48 Let a 2 B be some position in the board game B = hB,E,�,W i. Then

1. the tree game BT
a @a covers B@a, via the cover map ⇡ 7! last(⇡);

2. if f : B ⇣ H, then BT
a
⇠= HT

a for any a in B.

The following Proposition, the proof of which is left for the reader, states that cover maps
preserve winning regions.

Proposition 5.49 Let f : B ⇣ B0 be a cover map. Then for each player � 2 {0, 1} we have
Win�(B0) = f [Win�(B)].

As an important example of a cover map, the following proposition states that every
!-regular game is covered by a parity game.

Proposition 5.50 (Parity Cover Lemma) Let B = hB,E,�,W i be an !-regular game,
and let M be any deterministic parity automaton recognizing the !-regular language used to
define W . Then B is covered by a parity game which is based on the set B ⇥M .

Proof. See Exercise 5.2. qed

The following observation is an immediate corollary of the Cover Lemma and Proposi-
tion 5.49.

Corollary 5.51 Let B be an !-regular game. Then B is determined.

The concept of cover game allows us to manipulate some structural properties of board
games. For instance, the following Proposition shows how covers may be used to confine the
domain of a partial priority map to the pre-image of any cycle-critical subset of the board of
the covered game.
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Proposition 5.52 (Strengthened Parity Cover Lemma) Let B = hB,E,�,W i be an
!-regular game. Then B is covered by a ppm-parity game B0 = hB0

, E
0
,�

0
,⌦0i through a cover

map f . Furthermore,

1. if D ✓ B is cycle-critical, then we may assume that Dom(⌦0) ✓ f
�1[D];

2. if D ✓ B is cycle-critical and E \ (D ⇥D) = ?, then we may assume injectivity of E0

on f
�1[D]: if f(u0i) 2 D and (u0i, v

0) 2 E
0, for i = 0, 1, then u

0
0 = u

0
1.

Proof. By the standard cover lemma we may without loss of generality assume that B is
itself already a (standard) parity game, say, with (total) priority map ⌦ : B ! !. Based on
this we will take care of the two parts of the proposition.

For part 1, assume that D ✓ B is cycle-critical, and define B0 := hV 0
, E

0
,�

0
,⌦0i as follows.

V
0 := V ⇥

�
Ran(⌦) [ {�1}

�

E
0[(u, k)] :=

⇢ �
(v,⌦(v)) | v 2 E[u]

 
if u 2 D��

v,max(k,⌦(v))
�
| v 2 E[u]

 
otherwise

�
0(u, k) := �(u)

⌦(u, k) :=

⇢
k if u 2 D

undefined otherwise

Roughly, the intuition underlying this construction is as follows. A position (u, k) repre-
sents a path ⇡ in B with last(⇡) = u, first(⇡) is the only position on ⇡ that belongs to D, and
k is a counter that records the highest priority (if any) encountered on ⇡ (after first(⇡)). The
value k is reset following a position u 2 D; that is, if (v,m) 2 E(u, k) and u 2 D then the
value of m is no longer dependent on any value encountered on the path before v, but simply
defined as the priority of v.

We claim that the projection map (u, k) 7! u is the required cover map from B0 to B. The
details of verifying this claims are left as an exercise for the reader.

For part 2, assume that D ✓ B is cycle-critical and that E\ (D⇥D) = ?. Now we define

V
0 := ((V \D)⇥ V ) [ (D ⇥ {⇤})

E
0[(u, x)] :=

�
(v, u) | v 2 E[u] \D}

 
\
�
(v, ⇤) | v 2 E[u] \D}

 

�
0(u, x) := �(u)

⌦0(u, x) :=

⇢
⌦(u) if u 2 Dom(⌦)
undefined otherwise

Here the intuition underlying the definition of V 0 is also that a position (u, x) is basically a
version of u 2 V , with x providing some record of u’s ‘provenance’, so to say. More precisely,
if (v, y) 2 E

0[(u, x)] then we always have v 2 E[u]; in addition we ‘remember’ u if v 62 D (in
the sense that y = u), while we ‘forget’ u if v 2 D (in the sense that y = ⇤).

To see that E
0 is injective on f

�1[D], suppose that we have (v, y) 2 E
0[(u0, x0)] \

E
0[(u1, x1)] for u0, u1 2 D. But since u0, u1 2 D we can only have x0 = x1 = ⇤. Fur-

thermore, ui 2 D implies v 62 D by the assumption on E, so that by definition of E0 we find
y = u0 = u1. But then we have (u0, v0) = (u1, v1) indeed.

As in the proof of the previous claim, we leave it for the reader to verify that the projection
map (u, k) 7! u is the required cover map from B0 to B. qed
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5.6.3 Game bisimulations

In the previous subsections we saw examples of rather tight links between two games. Here
we introduce a notion of game bisimulation which is more general, in at least two ways.

First, game bisimulations do not necessarily link a player in one game to the same player
in the oppositie game. This is for instance useful if we want to give a game-theoretic proof
that the formula ' of Definition 3.22 indeed corresponds to the negation of the formulas '.

Second, game bisimulations do not need to link every position in one of the two games to
some position in the other; rather we select some key positions in both games, and we only
require that the bisimulation links key positions in one game to key positions in the other.
This is for instance useful in a situation where we compare evaluation games for formulas
that are equivalent.

I Details to be supplied.

Definition 5.53 Given an graph game B = (B0, B1, E,W ), call a subset A ✓ B0 [ B1 of
positions prime if it satisfies the following two conditions:

1. any infinite full match starting at some b 2 A passes through another position in A;

2. the winner of an infinite match is completely determined by the sequence of positions
in A induced by the match.

By a slight abuse of language we refer to the elements of a fixed, prime set as prime positions.
�

Remark 5.54 To spell out the second condition, in the appendix we formally define what
we mean with ‘the sequence of positions in A, induced by ⇡0. Where ⇡�A denotes this induced
sequence, condition 2 states that that two matches ⇡ and ⇡0 have the same winner if ⇡�A = ⇡

0

�A.
Furthermore, note that, given the first condition, ⇡A is an infinite sequence if ⇡ is infinite. �

I Examples to be added.

The point about the introduction of prime positions is that, just as in the case of accep-
tance games of modal automata, they allow us to think of the game proceeding in rounds that
start and finish at a prime position (unless one of the players gets stuck during the round).
Formally we define these rounds, that correspond to subgraphs of the board graph, via their
unravellings as follows.

Definition 5.55 Let A be some prime set of positions in a graph game B = (B0, B1, E,W ),
and let a 2 A be a prime position. The neighbourhood game tree associated with a is defined
as the following tree Ta := (T a

, E
a
, a); here T a is the set of all paths � in (B,E), starting in a,

and of which the only prime positions are a and last(�) (in case it is prime). We let T a inherit
the partition of B, by putting T

a
� := {� 2 T

a | last(�) 2 B�}; Ea := {(�,�b) | b 2 E[last(�)]}
is the one-item extension relation on paths, and the one-state path a is the root of Ta. �

It follows from the definitions that all branches of Ta are finite. Clearly Ta is a subtree of
the game tree of the initialized game B@b, where we only take those finite matches that start
at the prime position a and that end either because one the players gets stuck, or because a
new prime position is reached.
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Definition 5.56 Let A be some prime set of positions in a graph game B = (B0, B1, E,W ),
and let a 2 A be a prime position. A node � 2 T

a is a prime leaf of Ta if |�| > 1 and
last(�) 2 A; we denote the set of these leaves as PrL(b), and write N(a) := {last(�) | � 2 PrL}.
�

Prime leaves of Ta represent full rounds of B starting at a, that is, partial matches that
start at a and end because a second prime position has been reached. Intuitively then, the set
N(a) denotes the set of all positions that one may encounter in such a round of B. Non-prime
leafs correspond to full matches in which one of the two players gets stuck before a next prime
position is met. These intuitions will be made precise in Proposition 5.60 below.

Once we have established a disection of a graph game using prime positions, we may think
of the game being in an ‘iterative strategic normal form’, in the sense that in each round,
each player only makes one choice, announcing their complete strategy for that round right
at the beginning. This idea will be formalized below in two ways, using, respectively, the
notion of a player’s power and that of a neighbourhood strategy. Underlying both approaches
is the notion of a neighbourhood game; di↵erent from the games that we have seen so far this
game can end in a draw.

Definition 5.57 Let B = (B0, B1, E,W ) be a board game, with a prime set A ✓ B, and let
a 2 A be a prime position. The neighbourhood game Ba induced by a is played on the board
(Ba

0 , B
a
1 , E

a)), where B
a
� := {last(�) | � 2 T

a \ B�}, and E
a := {(b, c) 2 E | b = a or b 2

B \ A}. Noting that all matches played on this board are finite, we declare a match ⇡ of Ba

to be a draw if |⇡| > 1 and last(⇡) is a prime position; in all other cases one of the players
got stuck, and we declare their opponent to be the winner. �

It is easy to see that Ta is the game tree of Ba. The game-theoretic notion of power
describes the terminal positions which a player can force in this game by deploying a strategy.

Definition 5.58 Let A be a prime set relative to some board game B = (B0, B1, E,W ), and
let a be a prime position. By induction on the height of a node � 2 T

a we define, for each
player �, the power of � at a as a collection P�(�) ✓ N(a) of subsets of N(a).

- if � 2 PrL, we define for each player �:

P�(�) :=
�
{last(�)}

 
;

- if � 62 PrL, we put

P�(�) :=

8
<

:

Sn
P�(�c) | c 2 E

a[last(�)]
o

if � 2 T
a
�nS

c2Ea[last(�)] Yc | Yc 2 P�(�c), all c
o

if � 2 T
a
� .

Finally, we define the power of � at a as the set P�(a). �
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The first clause of the definition should be clear: at the end of a round of B, the players
have no influence on the outcome any more. For some intuitive explanation of the second
clause, we distinguish the two cases. If � 2 T

a
� , then in Ba, when play has arrived at the

match �, � may choose a successor c of last(�), and hence P�(�) consists of those sets that �
can pick at any of the continuationss �c of �. On the other hand, if � 2 T

a
� , then � has no

influence on the choice of a successor c of last(�), so the best � can do is the following. If �
picks, for each c 2 E

a[last(�)], a set Yc 2 P�(�c), then the union of these sets does belong to
her power at �.

Perhaps some special attention is due to the paths � 2 T
a such that Ea[�] = ?. In case

such a � is a prime leaf, we follow the first clause of Definition 5.58; intuitively, this means
that E[last(�)] being empty will not be noticed in this round of B, but only at the beginning
of the next one. In case E

a[�] = ? for some non-prime leaf, we obtain, by the second clause
of the definition, that

P�(�) :=

⇢
? if � 2 T

a
�

{?} if � 2 T
a
� .

This confirms our intuition that at such a position, the player who is to move gets stuck and
looses the match.

As we will see now, the powers of the two players can also be formulated in terms of
strategies in the neighbourhood game.

Definition 5.59 Let A be a prime set relative to some board game B = (B0, B1, E,W ), and
let a be a prime position. A neighbourhood strategy of a player � is simply a strategy for � in
the neighbourhood game. Such a neighbourhood strategy is surviving for � if it guarantees
that � will not get stuck (in Ba), and winning if it guarantees that � gets stuck (in Ba).

If players 0 and 1 play Ba using, respectively, neighbourhood strategies f0 and f1, then
the unique resulting match will be denoted as res(f0, f1). Given a neighfourhood strategy f0

for player 0, we define

Xf0 := {last(res(f0, f1)) 2 A | f1 is a neighbourhood strategy for player 1},

and similarly we define Xf1 for a neighbourhood strategy for player 1. �

Obviously, neighbourhood strategies for � are linked to (fragments of) strategies for � in
B. Since these links are generally obvious, but rather tedious to spell out, we refrain from
introducing detailed notation and terminology here.

The next proposition spells out the link between neighbourhood strategies and the power
of players. We leave its proof as an exercise to the reader.

Proposition 5.60 Let A be a prime set relative to some board game B = (B0, B1, E,W ),
and let a be some prime position. Then the following hold, for either player �:

1) P�(a) = ? i↵ � has a winning neighbourhood strategy in Ba;
2) ? 2 P�(a) i↵ � has a winning neighbourhood strategy in Ba;
3) for any nonempty W ✓ N(a) it holds that

W 2 P�(a) i↵ W = Xf for some surviving neighbourhood strategy f for � in Ba
.
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The partitioning of matches of a board game B into rounds, moving form one prime
position to another, and the analysis of the players’ powers in one round of such a match, lay
the foundations to the introduction of a structural equivalence relation between board games
that we refer to as prime game bisimulation.

For its definition we recall how to lift a binary relation Z between objects to a relation
eZ between sequences of these objects. Where Z ✓ S ⇥ S

0, ⇡ = (si)0i< 2 S
1 and ⇡

0 =

(s0i)0i<� 2 S
01, we put (⇡,⇡0) 2 eZ i↵  = � and (si, s0i) 2 Z, for all i < .

Definition 5.61 Let B = (B0, B1, E,W ) and B0 = (B0
0, B

0
1, E

0
,W

0) be two board games,
with prime sets A and A

0, respectively, and let � and �0 be (not necessarily distinct) players
in B and B0, respectively.

A (�,�0)-game bisimulation is a binary relation Z ✓ A ⇥ A
0 which satisfies the following

compatibility condition:

if ⇡ 2 B
! and ⇡0 2 B

0! are such that (⇡ �A ,⇡ �A0 ) 2 eZ, then W (⇡) = � i↵ W
0(⇡0) = �

0
,

(58)
as well as the following back-and-forth condition:

(PB

� (a), P
B
0

�0 (a0)) 2 �!} �} (Z) \ �}�!} (Z), (59)

for every a 2 A and a
0 2 A

0 with (a, a0) 2 Z. �

Unravelling the rather concise statement (59), we find that the back-and-forth condition
boils down to the following requirements:

(�, forth) 8W 2 P
B
� (a) 9W 0 2 P

B
0

�0 (a0) 8b0 2W
0 9b 2W. (b, b0) 2 Z

(�, forth) 8W 2 P
B
� (a) 9W 0 2 P

B
0

�0 (a
0) 8b0 2W

0 9b 2W. (b, b0) 2 Z

(�0, back) 8W 0 2 P
B
0

�0 (a0) 9W 2 P
B
� (a) 8b 2W 9b0 2W

0
. (b, b0) 2 Z

(�0, back) 8W 0 2 P
B
0

�0 (a
0) 9W 2 P

B
� (a) 8b 2W 9b0 2W

0
. (b, b0) 2 Z.

Given the symmetries in this definition, it should be clear that there are only two kinds of
game bisimulations: the (0, 0)-bisimulations coincide with the (1, 1)-bisimulations, and the
(0, 1)-bisimulations with the (1, 0)-bisimulations.

Example 5.62 Clearly our definition of the compatibility condition (58) does not follow the
idea that bisimulation-like conditions should be ‘local’ in some sense. But then again, this
is hardly possible since at this level of generality the winning conditions themselves are non-
local. In many cases where the winning conditions are given by a more local definition we
can significantly improve on this.

In particular, in case B = (B0, B1, E,⌦) and B0 = (B0
0, B

0
1, E

0
,⌦0) are parity game, we

may require the following two conditions:

(matching parities) if (v, v0) 2 Z then ⌦(v) mod 2 = � i↵ ⌦0(v0) mod 2 = �
0;

(contraction) if (v, v0), (w,w0) 2 Z then ⌦(v)  ⌦(w) i↵ ⌦0(v0)  ⌦0(w0).



5-30 Parity games

We leave it for the reader to verify that any relation satisfying these two conditions also meets
the compatibility constraint (58). �

The following theorem bears witness to the fact that game bisimulation is indeed a useful
notion of structural equivalence between board games.

Theorem 5.63 Let B = (B0, B1, E,W ) and B0 = (B0
0, B

0
1, E

0
,W

0) be two board games, with
prime sets A and A

0, respectively, and let � and �
0 be (not necessarily distinct) players in

B and B0, respectively. Whenever a 2 A and a
0 2 A

0 are related via some (�,�0)-game
bisimulation Z, we have

a 2Win�(B) i↵ a
0 2Win�0(B0).

Proof. (Sketch) Without loss of generality we may assume that � = �
0 = 0. Let a 2 A and

a
0 2 A

0 be such that (a, a0) 2 Z, and assume that a 2 Win0(B). That is, 0 has a winning
strategy f in the initialized game B@a. We will use this strategy to provide her with a winning
strategy f

0 in the game B0@a
0.

The key idea here is that 0 will make sure that any f
0-guided B0-match is linked to an

f -guided B-match ⇡ through the game bisimulation Z. This is completely analogous to the
shadow matches discussed earlier on, the main di↵erence being that now, 0 will only be able
to maintain the right link round by round, not necessarily move by move.

Call a finite B0-match ⇡
0 safe if last(⇡0) 2 A

0 and there is an f -guided B-match ⇡ such
that last(⇡) 2 A and (⇡A,⇡0A0) 2 eZ. In this case we say that ⇡ witnesses the safety of ⇡0.
Note that this means in particular that (last(⇡), last(⇡0)) 2 Z.
The main claim in the proof is the following.

Claim 1 Let ⇡0 be a safe B0-match, as witnessed by the f -guided B-match ⇡. Write b :=
last(⇡), b

0 := last(⇡0). Then player 0 has a neigbourhood strategy g
0
0 at b

0 such that for
every neighbourhood strategy g

0
1 for 1 at b0 either 1 gets stuck, or else the resulting extension

⇡
0 ⇧ res(g00, g01) of ⇡0 is safe, witnessed by an f -guided extension ⇢ of ⇡.

Proof of Claim Note that the continuation of player 0’s winning strategy f at the match
⇡ induces a neighbourhood strategy bf for 0, given by bf(⇢) := f(⇡ ⇧ ⇢). Since f is winning for
0 in B@a, bf must be at least surviving for her in Ba.

Hence Proposition 5.60 bf induces a set X bf 2 P0(b). But then by definition of a game

bisimulation there is a set W 0 2 P
B
0

0 (b0) such that (W,W
0) 2  �} (Z). Using Proposition 5.60

once more, we find a surviving neighbourhood strategy g
0
0 in B0b0 such that W 0 = Xg0 .

Now let 0 use this strategy against player 1 in a match of the neighbourhood match
B0b0 . Since g

0 is surviving, 0 cannot get stuck. In case player 1 gets stuck we are done, so
assume otherwise. Where g

0
1 is the neighbourhood strategy employed by player 1, we let

⌧
0 := res(g00, g

0
1) be the resulting neighborhood match. It should then be clear that c

0 :=
last(⌧) 2W

0 ✓ A
0.

Since (X bf ,W
0) 2  �} (Z) we may find a position c 2 X bf such that (c, c0) 2 Z; but c 2 X bf im-

plies the existence of some neighbourhood strategy f1 for 1 in Bb such that c = last(res(f0, f1)).
Let ⌧ := res(f0, f1) be the corresponding neighbourhood match, then c = last(⌧) and so

⇢ := ⇡ ⇧ ⌧ is the required f -guided match extending ⇡. J
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Finally, we leave it for the reader to make explicit how the claim is used to prove the
theorem — this part of the proof is similar to many earlier ones. qed
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Notes

The application of game-theoretic methods in the area of logic and automata theory goes back
to work of Büchi. The positional determinacy of parity games was proved independently by
Emerson & Jutla [6] and by Mostowski in an unpublished technical report. Our proof of this
result is based on Zielonka [24].

Exercises

Exercise 5.1 (positional determinacy of reachability games) Give a direct proof of
the positional determinacy of reachability games, that is: prove Theorem 5.22.

Exercise 5.2 (regular games & finite memory strategies) A strategy ↵ for player � in
an infinite game B = hB0, B1, E,W i is a finite memory strategy if there exists a finite set M ,
called the memory set, an element mI 2M and a map (↵1,↵2) : B ⇥M ! B ⇥M such that
for all pairs of sequences p0 · · · pk 2 B

⇤ and m0 · · ·mk 2 M
⇤: if m0 = mI , p0 · · · pk 2 PM�

and mi+1 = ↵2(pi,mi) (for all i < k), then ↵(p0 · · · pk) = ↵1(pk,mk).
Now let B be a regular game.

(a) Define an parity game which covers B, with positions B⇥M , where M is the carrier of
a deterministic parity automaton M recognizing L.

(a) Show that each player i has a finite memory strategy which is winning for them in B@p

for every p 2Wini.

Exercise 5.3 (closed sets) Prove the properties of closed sets as listed in Proposition 5.26.

Exercise 5.4 (strengthened cover lemma) Supply the missing details in the proof of the
Strengthed Cover Lemma, Proposition 5.52.

Exercise 5.5 (game bisimulation)

I Prove the equivalence of the slow and the fast acceptance game for modal automata
using game bisimulations.

Exercise 5.6 (players’ powers) Let A be a prime set relative to some board game B =
(B0, B1, E,W ), let a be some prime position, and let � 2 {0, 1} be a player. Then for any
subset U ✓ N(a) we have that either V ✓ U for some V 2 P�(a) or U \ V = ? for some
V 2 P�(a). Argue that this can be called a determinacy property.
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