
6 Parity formulas & model checking

In this chapter we introduce parity formulas — structures that also go under the name of
alternating tree automata, and that are closely related to various kinds of modal equation
systems. Parity formulas are like ordinary (modal) formulas, with the di↵erence that the
underlying structure of a parity formula can be an arbitrary directed graph, not only a
tree; and that one adds an explicit priority labelling to this underlying graph, to ensure a
well-defined game-theoretical semantics. Parity formulas thus provide an alternative, bound-
variable-free way of presenting the modal µ-calculus.

The advantage of parity formulas over ordinary ones comes out if one has an interest in
computational aspects of the modal µ-calculus. At the heart of this algorithmic side lie the
parity games that were introduced in the previous chapter, and the natural way of looking
at evaluation games for the modal µ-calculus as parity games is via parity formulas. Parity
formulas themselves have a completely straightforward connection with parity games, which
allows for an unambiguous definition of the most relevant complexity measures of parity
formulas. In particular, the size of a parity formula is simply defined as the number of
vertices of its underlying graph, and its index corresponds to the maximal length of some
naturally defined alternating chain of states.

This algorithmic transparency makes parity formulas very suitable as yardsticks for com-
paring various complexity measures of ordinary µ-calculus formulas. Taking this approach,
we can further develop the complexity-theoretical framework of the µ-calculus by investigat-
ing the links between µ-calculus formulas and their representation as parity formulas. As an
example we mention the analysis of the alternation depth of a formula that we undertake in
Section 6.5.

In short, parity formulas are graph-based modal formulas with an added parity condition,
that will allow us to view the evaluation games of µ-calculus formulas as instances of parity
games. Providing a link between the world of µ-calculus formulas and that of parity games,
they illuminate the complexity-theoretic analysis of various problems related to the modal
µ-calculus, in particular model checking.

Parity formulas can also be studied in their own right, as an interesting generalisation of
the ordinary (tree-based) µ-calculus formulas.

6.1 Parity formulas

We start with the basic definition of a parity formula. Recall that, given a set P of proposition
letters, we define the sets Lit(P) and At(P) of literals and atomic formulas over P by setting
Lit(P) := {p, p | p 2 P} and At(P) := Lit(P) [{>,?}, respectively.

Definition 6.1 Let P be a finite set of proposition letters. A parity formula over P is a
quintuple G = (V,E, L,⌦, vI), where

a) (V,E) is a finite, directed graph, with |E[v]| 2 for every vertex v;4

b) L : V ! At(P) [{^,_,3,2, "} is a labelling function;

4When discussing disjunctive parity formulas we will drop this requirement, allowing E[v] to be of arbitrary
finite size.

6-2 Parity formulas

c) ⌦ : V
�! ! is a partial map, the priority map of G; and

d) vI is a vertex in V , referred to as the initial node of G;
such that

1) |E[v]| = 0 if L(v) 2 At(P), and |E[v]| = 1 if L(v) 2 {3,2} [{"};
2) every cycle of (V,E) contains at least one node in Dom(⌦).

A node v 2 V is called silent if L(v) = ", constant if L(v) 2 {>,?}, literal if L(v) 2 Lit(P),
atomic if it is either constant or literal, boolean if L(v) 2 {^,_}, and modal if L(v) 2 {3,2}.
We say that a proposition letter q occurs in G if L(v) 2 {q, q} for some v 2 V .

Elements of Dom(⌦) will be called states, and we refer to (V,E) as the (underlying) graph
of the parity formula. A parity formula G = (V,E, L,⌦, vI) is balanced if its states coincide
with its silent nodes, that is, if Dom(⌦) = {v 2 V | L(v) = "}. �

Remark 6.2 Parity formulas share many characteristics of automata, and indeed they also
go under the name of alternating tree automata. We will say a bit more about this at the
end of this section. Since we decided to use the term ‘formulas’ to describe the objects in
Definition 6.1, it will be useful to have an adjective to describe the ‘regular’ formulas, that
is, the elements of the language µML. We will refer to these as ‘ordinary’ formulas. �

"start

_|1

"

^|0

2

_

"|0"|1

q

_

3p

"|3start "|2 "|1 ^

_

2

_

Figure 8: Two parity formulas

Example 6.3 In Figure 8 we give two examples of parity formulas. The picture on the left
displays a parity formula that is directly based on the µ-calculus formula ⇠ = µx.(p _3x) _
⌫y.(q ^2(x _ y)), by adding back edges to the subformula dag of ⇠. The picture on the right
displays a parity formula that is based on the closure graph of the formula ⇠1 of Example 2.38.
In both cases we display the label and (if defined) the priority of a node inside its representing
circle. Note that the parity formula to the right is balanced, but the one to the left is not. �

Lectures on the modal µ-calculus 6-3

Position Player Admissible moves
(v, s) with L(v) = p and s 2 V (p) 8 ?

(v, s) with L(v) = p and s /2 V (p) 9 ?

(v, s) with L(v) = p and s 2 V (p) 9 ?

(v, s) with L(v) = p and s /2 V (p) 8 ?

(v, s) with L(v) = ? 9 ?

(v, s) with L(v) = > 8 ?

(v, s) with L(v) = " - E[v]⇥ {s}
(v, s) with L(v) = _ 9 E[v]⇥ {s}
(v, s) with L(v) = ^ 8 E[v]⇥ {s}
(v, s) with L(v) = 3 9 E[v]⇥R[s]
(v, s) with L(v) = 2 8 E[v]⇥R[s]

Table 8: The evaluation game E(G, S)

The definition of parity formulas needs little explanation. Condition 2) says that every
cycle must pass through at least one state; this is needed to provide a winner for infinite
matches of the evaluation games that we use to define the semantics of parity formulas. The
rules (admissible moves) in this evaluation game are completely obvious.

Definition 6.4 Let S = (S,R, V) be a Kripke model for a set P of proposition letters, and let
G = (V,E, L,⌦, vI) be a parity P-formula. The evaluation game E(G, S) is the parity game
(G,E0,⌦0) of which the board consists of the set V ⇥ S, the priority map ⌦0 : V ⇥ S ! ! is
given by

⌦0(v, s) :=

⇢
⌦(v) if v 2 Dom(⌦)
0 otherwise,

and the game graph is given in Table 8. Note that we do not need to assign a player to
positions that admit a single move only. �

Definition 6.5 We say that a parity formula G = (V,E, L,⌦, vI) holds at or is satisfied by
a pointed Kripke model (S, s), notation: S, s � G, if the pair (vI , s) is a winning position for
9 in E(G, S). Analogously to ordinary formulas, we define the meaning of a parity formula G

in a Kripke model S as follows:

[[G]]S := {s 2 S | S, s � G},

and, for any propositional variable x, the map G
S
x : }(S) ! }(S) by setting

G
S

x(A) := [[G]]S[x 7!A].

We call two parity formulas G and G
0 equivalent if they have the same meaning in any model,

notation: G ⌘ G
0. We will use the same terminology and notation to compare parity formulas

with standard formulas. �

6-4 Parity formulas

The two key complexity measures of a parity formula, viz., size and index, both have
perspicuous definitions. We will introduce these measures here, together some other useful
notions pertaining to parity formulas.

Definition 6.6 The size of a parity formula G = (V,E, L,⌦, vI) is defined as its number of
nodes: |G| := |V |. �

Next to size, as the second fundamental complexity measure for a parity formula we need
is its index, which corresponds to the alternation depth of ordinary formulas. It concerns the
degree of alternation between odd and even positions in an infinite match of the evaluation
game, and it is thus closely related to the range of the priority map of the formula. The most
straightforward approach would be to define the index of a parity formula as the size of this
range; a slightly more sophisticated approach is a clusterwise version of this.

Definition 6.7 Let G = (V,E, L,⌦, vI) be a parity formula, and let u and v be vertices in
V . We say that v is active in u if E+uv, and we let ./E ✓ V ⇥ V hold between u and v is u
is active in v and vice versa, i.e., ./E := E+ \ (E�1)+. We let ⌘E be the equivalence relation
generated by ./E ; the equivalence classes of ⌘E will be called clusters. A cluster C is called
transient if it is a singleton {v} such that v is not active in itself, and proper otherwise.

The collection of clusters of a parity formula G is denoted as Clus(G), and we say that a
cluster C is higher than another cluster C 0 if there are some u 2 C and u 2 C 0 with E+uu0.
�

Note that a cluster is transient i↵ there is a nontrivial path between any pair of vertices.
Intuitively, vertices belong to the same (proper) cluster if they can jointly occur infinitely
often in some infinite match of some acceptance game for the formula. Furthermore, note
that the notion of one cluster being higher than another could have been defined in many
di↵erent (but equivalent) ways. For instance, C is higher than C 0 i↵ for every u 2 C there is
a u0 2 C 0 with E+uu0, i↵ E+uu0 holds for every u 2 C and u0 2 C, etc. Finally, observe that
the ‘higher than’ relation between clusters is a partial order.

Proposition 6.8 Let ⌧ = (tn)n2! be an infinite path through the graph of a parity formula
G. Then G has a unique cluster C such that, for some k, all tn with n > k belong to C. This
cluster is proper.

As a corollary of this, the relative priorities of states only matter if we stay in the same
cluster.

Definition 6.9 LetG = (V,E, L,⌦, vI) be a parity formula. Given a cluster C ofG, we define
its index as the number of priorities reached by states in C, that is, indG(C) = |Ran(⌦�C)|.
The index of G is given as the maximal index of its proper clusters, ind(G) := max{indG(C) |
C 2 Clus(G) proper}. �

Note that a proper cluster must have at least one state. Consequently, a parity formula
has a nonzero index i↵ it has proper clusters.

Lectures on the modal µ-calculus 6-5

The notion of balance comes into the picture when we consider the operations of trans-
forming ordinary formulas into parity formulas and vice versa. The following proposition, the
proof of which is left to the reader, will then become important.

Proposition 6.10 Let G be a parity formula. Then there is an equivalent balanced parity
formula G

0 of size |G0| 2 · |G| and index ind(G0) = ind(G).

Alternative presentation: alternating tree automata and equation systems

As mentioned earlier, in the literature one may find our parity formulas (or very similar
structures) under the names of alternating tree automata or (hierarchical or modal) equation
systems. We discuss these alternative perspectives here.

An alternating tree automaton or ata over a set P of proposition letters is a quadruple
A = (A,⇥,⌦, aI), where A is a finite set of objects called states, aI 2 A is an element of A
called the initial state, ⌦ : A ! ! is a (total) priority function, and ⇥ : A ! TC(P, A) is the
transition map of the automaton. Here TC(P, A) is a logical language of usually rather simple
modal formulas that are called transition conditions over (P and) A. The exact definition of
this language comes with some variations; here we define the set TC(P, A) via the following
grammar:

↵ ::= ? | > | p | p | a | 3a | 2a | a ^ b | a _ b, (60)

where p 2 P and a, b 2 A.
The (operational) semantics of alternating tree automata is formulated in terms of an

acceptance game A(A, S), for an ata A and a Kripke model S = (S,R, V). The positions of
this game are given as the set

{(↵, s) 2 A⇥ S | a 2 A or ↵ = ⇥(a), for some a 2 A},

while its rules and winning conditions are listed in Table 9.

Position Player Admissible moves
(a, s) with ⇥(a) = ? 9 ?

(a, s) with ⇥(a) = > 8 ?

(a, s) with ⇥(a) = p and s 2 V (p) 8 ?

(a, s) with ⇥(a) = p and s 62 V (p) 9 ?

(a, s) with ⇥(a) = ¬p and s 2 V (p) 9 ?

(a, s) with ⇥(a) = ¬p and s 62 V (p) 8 ?

(a, s) with ⇥(a) = b - {(b, s)}
(a, s) with ⇥(a) = (b0 _ b1) 9 {(b0, s), (b1, s)}
(a, s) with ⇥(a) = (b0 ^ b1) 8 {(b0, s), (b1, s)}
(a, s) with ⇥(a) = 3b 9 {(a, t) | sRt}
(a, s) with ⇥(a) = 2b 8 {(a, t) | sRt}

Table 9: The acceptance game A(A, S)

6-6 Parity formulas

From this definition it is fairly obvious that we may identify parity formulas and atas: with
an alternating tree automaton A we may associate the parity formula GA = (A,E,L,⌦, aI)
given by

E(a) :=

8
>><

>>:

?

{b}
{b}
{a0, a1}

and L(a) :=

8
>><

>>:

⇥(a) if ⇥(a) 2 At(P)
" if ⇥(a) = b, for some b 2 A
~ if ⇥(a) = ~b, for some b 2 A
� if ⇥(a) = a0 � a1, for some a0, a1 2 A

Conversely, it is equally simple to turn a parity formula into an alternating tree automaton
which is based on the set of vertices of the formula. Note that if we simply take the size of
an automaton to be its number of states, the constructions that we just outlined respect size
in either direction.

Another perspective on alternating tree automata is that of hierarchical equation systems
or hess. We need not go into detail here, but to get the basic idea, fix an ata A = (A,⇥,⌦, aI).
Think of the states in A as variables, then with each state a 2 A we may associate an equation
of the form a = ⇥(a), and make this equation inherit the priority ⌦(a). Then we may organise
this collection of equations by grouping equations of the same priority together in so-called
blocks, and order these blocks according to their priorities. The result of this operation is
known as a hierarchical equation system. It should be clear from this description that there
is a 1-1 correspondence between alternating tree automata and these hierarchical equations
systems.

Finally, the definition of hess and atas can be modified/generalised in two directions.
First of all, one may vary the set of admissible transition conditions. For instance, a so-called
modal equation system or MES corresponds to an alternating tree automaton A = (A,⇥,⌦, aI)
where the transition map ⇥ maps every state a 2 A to an arbitrary modal formula as given
by the following grammar

↵,� ::= ? | > | p | p | a | 3↵ | 2↵ | ↵ ^ � | ↵ _ �, (61)

where p 2 P and a 2 A. The acceptance game associated with these automata are obtained
via a minor modification of the one given in Table 9. Note, however, that in this case one
should not simply take the size of the ata to be its number of states; one has to take the size
of the formulas in the range of the transition map into account as well.

Second, one may change the nature of the transition map so that it shifts the propositions
from its output (transition conditions) to the input. That is, given a finite set P of proposition
letters, think of its power set }P as an alphabet of colours. The transition map of an ata can
then be given as a map ⇥ : A⇥}P ! TC(A) mapping pairs of states and colours to transition
conditions that now may only involve the states of the automata as propositional variables.
The resulting modal automata will be discussed in detail in Chapter 10.

Exercises

Exercise 6.1 Provide an e↵ective procedure transforming an arbitrary parity formula G into
an equivalent balanced parity formula G

b such that |Gb| 2 · |G| and ind(Gb) = ind(G).

Lectures on the modal µ-calculus 6-7

6.2 Basics

Model checking for parity formulas

Since the evaluation game for parity formulas is given as a parity game, we immediately get
a quasi-polynomial upper bound on the time complexity of the model checking problem for
parity formulas. Recall that the size of a (pointed) labelled transition system is simply defined
as the number of points in the model.

Definition 6.11 The model checking problem for parity formulas is the problem to compute
whether S, s � G, where S is a (finite) labelled transition system, and G is a parity formula.
�

Theorem 6.12 Assume that the problem of determining the winning regions of a parity game
G can be solved in time f(n, d), where n and d are, respectively, the size and the index of G.
Then the model checking problem for parity formulas can be solved in time f(m · n, d + 1),
where m is the size of the labelled transition system, and n and d are the size and index of
the parity formula, respectively.

Remark 6.13 In the above theorem we state the model checking problem as being solvable
in time f(m · n, d+ 1), and not f(m · n, d). The reason for adding the ‘+1’ is a technicality:
the index of a parity game is usually defined as the global range of the priority map, whereas
for parity formulas we define the index as the clusterwise size of the priority map. This
makes a di↵erence of 1 in the case of a parity formula of index d which has a cluster C with
Ran(⌦�C) = {0, . . . , d� 1} and another cluster C 0 with Ran(⌦�C0) = {1, . . . , d}. �

In the next section we will see how we can use this result to analyse the computational
complexity of the model checking problem for ordinary formulas.

Operations on parity formulas

Parity formulas are interesting logical objects in their own right, and so one might want to
develop their theory. To start with, it is fairly easy to define various operations on parity
formulas. The following proposition covers the boolean operations (including negation), the
modalities, and substitution.

Proposition 6.14 Let G = (V,E, L,⌦, vI) and G = (V 0, E0, L0,⌦0, v0I) be two parity formu-
las.

1) There is a parity formula H such that |H| 1+|G|+|G0| and ind(H) max(ind(G), ind(G0)),
while for any pointed Kripke model (S, s) we have

S, s � H i↵ S, s � G and S, s � G
0.

2) There is a parity formula H such that |H| 1+|G|+|G0| and ind(H) max(ind(G), ind(G0)),
while for any pointed Kripke model (S, s) we have

S, s � H i↵ S, s � G or S, s � G.

6-8 Parity formulas

3) There is a parity formula H such that |H| = |G| and ind(H) ind(G), while for any
pointed Kripke model (S, s) we have

S, s � H i↵ S, s 6� G.

4) There is a parity formula H such that |H| 1 + |G| and ind(H) ind(G), while for
any pointed Kripke model (S, s) we have

S, s � H i↵ S, t � G for some t 2 R[s].

5) There is a parity formula H such that |H| 1 + |G| and ind(H) ind(G), while for
any pointed Kripke model (S, s) we have

S, s � H i↵ S, t � G for all t 2 R[s].

6) There is a parity formula H such that |H| |G|+|G0| and ind(H) max(ind(G), ind(G0)),
while for any pointed Kripke model (S, s) we have

S, s � H i↵ S[x 7! [[G0]]S], s � G.

Proof. We only cover the case of conjunctions, leaving the other cases as exercises to the
reader. Given the parity formulas G and G, we let G ^ G

0 := (V 00, E00, L00,⌦00, v00I) be the
structure given as follows. We let V 00 be the disjoint union of V , V 0 and some singleton {v00},
and we define E00 := E [E0 [{(v00, vI), (v00, v0I)}. Furthermore we put L00(v00) := ^, while we
let L00 agree with L on V and with L0 on V 0. Similarly, we leave ⌦00 undefined on v00 and let
⌦00 agree with ⌦ on V and with ⌦0 on V 0. Finally, we define v00I := v00. It is then completely
straightforward to show that G ^ G

0 is a parity formula indeed, and that it is equivalent to
the conjunction of G and G

0. qed

The proposition below covers the least and greatest fixpoint operation. We leave its proof
as an exercise for the reader.

Proposition 6.15 Let G = (V,E, L,⌦, vI) be a parity formula, and let x be a proposition
letter that only occurs positively in G. Then the following hold:

1) The map G
S
x : }(S) ! }(S) is monotone, for any Kripke model based on S.

2) There is a parity formula H such that |H| |G| and ind(H) ind(G), while for any
Kripke model S we have

[[H]]S = LFP.GS

x.

3) There is a parity formula H such that |H| |G| and ind(H) ind(G), while for any
Kripke model S we have

[[H]]S = GFP.GS

x.

Lectures on the modal µ-calculus 6-9

Morphisms and equivalence notions between parity formulas

Furthermore, we will need various structural notions of equivalence between parity formulas.
A simple but very useful concept is that of two parity formulas being parity variants.

Definition 6.16 A parity variant of a parity formula G = (V,E, L,⌦, vI) is a parity formula
G = (V,E, L,⌦0, vI) such that (i) ⌦(v) ⌘2 ⌦0(v), for all v, and (ii) ⌦(u) < ⌦(v) i↵ ⌦0(u) <
⌦0(v), for all u and v that belong to the same cluster but have di↵erent parity. �

It is easy to see that parity variants are semantically equivalent, and have the same size
(but not necessarily the same index). From this it follows that there are certain normal forms
for parity formulas. Recall that we define [k, n] := {i 2 ! | k i n}.

Definition 6.17 A parity formula G = (V,E, L,⌦, vI) is called lean if ⌦ is injective, and tight
if for any cluster C, the range of ⌦ on C is connected, that is, of the form Ran(⌦�C) = [k, n]
for some natural numbers k, n with k n. �

It is not hard to see that every parity formula can be e↵ectively transformed into either
a lean or a tight parity variant.

Turning to the notion of a morphism between parity formulas, we have various options.
Given the coalgebraic flavour of parity formula, it should come as no surprise that the def-
inition we take integrates elements of the notion of a bounded morphism between Kripke
models. The definition also incorporates the notion of a parity variant of Definition 6.16.

Definition 6.18 Let G = (V,E, L,⌦, vI) and G
0 = (V 0, E0, L0,⌦0, v0I) be two parity formulas.

A morphism from G to G
0 is a map f : V ! V 0 satisfying the following conditions, for all

u, v 2 V :

1) L(u) = L0(f(u))
2) if Euv then E0f(u)f(v)
3) if E0f(u)v0 then Euv for some v with f(v) = v0

4) (a) ⌦(v) ⌘2 ⌦0(fv), for all v, and (b) ⌦(u) < ⌦(v) i↵ ⌦0(fu) < ⌦0(fv), for all u and v
that belong to the same cluster but have di↵erent parity

5) f(vI) = v0I .

We write f : G ⇣ G
0 to denote that f is a surjective morphism from G to G

0. �

As an example, here is the parity formula version of a subformula.

Definition 6.19 Let G = (V,E, L,⌦, vI) be a parity formula, and let v be a vertex in V . We
let Ghvi := (V,E, L,⌦, v) denote the variant of G that takes v as its initial node; we define
Vv to be the smallest subset of V which contains v and is closed under taking successors, and
we call Gv := (Vv, E �Vv , L�Vv ,⌦�Vv , v) the subformula of G that is generated from v. �

The following proposition will be needed further on; we omit its proof, since it is straight-
forward.

6-10 Parity formulas

Proposition 6.20 Let f : G ! G
0 be a morphism of parity formulas. Then for any node v

in G it holds that
Ghvi ⌘ G

0hf(v)i.

In particular, for every node v 2 V we have

Ghvi ⌘ Gv.

In the same way that one may generalize bounded morphisms to bisimulations, we can
generalize parity formula morphisms to parity formula bisimulations.

Definition 6.21 Let G = (V,E, L,⌦, vI) and G
0 = (V 0, E0, L0,⌦0, v0I) be two parity formulas.

A parity formula bisimulation between G and G
0 is a relation Z ✓ V ⇥ V 0 satisfying the

following conditions, for all u, v 2 V and u0, v0 2 V 0 such that (u, u0), (v, v0) 2 Z:

1) L(u) = L0(f(u))
2) if Euv then there is some w0 2 V 0 such that (v, w0) 2 Z and Eu0w0;
3) if E0u0v0 then there is some w 2 V such that (w, v0) 2 Z and Euw;
4) (a) ⌦(u) ⌘2 ⌦0(u0) and (b) ⌦(u) < ⌦(v) i↵ ⌦0(u0) < ⌦0(v0), if u and v in G, and u0 and

v0 in G
0 belong to the same cluster but have di↵erent parity;

5) (vI , v0I) 2 Z.

We write Z : G ⇠ G
0 to denote that Z is a parity formula bisimulation between G and G

0. �

Proposition 6.22 Let Z : G ⇠ G
0 be a parity formula bisimulation. Then we have

Ghvi ⌘ G
0hv0i, whenever (v, v0) 2 Z.

I Somewhere: expansion map is a parity formula morphism;

Lectures on the modal µ-calculus 6-11

6.3 From ordinary formulas to parity formulas

In this section we will see how to represent a ordinary formula as an equivalent parity formula.
In order to use the complexity result for the model checking problem for parity formulas to
make similar observations on the model checking of ordinary formulas, we obviously want
to minimimize the size and the index of the representation. It should come as no surprise
that the index of this parity formula will somehow correspond to the alternation depth of the
formula, while the size of the parity formula will clearly depend on the graph structure that
we pick to represent the original formula.

Suppose that we are looking for a parity formula G = (V,E, L,⌦, vI) representing the
ordinary formula ⇠. It seems that there are three natural candidates for the underlying
graph (V,E) of G: we could take the syntax tree of ⇠, its subformula graph, or its closure
graph. Note that each of these three structures induces a natural size measure of µ-calculus
formulas, respectively length, subformula-size, and (closure-)size. The tree representation has
the advantage of being immediately available for any ⇠ 2 µML, whereas the subformula and
closure graph are defined only for the clean and the tidy formulas, respectively. Because of the
unwieldy size of syntax trees, however, we focus here on the other two kinds of representations.

Definition 6.23 The subformula dag of a clean formula ⇠ is the graph (Sf (⇠), .0), where
.0 is the converse of the direct subformula relation /0. We obtain the subformula graph
(Sf (⇠), .0 [B) from this by adding the set B := {(x, �x) | x 2 BV (⇠)} of back edges to this
dag. The closure graph of a tidy formula ⇠ 2 µML is the structure C⇠ = (Cl(⇠),!C), where
!C is the trace relation (restricted to the closure of ⇠). �

In the remainder of this section we will see how to expand either of these two graphs into
a full parity formula structure. In both cases it is obvious how to define the labelling map
L, and which vertex to take as the initial one. It is also more or less clear what the states
should be, i.e., on which vertices the priority map ⌦ should be defined: In the case of the
subformula graph of a clean formula ⇠ we will take the set BV (⇠) of bound variables of ⇠,
while in the closure graph of a tidy formula ⇠ we will consider the set of all fixpoint formulas
in the closure of ⇠.

For the actual values of the priority maps, there is some choice. Observe, however, that
in both versions of the evaluation game, the winning conditions are defined in terms of some
priority order on the set of states, in combination with a fixed assignment of a parity/player
to each state. For instance, in the case of the subformula game for a clean formula ⇠, we
used the unfolding order P⇠ on BV (⇠), together with the partition of BV (⇠) into µ- and
⌫-variables. To assign a winner to an infinite match ⇡, we consider the P⇠-maximal element
of the set Unf1(⇡) (consisting of those bound variables that are unfolded infinitely often
during ⇡), and the winner of ⇡ is then determined by the nature of this variable. Similarly,
in the case of the closure game for ⇠, we looked at the fixpoint formulas that occur infinitely
often in an infinite match of the game, and observed that this set has a smallest element with
respect to the (free) subformula ordering.

It therefore makes sense to discuss how to transform a priority order on the set of states
into a suitable priority map, in some generality. Playing with the shape of the priority order
may have an e↵ect on the index of the associated priority map, and one priority order may

6-12 Parity formulas

yield a lower index than another. Interestingly, both for the subformula game and for the
closure game, we will see that the order used in Chapter 2 does not give an optimal index.

6.3.1 From parity posets to priority maps

In this subsection we will see how to represent a priority order on some (partitioned) set
of states by a suitable priority map. We first develop some terminology. Throughout this
subsection the reader should think of Z as the set of states in (some cluster of) a parity
formula that is either based on the subformula graph or on the closure graph of a formula ⇠.

Definition 6.24 A parity poset is a structure Z = (Z,4, p), where (Z,4) is a finite poset
and p is a parity map on P , that is, a map p : Z ! {0, 1}. We write z � z0 if z 4 z0 and
z 6= z0. �

Example 6.25 Where ⇠ is a clean formula, take Z := BV (⇠), and let p be the function
mapping µ-variables to 1 and ⌫-variables to 0. The most obvious priority order on BV (⇠) is
the relation P⇠ given by

x P⇠ y if �x P �y.

For a tidy formula ⇠ we may take Z to be the set of fixpoint formulas belonging to Cl(⇠), and
let p be the function mapping µ-formulas to 1 and ⌫-formulas to 0. The most obvious priority
order on this set is the relation Qf , that is, the converse of the free subformula relation. �

To give a precise formulation of the required connection between parity posets and priority
maps, we need the notion of an alternating chain in a parity poset, which is a good measure
of its complexity.

Definition 6.26 Let Z = (Z,4, p) be a parity poset. An alternating chain in Z of length k
in Z is a finite sequence z1 · · · zk of states such that, for all i < k, zi � zi+1 while zi and zi+1

have di↵erent parity. The alternating chain depth acd(Z) of Z is the maximal length of an
alternating chain in Z. �

Since the parity map on a set of states is usually fixed, with a slight abuse of notation
we will often write acd(4) rather than acd(Z,4, p); this notation is particularly useful if we
compare distinct priority relations on a fixed set Z (with a fixed parity map p).

Definition 6.27 Let Z = (Z,4, p) be a parity poset, and let ⌦ : Z ! ! be some priority
map. Then we say that ⌦ represents Z if it satisfies the following conditions, for all x, z 2 Z:

1) p(z) = ⌦(z) mod 2;
2) x 4 z implies ⌦(x) ⌦(z). �

The conditions 1 and 2 constitute some kind of soundness condition: if ⌦ represents Z,
then it yields the same winning conditions as Z. This is the content of the next Proposition,
the proof of which is trivial.

Lectures on the modal µ-calculus 6-13

Proposition 6.28 Let Z = (Z,4, p) and ⌦ : Z ! ! be, respectively, a parity poset and
a priority map representing it. Furthermore, let ⇣ = (zn)n<! be an infinite sequence of
elements in Z, and assume that the set Inf (⇣) has a 4-greatest element z. Then p(z) = 0 i↵
max

�
⌦[Inf (⇣)]

�
is even.

It is important to keep the range Ran(⌦) of priorities small, given its contribution to the
complexity of the model checking of parity formulas. It is not hard to see that the elements of
an alternating chain all need to have a di↵erent priority, which means that acd(Z) is a lower
bound for |Ran(⌦)|. The example below shows that in general we cannot even require that
|Ran(⌦)| = acd(Z):

0

1

1

0

Where Z is the parity preorder in the picture, it is impossible to represent Z by a priority
map ⌦ with |Ran(⌦)| = 2. However, if we partition Z into components and consider the
alternating chain depth piecewise, a precise match is possible. For instance, in the case where
Z is the closure set of some formula ⇠, one may take the clusterwise converse subformula
ordering; that is, only rank higher than ' if (is a subformula of ' and) there are traces
from ' to and vice versa.

Definition 6.29 Let Z = (Z,4, p) be a parity poset. A partition (Zi)i2I is called discon-
nected if there are no elements zi, zj in di↵erent components such that zi 4 zj . In this setting
we let Zi denote the substructure of Z based on the set Zi.

We call a map ⌦ : Z ! ! representing Z a tight representation if Z admits a disconnected
partition (Zi)i2I such that acd(Zi) = |Ran(⌦�Zi)|, for each component Zi. �

Example 6.30 Figure 9 below depicts a parity poset (the picture to the left) and two priority
maps representing it; the priority map to the right is tight, the other one is not. �

The key result here is that, under a mild condition that is met in the relevant cases, every
parity poset is indeed tightly represented by some priority map.

Definition 6.31 We say that Z is weakly directed if Z admits a disconnected partition con-
sisting of directed subsets. �

It will be convenient for us to define a canonical priority map for this purpose.

Definition 6.32 Let Z = (Z,4, p) be a parity poset; partition Z into maximal connected
components, and assume that every component of Z has finite alternation depth.

Given a point z 2 Z we define h"(z) (respectively, h#(z)) as the maximal length of an
alternating chain starting at z (ending at z, respectively). We define the following map
⌦Z : Z ! !; given z 2 Z, let Zz be the component to which z belongs, and define

⌦Z(z) :=

⇢
acd(Zz)� h"(z) if acd(Zz)� h"(z) ⌘2 p(z)
acd(Zz)� h"(v) + 1 if acd(Zz)� h"(z) 6⌘2 p(z),

(62)

and we will call this map the priority map induced by Z. �

6-14 Parity formulas

1

1

1

1

0

0

0

0

1

3

5

7

2

4

6

8

1

1

3

3

2

2

4

4

Figure 9: From a parity poset to a priority map

With a minor abuse of notation, we will often denote the priority map ⌦Z as ⌦4.

Theorem 6.33 Every weakly directed parity poset Z = (Z,4, p) is tightly represented by its
induced priority map ⌦Z.

Proof. To avoid clutter we write ⌦ for ⌦Z. It is not very di�cult to see that ⌦ represents Z:
the parity condition is straightforward, and for the order preservation it su�ces to observe
that x 4 y implies h"(x) � h"(y), which in its turn implies ⌦(x) ⌦(y). For tightness,
without loss of generally we may assume that Z is connected, which by (weak) directedness
implies the existence of a 4-maximum m. Earlier on we already discussed that we always
have acd(Z) |Ran(⌦)| — we need to prove the oppositve inequality.

To see that |Ran(⌦)| acd(Z), take an arbitrary z 2 Z; it is clear that h"(z) 2 [1, acd(Z)],
so that we find acd(Z)� h"(z) 2 [0, acd(Z)� 1]. The second observation is then that, in the
above definition of ⌦(z), the elements of Z uniformly fall in one of the two mentioned cases.
This means that we either have Ran(⌦) ✓ [0, acd(Z)� 1] or ⌦[Z] ✓ [1, acd(Z)]. In both cases
this means that |Ran(⌦)| acd(Z) as required. qed

Example 6.34 The condition of weak directedness in Theorem 6.33 is necessary, as the
following simple example witnesses:

1

1

0

0

This parity poset clearly has alternation depth 2, but it cannot be represented by any priority
map with range of size 2. �

Lectures on the modal µ-calculus 6-15

6.3.2 Parity formulas on the subformula graph

The following theorem shows that for a clean formula, we can indeed obtain an equivalent
parity formula which is based on its subformula graph, which we defined as the subformula
dag, augmented with back edges.

Theorem 6.35 There is an algorithm that constructs, for a clean formula ⇠ 2 µML(P), an
equivalent parity formula H⇠ over P, based on the subformula graph of ⇠, which satisfies
|H⇠| = |⇠|s and ind(H⇠) = ad(⇠).

The basic idea underlying the proof of Theorem 6.35 is to view the evaluation games for
clean formulas in µML as instances of parity games. Given an arbitrary formula ⇠ 2 µML, we
then need to see which modifications are needed to turn the subformula dag (Sf (⇠), .0) into
a parity formula H⇠ such that, for any model S, the evaluation games E(⇠, S) and E(H⇠, S)
are more or less identical. Clearly, the fact that the positions of the evaluation game E(⇠, S)
are given as the pairs in the set Sf (⇠)⇥ S, means that we can take the set

V⇠ := Sf (⇠)

as the carrier of H⇠ indeed.
Looking at the admissible moves in the two games, it turns out that we cannot just take

the converse direct subformula relation .0 as the edge relation of H⇠: we need to add all back
edges from the set

B⇠ := {(x, �x) | x 2 BV (⇠)},

where, as usual, we let �x denote the unique formula such that, for some ⌘ 2 {µ, ⌫} the
formula ⌘x.�x is a subformula of ⇠. In fact, if we write D⇠ for the relation .0, restricted to
Sf (⇠), then we can take

E⇠ := D⇠ [B⇠,

as the edge relation of H⇠. Furthermore, the labelling map L⇠ is naturally defined via the
following case distinction:

L⇠(') :=

8
>>>><

>>>>:

' if ' 2 {>,?} [{p, p | p 2 FV (⇠)}
� if ' is of the form '0 � '1 with � 2 {^,_}
~ if ' is of the form ~ with ~ 2 {3,2}
" if ' is of the form ⌘xx.�x with ⌘ 2 {µ, ⌫}
" if ' 2 BV (⇠).

With this definition, it is easy to see that the boards of the two evaluation games E(⇠, S) and
E(H⇠, S) are isomorphic (in fact, identical), for any labeled transition system S. As the initial
node v⇠ of H⇠ we simply take

v⇠ := ⇠.

In order to finish the definition of the parity formula H⇠ it is then left to come up with a
suitable priority map ⌦⇠ on V⇠. For this we base ourselves on the discussion in the previous
subsection, but rather than the unfolding order P⇠ we will consider the depency order 4⇠

6-16 Parity formulas

defined below. Intuitively, x 4⇠ y indicates not only that �x is a subformula of �y, but also
that y is ‘more significant’ than x, in the sense that the meaning of x/�x (in principle) depends
on the meaning of y/�y. The key situation where this happens is when y occurs freely in �x.

Definition 6.36 Given a clean formula ⇠, we define a dependency or subordination order 4⇠

on the set BV (⇠), saying that y ranks higher than x if x 4⇠ y. The relation 4⇠ is defined as
the least partial order containing all pairs (x, y) such that y P �x P �y. �

For an example where the two orders give a di↵erent alternation depth, we refer to the
formula ⇠3 in Example 2.52. The following Proposition shows that 4⇠ is a suitable alternative
to P⇠, in the sense that we will assign the same winner to any infinite match of the evaluation
game, whether we base ourselves on 4⇠ or on P⇠.

Proposition 6.37 Let ⇠ be a clean µMLD-formula, and let ⇡ be an infinite match of the
evaluation game E(⇠, S), for some model S. Then

max4⇠(Unf
1(⇡)) = maxP⇠(Unf

1(⇡)).

Proof. Abbreviate U := Unf1(⇡), and let y 2 U be the maximum of U in terms of P⇠ —
such a y exists by Proposition 2.24.

We claim that
x 4⇠ y, for all x 2 U. (63)

Suppose for contradiction that there is a variable x 2 U with x 64⇠ y. It follows from the
assumption on y that �x P �y, and without loss of generality we may assume x to be such
that �x is a maximal subformula of �y such that x 64⇠ y (in the sense that z 4⇠ y for all z 2 U
with �x / �z). In particular then we have y 62 FV (�x). But since y is unfolded infinitely often,
there must be a variable z 2 FV (�x) which allows ⇡ to ‘leave’ �x infinitely often; this means
that z 2 U , �x P �z but �z 6P �x. From this it is immediate that x 4⇠ z, while from z 2 U
we obtain �z P �y. It now follows from our maximality assumption on x that z 4⇠ y. But
then by transitivity of 4⇠ we find that x 4⇠ y. In other words, we have arrived at the desired
contradiction.

This shows that (63) holds indeed, and from this the Proposition is immediate. qed

For our definition of H⇠ we will take the priority map ⌦⇠ given by

⌦⇠ := ⌦4⇠ .

Note that ⌦⇠, as a map on Sf (⇠), is partial indeed: it is only defined for those subformulas
of ⇠ that belong to its bound variables.

Summarizing, we define
H⇠ := (V⇠, E⇠, L⇠,⌦⇠, ⇠).

Proof of Theorem 6.35. In the light of the above discussion, the equivalence of ⇠ and H⇠

follows from the Propositions 6.28 and 6.37 (and the easily verified fact that ⌦⇠ satisfies the
conditions 1 and 2 of Definition 6.27). It is immediate by the definitions that |H⇠| = |Sf (⇠)| =
|⇠|s. Finally, it follows from Theorem 6.33 that the index of H⇠ is given by the alternating
chain depth of 4⇠. In order to get an exact match of the index of H⇠ and the inductively
defined alternation depth of ⇠ we need to work a bit harder: in Section 6.5 below we will
prove Proposition 6.58 stating that ad(⇠) = acd(4⇠). qed

Lectures on the modal µ-calculus 6-17

6.3.3 Parity formulas on the closure graph

The next theorem states that for a tidy formula, we can find an equivalent parity formula that
is based on the formula’s closure graph, and has an index which is bounded by the alternation
depth of the formula. This result applies to arbitrary tidy formulas, that is: no renaming of
the formula’s bound variables or other kinds of preprocessing the formula are needed.

Theorem 6.38 There is a construction transforming an arbitrary tidy formula ⇠ 2 µML into
an equivalent balanced parity formula G⇠ which is based on the closure graph of ⇠, so that
|G| = |⇠|; in addition we have ind(G⇠) ad(⇠).

When it comes to complexity issues, this is in fact the main result that bridges the gap
between the world of formulas and that of automata and parity games.

Theorem 6.39 Assume that the problem of determining the winning regions of a parity game
G can be solved in time f(n, d), where n and d are, respectively, the size and the index of G.
Then the model checking problem for parity formulas can be solved in time f(m · n, d), where
m is the size of the labelled transition system, and n and d are the size and alternation depth
of the formula, respectively.

In particular, as an immediate corollary of Theorem 6.38 and the quasi-polynomial time
complexity result on the model checking problem for parity formulas (Theorem 6.12), we find
that model checking for µ-calculus formulas can be solved in quasi-polynomial time.

I COROLLARY: give concrete upper bound for complexity of model checking using Theorem 6.39

and Theorem 5.40.

The priority map ⌦C that we will define on the closure graph of a tidy formula is in fact
global in the sense that it can be defined uniformly for all (tidy) formulas, independently of
any ambient formula. Similar to the case of the subformula game, the free subformula relation
Pf used in Chapter 2 does not give an optimal result. We will rather base the map ⌦C on
a partial order of fixpoint formulas, the closure priority relation 4C , that we will introduce
now.

Definition 6.40 We let ⌘C denote the equivalence relation generated by the trace relation
!C , in the sense that: ' ⌘C if ' ⇣C and ⇣C '. We will refer to the equivalence
classes of ⌘C as (closure) clusters, and denote the cluster of a formula ' as L'MC .

Furthermore, we define the closure priority relation 4C on fixpoint formulas by putting
' 4C precisely if ⇣

C ', and we write ' �C if ' 4C and 64C '. �

In words: ' 4C if there is a trace from to ' such that is a (free) subformula of every
formula on the trace. This definition is somewhat involved, but this seems to be unavoidable
if we want an optimal complexity of model checking.

Remark 6.41 The definition of the priority order 4C may look overly complicated. In fact,
simpler definitions would su�ce if we are only after the equivalence of a tidy formula with an
associated parity formula that is based on its closure graph, i.e., if we do not need an exact
match of index and alternating-chain depth.

6-18 Parity formulas

I rewrite next paragraph

In particular, we could have introduced an alternative priority order 40
C by putting ' 40

C
if ' ⌘C and Pf '. If we would base a priority map ⌦0

C on this priority order instead of
on 4C , then we could prove the equivalence of any tidy formula ⇠ with the associated parity
formula G

0
⇠ := (C⇠,⌦0

C �Cl(⇠) , ⇠). However, we would not be able to prove that the index of
G

0
⇠ is bounded by the alternation depth of ⇠.
To see this, consider the following formula:

↵x := ⌫x.
�
(µy.x ^ y) _ ⌫z.(z ^ µy.x ^ y)

�
.

(For simplicity we use a formula without modalities to make the argument — nothing hinges
on this.) We leave it for the reader to verify that ↵x has alternation depth two, and that its
closure graph looks as follows:

⌫x

_

⌫z

^

µy

^

Let ↵y and ↵z be the other two fixpoint formulas in the cluster of ↵x, that is, let ↵y :=
µy.↵x ^ y and ↵z := ⌫z.z ^ ↵y. (These formulas correspond to the nodes in the graph that
are labelled µy and ⌫z, respectively.) Now observe that we have ↵x /f ↵y /f ↵z, so that this
cluster has an alternating 40

C-chain of length three: ↵z �0
C ↵y �0

C ↵x. Note however, that
any trace from ↵y to ↵z must pass through ↵x, the 4C-maximal element of the cluster. In
particular, we do not have ↵z 4C ↵y, so that there is no 4C-chain of length three in the
cluster. �

Here are some basic observations on the relation 4C and its connection with the closure
equivalence relation ⌘C .

Proposition 6.42 1) The relation 4C is a partial order.
2) The relation 4C is included in the closure equivalence relation: ' 4C implies ' ⌘C .
3) The relation 4C is included in the converse free subformula relation: ' 4C implies

 Pf '.
4) Every cell of ⌘C contains a unique fixpoint formula ⇠ = ⌘x.� such that ⇠ 62 Cl(�). This

formula is the 4C-maximum element of its cluster.

Proof. For item 1) we need to show that 4C is reflexive, transitive and antisymmetric.
Reflexivity is obvious, and antisymmetry follows from 3). For transitivity assume that ' 4C

and 4C � hold. By definition this means that ⇣
C ' and � ⇣�

C . The latter entails
that � Pf and the former means that there is some !C-trace from to ' such that
is a free subformula of every formula along this trace. Because � Pf and Pf is transitive

Lectures on the modal µ-calculus 6-19

it then also holds that � is a free subformula of every formula on the trace from to '.
Composing this trace with the one from � to we obtain a trace from � to ' such that � is
a free subformula of all formulas along this trace. Hence �⇣�

C ' and so ' 4C �.
For item 2) we assume that ' 4C and need to show that ' ⇣C and ⇣C '.

The assumption ' 4C means that ⇣
C ' which clearly entails ⇣C '. But, as

already observed above, ⇣
C ' also entails that Pf ', from which ' ⇣C follows by

Proposition 2.58.
Item 3) is immediate by the definition of 4C .
Finally, consider item 4). We first argue that

every cluster of !C contains a fixpoint formula ⇠ = ⌘x.� 62 Cl(�). (64)

To this aim we claim that if ⇠ = ⌘x.� and ⇠ 2 Cl(�) then there is some fixpoint formula
 2 L⇠MC with ⇠ �C . To see this, consider some ⇠ = ⌘x.� with ⇠ 2 Cl(�). Then we have
a trace � ⇣C ⇠ to which we can apply Proposition 2.39 to obtain a fixpoint formula with
� ⇣

C and ⇣
C ⇠. From the latter we have that ⇠ 4C and from the former we get

 Pf � which entails 6= ⇠ because ⇠ = ⌘x.�.
But if a cluster would only contain fixpoint formulas ⇠ = ⌘x.� with ⇠ in Cl(�) then this

would allow us to construct an infinite �C-chain in the cluster, which is impossible as all
clusters are finite. This proves (64).

Uniqueness of the fixpoint formula ⇠ in (64) is immediate by the following claim:

if ⇠ = ⌘x.� and ⇠ /2 Cl(�) then ⇠ Pf ⇢, for all ⇢ 2 L⇠MC . (65)

For the proof of (65), take an arbitrary ⇢ 2 Cl(⇠). It follows by Proposition 2.44 5) that
either ⇢ = ⇠, in which case we are done, or ⇢ = �[⇠/x] for some � 2 Cl(�). Now x 2 FV (�)
because otherwise � ⇣C � = �[⇠/x] = ⇢ ⇣C ⇠ contradicting ⇠ /2 Cl(�). But if ⇢ = �[⇠/x]
and x 2 FV (�) then by definition we have ⇠ Pf ⇢. This finishes the proof of (65).

For the 4C-maximality of ⇠ consider an arbitrary fixpoint formula 2 L⇠MC . Then we
have ⇠ ⇣C , and since every formula ⇢ on this trace ⇠ ⇣C is in L⇠MC it follows from (65)

that ⇠ Pf ⇢ and thus ⇠ ⇣⇠
C . By definition this means 4C ⇠. qed

Since 4C is a partial order, we may use Definition 6.27 to base a priority map on it. We
are now ready for the definition of the parity formula G⇠ corresponding to a tidy formula ⇠.

Definition 6.43 Fix some tidy formula ⇠. We define C⇠ to be the closure graph (Cl(⇠),!C)
of ⇠, expanded with the natural labelling LC given by

LC(') =

8
>><

>>:

' if ' 2 At(P)
~ if ' = ~ , with ~ 2 {3,2}
� if ' = 0 � 1, with � 2 {^,_}
" if ' = ⌘x. , with ⌘ 2 {µ, ⌫}

Finally, we let G⇠ be the parity formula

G⇠ := (C⇠,⌦C �Cl(⇠) , ⇠),

where ⌦C is the priority map that is induced by the partial order 4C ; in particular, ⌦C is a
partial map on tidy formulas that is only defined for fixpoint formulas. �

6-20 Parity formulas

Proof of Theorem 6.38. It is obvious that G⇠ is based on the closure graph of ⇠, and it
follows from the discussion in subsection 6.3.1 that the index of G⇠ is equal to the alternating
chain depth of the relation 4C . It then follows from Proposition 6.61 that ind(G⇠) ad(⇠).
The remaining statement of the Theorem, that is, the equivalence of G⇠ and ⇠, will be proved
below, cf. Proposition 6.47. qed

The remainder of this section is devoted to proving the equivalence of a tidy formula ⇠ to
its representing parity formula G⇠. For this purpose we need some auxiliary technical results.
The following proposition states that the global priority map indeed captures the right winner
of infinite matches of the evaluation game. Recall that the winner of an infinite match ⇡ of
the closure evaluation game is given by the parity of the most significant formula msf(⇡L) on
the trace part of ⇡ (that is, the left projection ⇡L of ⇡.

Proposition 6.44 Let ⌧ = (⇠n)n2! be an infinite trace of tidy formulas, and that ⇠ = ⌘x�
is the most significant formula of ⌧ . Then

1) ⇠ is the unique formula which occurs infinitely often on ⌧ and satisfies ⇠n 4C ⇠ for
cofinitely many n.

2) max
⇣
{⌦(') | ' occurs infinitely often on ⌧}

⌘
is even i↵ ⌘ = ⌫.

Proof. Part 1) is more or less immediate by the Propositions 2.39 and 2.58. From this it
follows by Proposition 6.33 that ⌦C(') ⌦C(⇠) for all ' that occur infinitely often on ⌧ , and
that ⌦C(⇠) has the right parity. This proves Part 2). qed

The following proposition describes the relation between the substitution operation and
the free subformula relation.

Proposition 6.45 Let ', and ⇠ be formulas in µML such that x 2 FV ('), and ⇠ is free
for x in both ' and . Then

1) ' Pf implies '[⇠/x] Pf [⇠/x];
2) '[⇠/x] Pf [⇠/x] implies ' Pf , provided that ⇠ 6Pf ', .

Proof. For part 1), assume that ' Pf , then = 0['/y] for some formula 0 such that
y 2 FV (0) and ' is free for y in 0. Without loss of generality we may assume that y does
not occur in . Then by Proposition 2.55 we obtain that '[⇠/x] is free for y in 0[⇠/x], and
that 0[⇠/x]['[⇠/x]/y] = [⇠/x]. This means that '[⇠/x] Pf [⇠/x] indeed.

For part 2), clearly it su�ces to show that

if [⇠/x] = ⇢
⇥
'[⇠/x]/y

⇤
with y 2 FV (⇢) then = ⇢0['/y], for some ⇢0 with y 2 FV (⇢0).

(66)
We will prove (66) by induction on the maximal depth dy(⇢) of y in ⇢ which we define as
follows:

dy(⇢) :=

⇢
0 if ⇢ = y
�1 if ⇢ is atomic but ⇢ 6= y

dy(⇢0 ? ⇢1) := 1 + max(dy(⇢0), dy(⇢1)) (? 2 {_,^})
dy(~⇢) := 1 + dy(~⇢) (~ 2 {3,2})

dy(⌘z ⇢) :=

⇢
1 + dy(~⇢) if y 6= z
�1 if y = z

Lectures on the modal µ-calculus 6-21

As the basis of our induction we take the cases where dy(⇢) 0. First assume dy(⇢) = �1,
which means that y 62 FV (⇢), so that ⇢

⇥
'[⇠/x]/y

⇤
= ⇢. In this case (66) holds vacuously.

In the other base case we assume dy(⇢) = 0, which means that ⇢ = y, so that ⇢
⇥
'[⇠/x]/y

⇤
=

'[⇠/x]. But then the equation of (66) reads [⇠/x] = '[⇠/x], so that we find = ' by
Proposition 2.59; that is, we may take ⇢0 := y.

In the induction step of the proof we have dy(⇢) > 0, from which we readily infer that ⇢
is non-atomic and that y 2 FV (⇢). From this it is immediate that ⇠ is a proper subformula
of ⇢

⇥
'[⇠/x]/y

⇤
. Now make a case distinction as to the nature of ⇢, and confine attention to

the following two cases.
First assume that ⇢ = ⇢0 ^ ⇢1, so that the equation in (66) reads [⇠/x] = ⇢0

⇥
'[⇠/x]/y

⇤
^

⇢1
⇥
'[⇠/x]/y

⇤
. It follows that must be of the form 0 ^ 1 with i[⇠/x] = ⇢i

⇥
'[⇠/x]/y

⇤

for i = 0, 1 — for otherwise we would have = x, which would imply [⇠/x] = ⇠ and thus
contradict our observation that ⇠ / ⇢

⇥
'[⇠/x]/y

⇤
. But then inductively there are formulas ⇢0i

such that i = ⇢0i['/x], with y 2 FV (⇢i) i↵ y 2 FV (⇢0i), for i = 0, 1. It is then straightforward
to verify that ⇢0 := ⇢00 ^ ⇢01 meets the requirement.

Now assume that ⇢ = ⌘z ⇢0. Then it must be the case that = ⌘z 0, with 0[⇠/x] =
⇢0
⇥
'[⇠/x]/y

⇤
. (The only other option would be that = x, which would mean that the

equation in (66) would read ⇠ = ⇢
⇥
'[⇠/x]/y

⇤
, again contradicting the fact that ⇠ is a proper

subformula of ⇢
⇥
'[⇠/x]/y

⇤
.) By the inductive hypothesis there is a formula ⇢00 with y 2

FV (⇢0) such that 0 ⌘ ⇢00['/y]. Now define ⇢0 := ⌘z ⇢00, then we find y 2 FV (⇢0), and
⇢0['/y] = ⌘z ⇢00['/y] = ⌘z 0 = . qed

I Exercise: show that conditions ⇠ 6Pf ', are both needed.

The next proposition is the key technical ingredient in proving the equivalence of ⇠ and
G⇠, in the inductive case where ⇠ is of the form ⌘x.�. Roughly, it states that the substitution
⇠/x is ‘almost an isomorphism’ between G� and G⇠; note, however, that actually, rather than
� we consider its variant �0 := �[x0/x] — this guarantees tidyness. Recall that the alternation
height h#(⇠) of a formula ⇠ was introduced in Definition 6.32

Proposition 6.46 Let ⇠ = ⌘x.� be a tidy fixpoint formula such that x 2 FV (�) and ⇠ /2
Cl(�). Furthermore, let �0 := �[x0/x] for some fresh variable x0. Then �0 is tidy and the
following hold.

1) the substitution ⇠/x0 is a bijection between Cl(�0) and Cl(⇠).
Let ', 2 Cl(�0). Then we have

2) if ' 6= x0, then '!C i↵ '[⇠/x0] !C [⇠/x0];
3) if ' 6= x0, then LC(') = LC('[⇠/x0]);
4) if x0 2 FV (') then ' Pf i↵ '[⇠/x0] Pf [⇠/x0];
5) if ' and are fixpoint formulas then 4C ' i↵ [⇠/x0] 4C '[⇠/x0];
6) if ('n)n2! is an infinite trace through Cl(�0), then ('n)n2! has the same winner as

('n[⇠/x0])n2!.

Proof. Let ⇠ = ⌘x.� be a tidy fixpoint formula such that x 2 FV (�) and ⇠ /2 Cl(�), and let
�0 := �[x0/x] for some fresh variable x0. We leave it for the reader to verify that �0 is tidy,
and first make the following technical observation:

6-22 Parity formulas

if ' 2 Cl(�0) then ⇠ /2 Cl(') and ⇠ 6Pf '. (67)

Leaving the proof of (67) to the reader, we turn to the respective items of the Proposition.

Item 1): Injectivity can be proved using Proposition 2.59, surjectivity using Proposi-
tion 2.44.

Item 2): This follows immediately from the ‘back-and-forth lemma’ (Proposition 2.56)
and item 1).

Item 3): The claim that LC(') = LC('[⇠/x0]) is rather trivial.
Item 4): This is Proposition 6.45. The assumptions ⇠ 6Pf and ⇠ 6Pf ' follow from (67).

Item 5): For the left-to-right direction assume that 4C '. By definition there is some
trace ' = ⇢0 !C ⇢1 !C . . . !C ⇢n = such that ' Pf ⇢i for all i 2 [0, n]. It is clear that
none of the ⇢i is equal to x because x has no outgoing !C-edges and 6= x0. Thus we can
use item 2) to obtain a trace '[⇠/x0] = ⇢0[⇠/x0] !C ⇢1[⇠/x0] !C . . . !C ⇢n[⇠/x0] = [⇠/x0].
By Proposition 6.45 it follows from ' Pf ⇢i that '[⇠/x0] Pf ⇢i[⇠/x0], for all i 2 [0, n]. That

is, we have shown that '[⇠/x0] ⇣'[⇠/x0]
C [⇠/x0].

Before we turn to the opposite direction we show that, for all ⇢,� 2 Cl(�0), we have

if ⇢[⇠/x0] ⇣C �[⇠/x0] and x0 2 FV (�) then x0 2 FV (⇢). (68)

This claim holds because, since ⇠ is free for x0 in �, by definition of Pf it follows from
x0 2 FV (�) that ⇠ Pf �[⇠/x0], and thus we find �[⇠/x0] ⇣C ⇠ by Proposition 2.58. If it
were the case that x0 /2 FV (⇢) then we would have that ⇢ = ⇢[⇠/x0] ⇣C �[⇠/x0] ⇣C ⇠,
contradicting (67).

Turning to the right-to-left direction of item 5), assume that [⇠/x0] 4C '[⇠/x0]. This
means that there is a trace '[⇠/x0] = ⇢00 !C . . . !C ⇢0m = [⇠/x0] with '[⇠/x0] Pf ⇢0i
for all i 2 [0,m]. By Proposition 6.42 we have [⇠/x0] ⌘C '[⇠/x0]. It follows from (68) and
 [⇠/x0] ⌘C '[⇠/x0] that x0 is either free in both ' and , or free in neither of the two formulas.
In the second case we obtain ' = '[⇠/x0] and = [⇠/x0], so that the statement of this item
holds trivially.

We now focus on the case where x0 2 FV (') \ FV (). Our first claim is that ⇢0i 6= ⇠
for all i 2 [0,m]. This follows from the fact that '[⇠/x0] Pf ⇢0i, which holds by assumption,
and the observation that ⇠ is a proper free subformula of '[⇠/x0], which holds since ' is a
fixpoint formula and hence, distinct from x0. But if ⇢0i 6= ⇠ for all i 2 [0,m], we may use the
items 1) and 2) to obtain a trace ' = ⇢0 !C . . . !C ⇢m = such that ⇢i[⇠/x0] = ⇢0i for all
i 2 [0,m]. Furthermore, by Proposition 2.42 it follows from x0 2 FV () that x0 2 FV (⇢i),
and so we may use item 4) to obtain ' Pf ⇢i, for all i 2 [0,m]. This su�ces to show that
 4C '.

Item 6): This observation is immediate by item 5) and Proposition 6.44. qed

Proposition 6.47 Let ⇠ be a tidy µ-calculus formula. Then ⇠ ⌘ G⇠.

Proof. It will be convenient to consider the global formula graph G := (µMLt,!C , LC ,⌦C),
where µMLt is the set of all tidy formulas using a fixed infinite set of variables, and LC is the

Lectures on the modal µ-calculus 6-23

obviously defined global labelling function. We may assign a semantics to this global graph
using an equally obvious definition of an acceptance game, where the only non-standard
aspect is that the carrier set of this ‘formula’ is infinite. For each tidy formula ' we may then
consider the structure Gh'i := (µMLt,!C , LC ,⌦C ,') as an initialised (generalised) parity
formula. Note that all structures of this form have the same (infinite) set of vertices, but that
the only vertices that are accessible in Gh'i are the formulas in the (finite) set Cl('). It is
then easy to see that Gh'i ⌘ G⇠h'i, for any pair of tidy formulas ', ⇠ such that ' 2 Cl(⇠).

In order to prove the Proposition, it therefore su�ces to show that every tidy formula ⇠
satisfies the following:

Gh'i ⌘ ', for all ' 2 Cl(⇠). (69)

We will prove (69) by induction on the length of ⇠. In the base step of this induction we have
|⇠|` = 1, which means that ⇠ is an atomic formula. In this case it is easy to see that (69)
holds.

In the induction step of the proof we assume that |⇠|` > 1, and we make a case distinction.
The cases where ⇠ is of the form ⇠ = ⇠0 � ⇠1 with � 2 {^,_} or ⇠ = ~⇠0 with ~ 2 {3,2},
are easy and left as exercises for the reader.

In the case where ⇠ is of the form ⇠ = ⌘x.� with ⌘ 2 {µ, ⌫} we make a further case
distinction. If ⇠ belongs to the closure set of �, then we have Cl(⇠) ✓ Cl(�), so that (69)
immediately follows from the induction hypothesis, applied to the formula �.

This leaves the case where ⇠ is of the form ⌘x.�, while ⇠ 62 Cl(�). Let x0 be some
fresh variable, then obviously we may apply the induction hypothesis to the (tidy) formula
�0 := �[x0/x]. The statement that ⇠ ⌘ Gh⇠i now follows by a routine argument, based on the
observations in Proposition 6.46. qed •

6-24 Parity formulas

6.4 From parity formulas to ordinary formulas

In section 6.3 we saw constructions that, for a given ordinary formula, produce equivalent
parity formulas based on, respectively, the subformula graph and the closure graph of the
original formula. We will now move in the opposite direction: we will give a construction that
turns an arbitrary parity formula G into an equivalent ordinary formula ⇠G 2 µML. Basically
this construction takes a parity formulas as a system of equations, and it solves these equations
by a Gaussian elimination of variables.

Interestingly, we encounter a significant di↵erence between the two size measures intro-
duced in Definition 2.48: whereas the closure-size of the resulting formula ⇠G is linear in
the size of G, its number of subformulas is only guaranteed to be exponential. And in fact,
Proposition 6.55 shows that there is a family of parity formulas for which the translation
actually reaches this exponential subformula-size.

The main result in this section is the following.

Theorem 6.48 There is an e↵ective procedure which transforms a parity formula G =
(V,E, L,⌦, vI) over some set P of proposition letters, into a µML-formula ⇠G such that ⇠G ⌘ G,
|⇠G| 2 · |G| and ad(⇠G) ind(G).

In order to prove Theorem 6.48 we will supply a map

trG : V ! µML(P)

for every balanced parity formula G = (V,E, L,⌦, vI) over some set P of proposition letters.
For an arbitrary parity formula G we then obtain the formula ⇠G by taking some balanced
version G

0 of G and apply the translation trG0 to the initial vertex of G0.
The definition of the map trG, just like most definitions and proofs in this section will

proceed by an induction on a certain complexity measure of parity formulas that we shall
refer to as weight.

Definition 6.49 We define the weight of a parity formula G = (V,E, L,⌦, vI) as the pair
(|Dom(⌦)|, |G|) consisting of, respectively, the number of states and the size of G. Pairs of
this form will be ordered lexicographically. �

Definition 6.50 Consider a balanced parity formula G = (V,E, L,⌦, vI), and let T be the
top cluster of G, that is, the cluster of the initial state vI . We make the following case
distinction.

Case 1: T is transient. In this case we must have T = {vI}, with vI 62 Ran(E), and for
every u 6= vI we may consider the parity formula G�hui obtained by removing vI from G

and making u the initial node. Each parity formula G
�hui has the same number of states as

G, but less vertices, so that inductively we may assume that we have defined some formula
trG�(u) for each u 6= vI . (Here we write trG� instead of trG�hui; this is justified since the
translation we define does not depend on the initial node.)

We define
trG(u) := trG�(u)

Lectures on the modal µ-calculus 6-25

for u 6= vI , while for vI we set5

trG(vI) :=

8
<

:

L(vI) if L(vI) 2 At(P)
~trG�(u) if L(v) = ~ 2 {3,2} and E(v) = {u}J

{trG�(u) | u 2 E(v)} if L(v) = � 2 {^,_}

Case 2: T is proper. In this case we have T \ Dom(⌦) 6= ?. Take an arbitrary state z 2 T
such that ⌦(z) equals the maximal priority reached on T . Since G is balanced, z is silent
(that is, L(z) = "); let z0 be its unique successor.

Consider the parity formula G
� = (V,E�, L�,⌦�, vI), which is characterised by the

definition of E�:
E� := E \ {(z, z0)},

that is, we obtain E� from E by cutting the edge from z to z0. Furthermore, we define

L�(v) :=

⇢
L(v) if v 6= z
z if v = z,

that is, G� sees z as a proposition letter. Finally, we set ⌦� := ⌦�V \{z} , so that G� has one
state less than G.

Inductively, then, we may assume that for all v 2 V , some formula trG�(v) has been
defined, and observe that trG�(z) = z. We now define

trG(v) := trG�(v)[⌘zz.trG�(z0)/z]

where ⌘z := µ if ⌦(z) is odd, and ⌘z := ⌫ if ⌦(z) is even. �

I Example to be supplied!

Remark 6.51 Before we turn to more interesting properties we note that the translation
trG is well-defined.

I some detail to be supplied

Note in particular that, although the definition of the translation map trG involves many
substitution operations, it does not involve any renaming of variables. �

Definition 6.52 Let G be an arbitrary parity formula. If G is balanced, we define

⇠G := trG(vI),

where vI is the initial vertex of G. If G is not balanced, we put ⇠G := ⇠Gb , where G
b is some

e↵ectively obtainalbe balanced formula which is equivalent to G and satisfies |Gb| 2 · |G|
and ind(Gb) = ind(G). �

5Note that the formulation of the boolean clause of our definition (i.e., the case where L(v) = � 2 {^,_}) is
a bit sloppy, since our language only has binary conjunctions and disjunctions, no conjunctions or disjunctions
over finite sets. A more precise definition can be given as follows; assume that � = ^, the case where � = _
is treated analogously. Assume that we have some arbitrary but fixed ordering of the vertices in G. We put
trG(v) = > if E(v) = ?, trG(v) = trG(u) if E(v) = {u}, and trG(v) = trG(u0)^ (. . .^ (trG(uk�1)^ trG(uk))
if E(v) = {u0, . . . , uk} where each ui comes before ui+1 in the mentioned ordering.

6-26 Parity formulas

The crucial technical lemma in the proof of Theorem 6.48 is the following proposition.

Proposition 6.53 Let G be a balanced parity formula. Then the map trG is a surjective
parity formula morphism:

trG : G ⇣ G⇠G .

Proof. We will prove the proposition via a series of claims. Let G = (V,E, L,⌦, vI) be a
balanced parity formula. First we show that trG is a surjection from V to Cl(⇠G).

Claim 1 trG[V] = Cl(⇠G).

Proof of Claim By induction on the weight of G we will prove the following two statements:
1) trG(v) 2 Cl(⇠G), for all v 2 V ;
2) Cl(⇠G) ✓ trG[V].
As in Definition 6.50, we let T be the top cluster of G, and make a case distinction.

Leaving the case where T is transient as an exercise, we focus on the case where T is proper,
and we let z and G

� be as in Definition 6.50. We abbreviate ⌧ := [trG(z)/z], and we define
the closure of G as follows:

Cl(G) :=
[�

Cl(trG(v)) | v 2 V

.

For part 1) we first observe that ⇠G = trG(vI) = trG�(vI)[⌧] = ⇠G� [⌧]. From this it follows
by Proposition 2.44 that Cl(⇠G) ◆ {'[⌧] | ' 2 Cl(⇠G�)}. Now take an arbitrary vertex v 2 V .
Then by the inductive hypothesis we have trG�(v) 2 Cl(⇠G�), so that trG�(v)[⌧] 2 {'[⌧] |
' 2 Cl(⇠G�)} ✓ Cl(⇠G) as required.

For part 2) our key observation is that

Cl(G) ✓ {'[⌧] | ' 2 Cl(G�)}, (70)

where ⌧ is the substitution ⌧ = [trG(z)/z]. For a proof of (70), we have to show that

Cl(trG(v)) ✓ {'[⌧] | ' 2 Cl(G�)},

for every vertex v in V . To show this we make a case distinction. In case v = z, we have
trG(z) = ⌘zz.trG�(z0), and so we find

Cl(trG(z)) = {trG(z)} [{'[⌧] | ' 2 Cl(trG�(z0))} (Proposition 2.44)

✓ {z[⌧]} [{'[⌧] | ' 2 Cl(trG�(z0))} (obvious)

✓ {z[⌧]} [{'[⌧] | ' 2 Cl(G�)} (definition Cl(G�))

✓ {'[⌧] | ' 2 Cl(G�)} (z 2 Cl(G�))

On the other hand, if v 6= z, we have trG(v) = trG�(v)[trG(z)/z], and so here we obtain

Cl(trG(v)) = {'[⌧] | ' 2 Cl(trG�(v))} [Cl(trG(z)) (Proposition 2.44)

= {'[⌧] | ' 2 Cl(G�)(v))} [Cl(trG(z)) (definition Cl(G�))

✓ {'[⌧] | ' 2 Cl(G�)} (just proved)

Lectures on the modal µ-calculus 6-27

Now that we have established (70), the remainder of the proof is straightforward:

Cl(G) ✓ {'[⌧] | ' 2 Cl(G�)} (just proved)

= {trG�(v)[⌧] | v 2 V } (induction hypothesis)

= {trG(v) | v 2 V } (definition trG)

This su�ces to prove the Claim. J

The next claim states that the map trG has the back-and-forth property; we leave its
proof as an exercise for the reader.

Claim 2 Let v be some vertex in G. Then the following hold:
1) if Evw then trG(v) !C trG(w);
2) if trG(v) !C ' then there is a vertex w 2 V such that Evw and trG(w) = '.

To establish the morphism conditions on the priority map we formulate the following
claim.

Claim 3 The map trG satisfies condition (4)) of Definition 6.18.

Proof of Claim It is immediate by the definitions that trG(v) is a fixpoint formula whenever
v is a state in G, and that v and trG(v) have the same parity. Given the definition of the
parity formula G⇠G , it is left to show that

⌦(v) < ⌦(w) i↵ trG(v) �C trG(w), (71)

for any pair of states v, w of distinct parity that belong to the same cluster of G. For the
proof from left to right, the key observation is that ⌦(v) < ⌦(w) means that w is ‘processed’
later than v in the definition of trG, while v and w belonging to the same cluster implies that
w is a free variable in trG0(v) for any intermediate-stage graph G

0 in which trG0(v) has been
defined already. Further details are left to the reader.

For the right-to-left direction of (71) we reason by contraposition. Suppose that ⌦(v) 6<
⌦(w), then since v and w have di↵erent parity we must have ⌦(w) < ⌦(v), so that by the
left-to-right direction of (71) we find trG(w) �C trG(v). But then clearly we cannot have
trG(v) �C trG(w). J

Finally, since we have trG(vI) = ⇠G, it is immediate by the definitions that the map trG

satisfies condition (5)) of the definition or a parity formula morphism. qed

We now turn to the proof of the final item of Theorem 6.48.

Proposition 6.54 For any parity formula G and for any vertex v in G we have ad(trG(v))
ind(G).

Proof. Let C be a cluster of G, and let ⌘ be either µ or ⌫. An alternating ⌘-chain in C of
length k is a sequence v1 · · · vk of states such that, for all i < k we have ⌦(vi) < ⌦(vk), while
vi and vi+1 have di↵erent parities. We define acd⌘⌦(C) as the maximal length of such a chain,
with acd⌘⌦(C) := 0 if C has no such chains. Our key observation is the following claim.

6-28 Parity formulas

Claim 1 Let d and ⌘ be such that acd⌘⌦(C) d for every cluster C of G. Then trG(v) 2 ⇥⌘
d.

Proof of Claim We prove the claim by induction on the weight (|Dom(⌦)|, |G|) of G. Let
T be the top cluster of G, and make a case distinction. We leave the case where T is transient
as an exercise, and focus on the case where T is proper. Let, as in Definition 6.50, z be a
state in T of maximal priority.

Let GT = (V,ET , LT ,⌦T , vI) be the parity formula given by ET := E \ (T ⇥ V), LT :=
L�T [{(u, u) | u 2 V \ T} and ⌦T := ⌦ �T . In words, GT is the parity formula we obtain
from G by focusing on the top cluster T , replacing, for every vertex u 62 T , the generated
subgraph Gu with the ‘atomic’ parity formula representing the atom u. It is not hard to see
that, for all u 2 V \ T we have

trG(u) = trGu(u), (72)

while the point of the construction is that for every t 2 T we get:

trG(t) = trGT (t)[trGu(u)/u | u 2 V \ T]. (73)

Now suppose that we can prove, for all t 2 T , that

trGT (t) 2 ⇥⌘
d. (74)

Note that by the induction hypothesis, applied to the parity formulas Gu with u 2 V \ T , we
have trGu(u) 2 ⇥⌘

d. Then we may use clause (4) of Definition 2.50 to derive from (73) and
(74) that trG(v) 2 ⇥⌘

d as required.

It is thus left to prove (74), and for this purpose we shall apply the induction hypothesis
to the parity formula G

�
T . Let � be the parity of z. We will make use of the following relation

between trG and trGT , which is not hard to prove:

if Ran(trG�) ✓ ⇥�
e then Ran(trG) ✓ ⇥�

e . (75)

Turning to the proof of (74), we make a case distinction, as to the nature of �. Our
reasoning will be slightly di↵erent in either case.

First consider the case where � = ⌘. This implies that every cluster D of G�
T satisfies

ind⌘(D) d � 1. Then by the induction hypothesis we find that tr
G

�
T
(v) 2 ⇥⌘

d�1, for all

v 2 T . From this it follows by (75) that Ran(trG) ✓ ⇥�
d�1 = ⇥⌘

d�1, which means that we are

done since ⇥⌘
d�1 ✓ ⇥⌘

d.
If, on the other hand, we have � = ⌘, then we reason as follows. Clearly, every cluster D

of G�
T satisfies ind⌘(D) d. It follows by the induction hypothesis that tr

G
�
T
(v) 2 ⇥⌘

d, for

all v 2 T . But then by (75) every formula of the form trGT (t) belongs to ⇥⌘
d as required. J

Finally, it is not hard to derive the Proposition from Claim 1. With d := ind(G) and C
a cluster of G, one easily derives from the definitions that acdµ⌦(C), acd⌫⌦(C) d. From this
it is immediate by the Claim that trG(v) 2 ⇥µ

d \ ⇥⌫
d, for any v in G. From this we obtain

ad(trG(v)) d as required. qed

Lectures on the modal µ-calculus 6-29

Proof of Theorem 6.48. First let G be an arbitrary balanced parity formula. By Proposi-
tion 6.53 and Theorem 6.38 we find that, respectively, G ⌘ G⇠G and G⇠G ⌘ ⇠G. From this it is
immediate that G ⌘ ⇠G. Furthermore, it follows from Claim 1 in the proof of Proposition 6.53
that |⇠G| |G|, and from Proposition 6.54 that ad(trG(v)) ind(G).

From this and the definition of ⇠G the Theorem is immediate. qed

The construction of the Definitions 6.50 and 6.52 provides, for every parity formula G, an
equivalent formula ⇠G of size linear in the size of G, at least, if we define the size of ⇠G as it
closure-size. If we measure ⇠G by its number of subformulas, the best upper bound that we
can obtain is exponential, see Exercise 6.2. (Note that we cannot state that the subformula-
size of trG is at most exponential in the size of G since the formula ⇠G will generally not be
clean, and so its subformula-size may not be defined.)

The next proposition reveals that the translation given in Definition 6.50 may actually
produce formulas with exponentially many subformulas, relative to the size of the parity
formula. The ‘culprit’ here is the application of the substitution operation in the inductive
step of the definition, since this may double the number of subformulas each time it is applied.
The proposition thus provides an example witnessing that the closure size of a formula can
be exponentially smaller than its number of subformulas.

Proposition 6.55 There is a family (Fn)n2! such that for every n it holds that |Fn| 2n+2,
which implies that |⇠Fn | is linear in n, while |Sf (⇠n| � 2n.

Proof. For some arbitrary but fixed number n, consider the parity formula F = (V,E, L,⌦, vI)
given by

V := {si, vi | 0 i n}
E := {(si, vi) | 0 i n} [{(si+1, si) | 0 i n� 1}

[{(v0, sn)} [{(vi, si) | 0 < i n}
L := {(si,^), (vi,3) | 0 i n}
⌦ := {(vi, i) | 0 i n}
vI := v0.

In Figure 10 we display a picture of the parity formula F, for n = 4.

s0|^ s1|^ s2|^ s3|^ s4|^

v0|30start v1|31 v2|32 v3|33 v4|34

Figure 10: the parity formula F

Our claim is that
|Sf (trF(v0))| � 2n, (76)

6-30 Parity formulas

and in order to prove (76), we will use the notion of fixpoint depth of a formula. Recall that
we define fd(') := 0 if ' is atomic, fd('0�'1) := max(fd('0), fd('1)), fd(~') := fd('), and
fd(⌘x.') := 1 + fd('). It is an easy exercise to verify that any µ-calculus formula ⇠ satisfies
|Sf (⇠)| � fd(⇠), so that, in order to prove (76), it su�ces to show that

fd(trF(v0)) � 2n. (77)

To calculate trF(v0) it will be useful to introduce some auxiliary structures. For k 2 [0, n],
we let Fk denote the formula (Vk, Ek, Lk,⌦k, s) given by

Vk := V [{ui | k i n}
Ek := {(si, vi) | 0 i < k} [{(sj , uj) | k j n} [{(si+1, si) | 0 i n� 1}

[{(v0, sn)} [{(vi, si) | 0 < i n}
Lk := L [{(uj , vj) | k j n}
⌦k := {(vi, i) | 0 i k}

For an example, see Figure 11, which contains a picture of the formula F2 in the case
where n = 4. Using the notation of Definition 6.50 (but writing ui for v⇤i), we have F = Fn

s0|^ s1|^ s2|^ s3|^ s4|^

v0|30start v1|31 v2|32 v3|33 v4|34u2|v2 u3|v3 u4|v4

Figure 11: the parity formula F2

and F
�
k+1 = Fk, for all k 2 [0, n� 1].

We now turn to the translation maps associated with these parity formulas. Observe that
it follows from the definitions that MFk = {vk}, so that we obtain the following definitions
(where to avoid clutter we write trk rather than trFk , and omit brackets in conjunctions):

tr0(v0) := 3
V

0in vi
tr0(vm) := 3

V
0im vi for all m 2 [1, n]

trk+1(vk) := ⌘kvk.trk(vk) for all k 2 [0, n]
trk+1(v`) := trk(v`)[trk+1(vk)/vk] for all k 2 [0, n] and all ` 6= k)

In order to prove (76), we need an auxiliary notion of (relative) fixpoint depth. Given a
formula ' and variable x, we let fd(x,'), the fixpoint depth of x in ', denote the maximum
number of fixpoint operators that one may meet on a path from the root of the syntax tree of
' to a free occurrence of x in ', with fd(x,') = �1 if no such occurrence exists. Formally,

Lectures on the modal µ-calculus 6-31

we set

fd(x,') :=

⇢
0 if ' = x
�1 if ' is atomic, but ' 6= x

fd(x,'0 � '1) := max
�
fd(x,'0), fd(x,'1)

�
where � 2 {^,_}

fd(x,~') := fd(x,') where ~ 2 {3,2}

fd(x, ⌘y.') :=

⇢
�1 if x = y
1 + fd(x,') if x 6= y

where ⌘ 2 {µ, ⌫}

Without proof we mention that, provided x 6= y and y is free for y in ':

fd(x,'[/y]) = max
�
fd(x,'), fd(y,') + fd(x,)

�
.

From this we immediately infer that

fd(x,'[/y]) � fd(y,') + fd(x,), (78)

which is in fact the crucial observation in the proof: here we see that the translation doubles
the fixpoint depth of the formulas in every step.

Claim 1 For all k 2 [1, n], and all `,m � k we have that fd(v`, trk(vm)) � 2k � 1.

Proof of Claim We prove the claim by induction on k. For the base step of the induction,
where k = 1, it su�ces to observe that fd(v`, tr1(vm)) = 1, for all `,m � 1. But this is obvious
by the observation that for all m � 1 we may calculate tr1(vm) = 3

�
⌫v0.3

V
0in vi

�
^V

1i` vi.
For the induction step, we consider the case for k + 1. Taking arbitrary numbers `,m �

k + 1, we reason as follows:

fd(v`, trk+1(vm)) = fd(v`, trk(vm)[trk+1(vk)/vk]) (definition trk+1(vm))

� fd(vk, trk(vm)) + fd(v`, trk+1(vk)) (equation (78))

= fd(vk, trk(vm)) + fd(v`, ⌘kvk.trk(vk))) (definition trk+1(vk))

� fd(vk, trk(vm)) + 1 + fd(v`, trk(vk))) (definition fd(·), ` > k)

� (2k � 1) + 1 + (2k � 1) (induction hypothesis, twice)

= 2k+1 � 1.

Clearly this finishes the proof of the claim. J

Finally, it is easy to see how (77) follows from the Claim. qed

Exercise 6.2 Let G be an arbitrary balanced parity formula. Prove that the number of
subformulas of ⇠G is at most exponential in the size of G.

6-32 Parity formulas

6.5 Alternation depth

in Chapter 2 we formally defined the notion of alternation depth by means of an inductive
definition. We also mentioned that, intuitively, the alternation depth corresponds to the
maximal length of certain alternating chains. In this section we will make this relation precise
by proving the following results:

• If ⇠ is clean, then its alternation depth corresponds to the maximal length of an alter-
nating chain of bound variables of ⇠ that are ordered by the dependency order 4⇠:

ad(⇠) = acd(4⇠). (79)

• if ⇠ is tidy, then its alternation depth corresponds to the maximal length of an alternating
chain of fixpoint formulas in Cl(⇠) that are ordered by the closure priority order 4C :

ad(⇠) = acd(4C�⇠). (80)

Unfortunately the proofs of these results are rather finicky, especially the one of (80).

First of all, we need to refine some of our earlier definitions on alternating chains.

Definition 6.56 Let Z = (Z,4, p) be some parity preorder, and let ~z = z1 · · · zk be some
alternating chain in Z. We call ~z a µ-chain if p(zk) = 1, and a ⌫-chain if p(zk) = 0.

For ⌘ 2 {µ, ⌫} we define the alternating ⌘-depth acd⌘(Z) of Z as the maximal length of an
alternating ⌘-chain in Z. �

Clearly then we have acd(4) = max(acdµ(4), acd⌫(4)). Note as well that if Z has no states
of odd (even) parity, then we set acdµ(4) = 0 (acd⌫(4) = 0, respectively).

For an intuitive understanding of the following technical observation, recall that clause (4)
of Definition 2.50 states that the classes ⇥⌘

n are closed under substitution. Proposition 6.57
states a kind of converse to this. We leave the proof of this result as an exercise for the reader.

Proposition 6.57 Let ⇠ and � be µ-calculus formulas such that ⇠ is free for x in �. If
�[⇠/x] 2 ⇥⌘

k then � 2 ⇥⌘
k. Furthermore, if x 2 FV (�) then we also have ⇠ 2 ⇥⌘

k.

In the case of a clean formula there is a simple characterisation of alternation depth, linking
it to the length of alternating chains of the dependency order 4⇠ on the bound variables of ⇠.

Proposition 6.58 Let ⇠ be a clean formula. Then for any k 2 ! and ⌘ 2 {µ, ⌫} we have

⇠ 2 ⇥⌘
k i↵ acd⌘(4⇠) k, (81)

As a corollary, the alternation depth of ⇠ is equal to the length of its longest alternating
dependency chain.

One of the key insights in the proof of this Proposition is that, with free for x in ', any
dependency chain in '[/x] originates entirely from either ' or . Recall from Definition 2.2
that we write µ = ⌫ and ⌫ = µ.

Lectures on the modal µ-calculus 6-33

Proof of Proposition 6.58. For the sake of a concise notation we will write d⌘(⇠) :=
acd⌘(4⇠).

We prove the implication from left to right in (81) by induction on the derivation that
⇠ 2 ⇥⌘

k. In the base step of this induction (corresponding to clause (1) in the definition of
alternation depth) ⇠ is atomic, so that we immediately find d⌘(⇠) = 0 as required.

In the induction step of the proof, we make a case distinction as to the last applied clause
in the derivation of ⇠ 2 ⇥⌘

k, and we leave the (easy) cases, where this clause was either (2) or
(3), for the reader.

Suppose then that ⇠ 2 ⇥⌘
k on the basis of clause (4). In this case we find that ⇠ = ⇠0[/z]

for some formulas ⇠0, such that is free for z in ⇠0 and ⇠0, 2 ⇥⌘
k. By the ‘key insight’

mentioned right after the formulation of the Proposition, any ⌘-chain in the formula ⇠ is a
⌘-chain in either ⇠0 or . But then by the induction hypothesis it follows that the length of
any such chain must be bounded by k.

Finally, consider the case where ⇠ 2 ⇥⌘
k on the basis of clause (5). We make a further case

distinction. If ⇠ 2 ⇥⌘
k�1, then by the induction hypothesis we may conclude that d⌘(⇠) k�1,

and from this it is immediate that d⌘(⇠) k. If, on the other hand, ⇠ 2 ⇥⌘
k�1 then the

induction hypothesis yields d⌘(⇠) k � 1. But since d⌘(⇠) d⌘(⇠) + 1 we obtain d⌘(⇠) k
indeed.

The opposite, right-to-left, implication in (81) is proved by induction on k. In the base
step of this induction we have d⌘(⇠) = 0, which means that ⇠ has no ⌘-variables; from this it
is easy to derive that ⇠ 2 ⇥⌘

0.
For the induction step, we assume as our induction hypothesis that (81) holds for k 2 !,

and we set out to prove the same statement for k + 1 and an arbitrary ⌘ 2 {µ, ⌫}:

if d⌘(⇠) k + 1 then ⇠ 2 ⇥⌘
k+1. (82)

We will prove (82) by an ‘inner’ induction on the length of ⇠. The base step of this inner
induction is easy to deal with: if |⇠|` = 1 then ⇠ must be atomic so that certainly ⇠ 2 ⇥⌘

k+1.

In the induction step we are considering a formula ⇠ with |⇠|` > 1. Assume that d⌘(⇠)
k+1. We make a case distinction as to the shape of ⇠. The only case of interest is where ⇠ is a
fixpoint formula, say, ⇠ = ⌘x.� or ⇠ = ⌘x.�. If ⇠ = ⌘x.�, then obviously we have d⌘(⇠) = �⌘(�),
so by the inner induction hypothesis we find � 2 ⇥⌘

k+1. From this we immediately derive that
⇠ = ⌘x.� 2 ⇥⌘

k+1 as well.
Alternatively, if ⇠ = ⌘x.�, we split further into cases: If � has an ⌘-chain y1 · · · yk+1 of

length k + 1, then obviously we have x 62 FV (�k+1) (where we write �k+1 instead of �yk+1),
for otherwise we would get x >⇠ yk+1, so that we could add x to the ⌘-chain y1 · · · yk+1 and
obtain an ⌘-chain y1 · · · yk+1x of length k + 2. But if x 62 FV (�k+1) we may take some fresh
variable z and write ⇠ = ⇠0[⌘yk+1.�k+1/z] for some formula ⇠0 where the formula ⌘yk+1.�k+1

is free for z. By our inner induction hypothesis we find that both ⇠0 and ⌘yk+1.�k+1 belong to
⇥⌘

k+1. But then by clause (4) of Definition 2.50 the formula ⇠ also belongs to the set ⇥⌘
k+1.

If, on the other hand, � has no ⌘-chain of length k + 1, then we clearly have d⌘(�) k.

Using the outer induction hypothesis we infer � 2 ⇥⌘
k, and so by clause (3) of Definition 2.50

we also find ⇠ = ⌘x.� 2 ⇥⌘
k. Finally then, clause (5) gives ⇠ 2 ⇥⌘

k+1. qed

6-34 Parity formulas

Turning to the analogous result for tidy formulas, we need some further auxiliary results.
The first of these states that, when analysing the alternation depth of a tidy formula of the
form �[⇠/x], we may without loss of generality assume that ⇠ is not a free subformula of �.

Proposition 6.59 Let ⇠ and � be µ-calculus formulas such that ⇠ is free for x in �, x 2
FV (�), |⇠|` > 1, and �[⇠/x] is tidy. Then there is a tidy formula �0 such that ⇠ is free for x0

in �0, �0[⇠/x0] = �[⇠/x], |�0|` |�|`, ad⌘(�0) ad⌘(�) for ⌘ 2 {µ, ⌫}, and ⇠ 6Pf �0.

Proof. The proof proceeds by induction on the length of �. In case ⇠ 6Pf � we are done
immediately, since then we can simply take �0 := �. We will therefore assume that ⇠ Pf �.
Then by definition we have � = '[⇠/y] for some tidy formula ' such that y 2 FV (�) and ⇠
is free for y in '. Since |⇠|` > 1 we find that |'|` < |�|`, and so we may apply the induction
hypothesis to '. That means that we can find a tidy formula '0 such that � = '0[⇠/y0] for
some variable y 2 FV ('0), ⇠ is free for y0 in '0, |'0|` |'|`, ad⌘('0) ad⌘(') and ⇠ 6Pf '0.

Now define �0 := '0[x0/x, x0/y0], for some fresh variable x0. Then clearly we have that
|�0|` = |'0|` |'|` < |�|` and ad⌘(�0) = ad⌘('0) ad⌘(') ad⌘(�), where the last inequality
follows from Proposition 6.57 and the fact that � = '[⇠/y]. We leave it for the reader to
convince themselves that ⇠ 6Pf '0 entails ⇠ 6Pf �0. Finally, it is not hard to verify that
�0[⇠/x0] = '0[x0/x, x0/y0][⇠/x0] = '0[⇠/y0][⇠/x] = �[⇠/x] as required. qed

Our main auxiliary proposition concerns the relation between parity formulas of the form
G� and G�[⇠/x], respectively. Roughly, it states that under some mild conditions, the substi-
tution ⇠/x is a ‘local isomorphism’ between these two structures, i.e., an isomorphism at the
level of certain clusters. Recall that L MC denotes the ⌘C-cluster of a formula .

Proposition 6.60 (substitution as local isomorphism) Let ⇠ and � be formulas such
that ⇠ is free for x in � and �[⇠/x] is tidy. Furthermore, assume that ⇠ 62 Cl(�), and
x 62 FV (⇠). Then the following hold:•

1) the substitution ⇠/x : Cl(�) ! Cl(�[⇠/x]) is injective;
2) if 2 Cl(�) is such that [⇠/x] 62 Cl(�) [Cl(⇠), then ⇠/x is an isomorphism between

the structures (L MC , LC ,!C ,Pf ,4C) and (L [⇠/x]MC , LC ,!C ,Pf ,4C).

We omit the proof of this Proposition, which is similar to that of Proposition 6.46.

Proposition 6.61 For any tidy formula ⇠ and ⌘ 2 {µ, ⌫}, we have

cd⌘(⇠) n i↵ ⇠ 2 ⇥⌘
n. (83)

As a corollary, the alternation depth of ⇠ is equal to the length of its longest alternating
�C-chain.

Proof. In this proof we shall be reasoning about the clusterwise ordering of fixpoints formulas,
and so the following notation will be handy. Given a closure cluster D of ⇠ we let, for
⌘ 2 {µ, ⌫}, cd⌘(D) := acd⌘(�C�D) denote the maximal length of an alternating �C-chain in D
leading up to an ⌘-formula, and similarly we write cd(D) := acd(�C�D) and cd(⇠) := acd(�C

�⇠). Clearly then we have cd(C) = max(cdµ(C), cd⌫(C)), cd(⇠) = max(cdµ(⇠), cd⌫(⇠)), etc.

Lectures on the modal µ-calculus 6-35

For the proof of the left-to-right direction of (83), we proceed by an outer induction on n,
and an inner induction on the length |⇠|` of the formula ⇠. We focus on the outer inductive
case, leaving the base case, where n = 0, to the reader.

First of all, it is easy to see that every fixpoint formula ⇠0 in the cluster of ⇠ satisfies
cd⌘(⇠0) = cd⌘(⇠), while it follows from Proposition 2.54 that ⇠0 2 ⇥⌘

n i↵ ⇠ 2 ⇥⌘
n. For this •

reason we may, without loss of generality, confine our attention to the case where ⇠ is the
�C-maximal element of its cluster. This means that ⇠ is a fixpoint formula, and so we may
distinguish cases, as to its parity.

First we consider the case where ⇠ is of the form ⇠ = ⌘x.�. Let

⌘1x1. 1 �C ⌘2x2. 2 �C · · · �C ⌘kxk. k

be a maximal alternating ⌘-chain in Cl(�). Then

⌘1x1. 1[⇠/x] �C ⌘2x2. 2[⇠/x] �C · · · �C ⌘kxk. k[⇠/x]

is an alternating ⌘-chain in Cl(⇠), and so we have k n. It then follows by the inner induction
hypothesis that � 2 ⇥⌘

n, and so by definition of the latter set we find ⇠ = ⌘x.� 2 ⇥⌘
n, as

required.
The other case to be discussed is where ⇠ is of the form ⇠ = ⌘x.�. Now let

⌘1x1. 1 �C ⌘2x2. 2 �C · · · �C ⌘kxk. k

be a maximal alternating ⌘-chain in Cl(�).
We now make a further case distinction. If x is a free variable of some formula in this

chain, it is in fact a free variable of every formula in the chain; from this it follows that

⌘1x1. 1[⇠/x] �C ⌘2x2. 2[⇠/x] �C · · · �C ⌘kxk. k[⇠/x] �C ⇠

is an alternating ⌘-chain in the cluster L⇠MC of ⇠. Since this chain has length k + 1, it follows
by our assumption on ⇠ that k + 1 n, and so k n � 1. Alternatively, if x is not a free
variable of any formula in this chain, then the chain is itself an alternating ⌘-chain in Cl(⇠),
and from this and the assumption that cd⌘(⇠) n it readily follows that k n� 1.

In both cases we find that k n � 1, which means that cd⌘(�) n � 1. By the outer

induction hypothesis we thus find that � 2 ⇥⌘
n�1. From this it is then easy to derive that

⇠ = ⌘x.� 2 ⇥⌘
n.

For a proof of the opposite, right-to-left direction ‘(’ of (83), the argument proceeds by
induction on the length of '. In the base case ' is atomic and hence the claim is trivially
true.

In the inductive step we make a case distinction depending on the clause of Definition 2.50
that was applied in the last step of the derivation of ' 2 ⇥⌘

k. We leave the easy cases, for the
clauses 1 and 2, to the reader.

If clause 3 is used to derive ' 2 ⇥⌘
n then ' = ⌘x.� for some � 2 ⇥⌘

n. First define
�0 = �[x0/x] for an x0 that is fresh for � and '. Note that the length of �0 is equal to the
length of �, which is shorter than the length of '. By Proposition 6.57 we also have that

6-36 Parity formulas

�0 2 ⇥⌘
n. Moreover, �0 is tidy because ' is tidy, BV (�0) = BV (�) ✓ BV ('), FV (�0) =

(FV (�) \ {x}) [{x0} ✓ FV (') [{x0}, and x0 is fresh for '. This means that we can apply
the inductive hypothesis to �0, obtaining that cd⌘(�0) n

We then distinguish cases depending on whether ' 2 Cl(�) or not.
If ' 2 Cl(�) then it is not hard to prove that ' 2 Cl(�0) as well. It is then easy to see

that every alternating chain in G' also exists in G�0 , and thus it follows that cd⌘(') n.
If ' /2 Cl(�) we distinguish further cases depending on whether x 2 FV (�). If this is

not the case then �0 = � and G' is just like G� with an additional vertex for ' that forms
a transient cluster on its own and is connected just with an outgoing !C-edge to the vertex
of �0 in G�0 . Thus, every alternating chain in a cluster of G' also exists in G�0 and thus
cd⌘(') n follows from cd⌘(�0) n.

The last case is where ' /2 Cl(�) and x 2 FV (�). To prove cd⌘(') n consider an
alternating �C-chain ⌘1x1.⇢1 �C · · · �C ⌘mxm.⇢m, of length m and with ⌘m = ⌘ in some
cluster of G'. We now argue that m n. Because ⌘ixi.⇢i 2 Cl(') for all i 2 [1,m] it follows
by Proposition 6.42(4) that the only possibility for ' to be among the ⌘ixi.⇢i in this chain is if
' = ⌘mxm.⇢m. This would lead to a contradiction however, because ⌘m = ⌘ while we assumed
that ' = ⌘x.�. We may therefore conclude that ' is not among the ⌘ixi.⇢i for i 2 [1,m]. By
the items 1), 3) and 5) of Proposition 6.46 it follows that there is an alternating �C-chain
⌘1x1.�1 �C · · · �C ⌘mxm.�m in Cl(�0) such that (⌘ixi.�i)[⇠/x0] = ⌘ixi.⇢i for all i 2 [1,m].
Because cd⌘(�0) n it follows that m n.

If clause 4 is used to derive ' 2 ⇥⌘
n then ' is of the form ' = �[⇠/x] such that �, ⇠ 2 ⇥⌘

n.
First observe that we may assume that x 2 FV (�) and |⇠|` > 1, otherwise the claim trivialises.
Furthermore, because of Proposition 6.59 we may without loss of generality assume that in
addition � is tidy as well, that x is fresh for ⇠, and that ⇠ 6Pf �. Finally, since |⇠|` > 1 we find
that the length of � is smaller than that of ' = �[⇠/x], so that we may apply the inductive
hypothesis, which gives that cd⌘(�) n and cd⌘(⇠) n.

To show that cd⌘(�[⇠/x]) n consider a fixpoint formula ⌘y.⇢ 2 Cl(�[⇠/x]) that is at the
top of a maximal alternating �C-chain in G�[⇠/x]. Recall from Definition 6.32 that h#(⌘y.⇢)
denotes the maximal length of an alternating �C-chain leading up to ⌘y.⇢. In order to show
that h#(⌘y.⇢) n, we claim that

h#(⌘y.⇢) = h#(⌘y.⇢0) for some ⌘y.⇢0 2 Cl(�) [Cl(⇠). (84)

To see this, first note that we may assume that ⌘y.⇢ /2 Cl(�) [Cl(⇠) because otherwise we
can just set ⇢0 := ⇢. By Proposition 2.44 we obtain that

Cl(�[⇠/x]) = { [⇠/x] | 2 Cl(�)} [Cl(⇠).

Therefore, since ⌘y.⇢ 2 Cl(�[⇠/x]), and we assume that ⌘y.⇢ /2 Cl(⇠), it follows that ⌘y.⇢ =
 [⇠/x] for some 2 Cl(�). We are thus in a position to apply Proposition 6.60, which
describes how the !C-cluster of relates under the substitution ⇠/x to the !C-cluster of
⌘y.⇢ = [⇠/x]. Note that 6= x because otherwise we would have ⌘y.⇢ = ⇠, contradicting
the assumption that ⌘x.⇢ /2 Cl(⇠). This means that = ⌘y.⇢0 for some formula ⇢0, since the
substitution ⇠/x preserves the main connective of formulas other than x. Finally, it follows
from item 2) of Proposition 6.60 that h#(⌘y.⇢) = h#(⌘y.⇢0).

Lectures on the modal µ-calculus 6-37

As an immediate consequence of (84) we obtain that h#(⌘y.⇢0) n because ⌘y.⇢0 is either
in G� or in G⇠, where the inductive hypothesis applies. This finishes the proof for the case
of clause 4.

We leave the last case, where clause 5 is used to derive that ' 2 ⇥⌘
n, to the reader. qed

6-38 Parity formulas

6.6 Guarded transformation

As an example of an important construction on parity formulas, we consider the operation
of guarded transformation. Recall from Definition 2.19 that a µ-calculus formula is guarded
if every occurrence of a bound variable is in the scope of a modal operator which resides
inside the variable’s defining fixpoint formula. Intuitively, the e↵ect of this condition is that,
when evaluating a guarded formula in some model, between any two iterations of the same
fixpoint variable, one has make a transition in the model. Many constructions and algorithms
operating on µ-calculus formulas presuppose that the input formula is in guarded form, which
explains the need for low-cost guarded transformations, that is, e�cient procedures for bring-
ing a µ-calculus formula into an equivalent guarded form.

It is easy to translate the notion of guardedness to parity formulas, but in fact we will need
something stronger in the next chapter, when we present the automata-theoretic perspective
on the modal µ-calculus.

Definition 6.62 A path ⇡ = v0v1 · · · vn through a parity formula is unguarded if n � 1,
v0, vn 2 Dom(⌦) while there is no i, with 0 < i n, such that vi is a modal node. A parity
formula is guarded if it has no unguarded cycles, and strongly guarded if it has no unguarded
paths. �

In words, a parity formula is strongly guarded if every path, leading from one state
(node in Dom(⌦)) to another contains at least one modal node (occurring after the path’s
starting state). The following theorem states that on arbitrary parity formulas, we can give an
exponential-size guarded transformation; note that the index of the formula does not change.
At the time of writing it is not known whether every parity formula can be transformed into
a guarded equivalent of subexponential size.

Theorem 6.63 There is an algorithm that transforms a parity formula G = (V,E, L,⌦, vI)
into a strongly guarded parity formula G

g such that

1) G
g ⌘ G;

2) |Gg| 21+|Dom(⌦)| · |G|;
3) ind(Gg) ind(G);

We will prove Theorem 6.63 via a construction that step by step improves the ‘degree
of guardedness’ of the parity formula. In the intermediate steps we will be dealing with a
modified notion of guardedness.

Definition 6.64 A parity formula G = (V,E, L,⌦, vI) is strongly k-guarded if it every un-
guarded path ⇡ = v0v1 · · · vn satisfies ⌦(vn) > k. �

Clearly, a parity formula is (strongly) guarded i↵ it is (strongly)m-guarded, wherem is the
maximum priority value of the formula. Hence, we may prove Theorem 6.63 by successively
applying the following proposition. Recall that a parity formula is called lean if its priority
map is injective. We say that a parity formula has silent states only if each of its states is
labelled ".

Lectures on the modal µ-calculus 6-39

Proposition 6.65 Let G be a lean, strongly k-guarded parity formula with silent states only.
Then we can e↵ectively obtain a lean, k+1-guarded parity formula G

0, with silent states only,
and such that G0 ⌘ G, |G0| 2 · |G| and ind(G0) ind(G).

Proof. Let G = (V,E, L,⌦, vI) be an arbitrary lean, strongly k-guarded parity formula with
silent states, that is, Dom(⌦) ✓ L�1("). Without loss of generality we may assume that in
fact Dom(⌦) = L�1("). If G happens to be already k + 1-guarded, then there is nothing to
do: we may simply define G

0 := G.
On the other hand, if G is k+1-unguarded, then in particular there must be a state z 2 V

such that ⌦(z) = k + 1. By injectivity of ⌦, z is unique with this property. In this case we
will build the parity formula G

0, roughly, on the disjoint union of G, a copy of a part of G
that is in some sense generated from z, and an additional copy of z itself.

For the definition of G0, let W z be the smallest set W ✓ V containing z, which is such
that E[w] ✓ W whenever w 2 W is boolean. Now define

V 0 :=
�
V ⇥ {0}

�
[
�
W z ⇥ {1}

�
[
�
{z}⇥ {2}

�
.

In the sequel we may write u0 instead of (u, 0), for brevity. Furthermore, recall that we use
Vm to denote the set of modal vertices of G. The edge relation E0 is now given as follows:

E0 :=
�
(u0, v0) | (u, v) 2 E and v 6= z

[

�
(u1, v1) | (u, v) 2 E and v 6= z

[
�
(u0, z1) | (u, z) 2 E

[
�
(u1, v0) | (u, v) 2 E and u 2 Vm

[

�
(u1, u0) | u 2 Dom(⌦) and ⌦(u) > k + 1

[
�
(u1, z2) | (u, z) 2 E and u 62 Vm

To understand the graph (V 0, E0), it helps, first of all, to realise that the set W z provides a
subgraph of (V,E), which forms a dag with root z and such that every ‘leaf’ is either a modal
or propositional node, or else a state v 2 Dom(⌦) with ⌦(v) > k. (It cannot be the case
that ⌦(v) k due to the assumed k-guardedness of G.) Second, it is important to realise
that the only way to move from the V -part of V 0 to the W z-part is via the root z1 of the
W z-part, while the only way to move in the converse direction is either directly following a
modal node, or else by making a dummy transition from some vertex u1 to its counterpart
u0 for any u 2 W z with ⌦(u) > k. Finally, we add a single vertex z2 to V 0.

Furthermore, we define the labelling L0 and the priority map ⌦0 of G0 by putting

L0(ui) :=

⇢
L(u) if i = 0, 1
bz if ui = z2

where we recall that bz = ? if ⌦(z) is odd and bz = > if ⌦(z) is even, and

⌦0(ui) :=

⇢
⌦(u) if i = 0 and u 2 Dom(⌦)
" otherwise.

In words, the label of a node (v, i) in G
0 is identical to the one of v in G, with the

sole exception of the vertex (z, 2). To explain the label of the latter node, note that by
construction, any unguarded E0-path from z1 to z2 projects to an unguarded k+1-cycle from

6-40 Parity formulas

z to z in G. If ⌦(z) = k + 1 is odd, any such cycle represents (tails of) infinite matches that
are lost by 9; for this reason we may label the ‘second’ appearance of z in the E0-path, i.e.,
as the node z2, with ?.

We now turn to the proof of the proposition. It is not hard to show that G
0 is lean and

that |G0| 2 · |G|.

To show that ind(G0) ind(G), note that obviously, the projection map ui 7! u preserves
the cluster equivalence relation, i.e., ui ⌘E0 vj implies u ⌘E v. Hence, the image of any
cluster C 0 of G0 under this projection is part of some cluster C of G. But then by definition of
⌦0 it is easy to see that ind(C 0) ind(C). From this it is immediate that ind(G0) ind(G).

To see why G
0 is k + 1-guarded, suppose for contradiction that it has a k + 1-unguarded

path ⇡ = (v0, i0)(v1, i1) · · · (vn, in). It is easy to see that this implies that the projection
v0v1 · · · vn of ⇡ is an unguarded path in G (here we ignore possible dummy transitions of the
form (u1, u0)), and so by assumption on G it must be the case that ⌦0(vn, in) = ⌦(vn) = k+1.
This means that (vn, in) = (z, 0); but the only way to arrive at the node (z, 0) in (V 0, E0) is
directly following a modal node (in W z ⇥ {1}), which contradicts the unguardedness of the
path ⇡.

In order to finish the proof of the Proposition, we need to prove the equivalence of G0 and
G; but this can be established by a relatively routine argument of which we skip the details.
qed

Proof of Theorem 6.63. Let G be an arbitrary parity formula; without loss of generality
we may assume that G is lean, i.e., ⌦ is injective. Let Ran(⌦) = {k1, . . . , kn}; then |Dom(⌦)| =
n. To ensure that all states are silent, we may have to duplicate some vertices; that is, we
continue with a version H of G that has at most twice as many vertices, but the same index,
the same number of states, and silent state only.

By a straightforward induction we apply Proposition 6.65 to construct, for every i 2
[1, n], a ki-guarded parity automaton H

i with silent states only, and such that H
i ⌘ G,

|Hi| 2i+1 · |G|, and ind(Hi) = ind(G). Clearly then we find that Hn is the desired strongly
guarded equivalent of G; and since n = |Dom(⌦)| we find that |Hn| 21+n · |G| as required.

qed

Remark 6.66 On a closer inspection of the construction in the proof of Proposition 6.65,
the reader may observe that inductively, we may assume that for every i, every predecessor
of a state in H

i with priority at most ki is in fact a modal node. From this, it follows that
we may impose, in the formulation of Theorem 6.63, an additional constraint on G

g, namely,
that every predecessor of a state is a modal node, more formally, that (Eg)�1[Dom(⌦] ✓ V g

m.
�

