
11 Model theory of the modal µ-calculus

In this Chapter we will see how to apply the automata-theoretic tools developed in the
previous chapter to prove some model-theoretic results about the modal µ-calculus.

I overview of chapter to be supplied

11.1 Small model property

As our first result we will prove a small model property for the modal µ-calculus, by showing
that if a modal automaton accepts some pointed Kripke model, it accepts one of which the
size is bounded by the size of the automaton. Recall that, given a modal automaton A we
refer to the class of pointed Kripke models that are accepted by A as the query of A, notation:
Q(A), and that classes of this form are called recognizable.

Theorem 11.1 Let A be a modal automaton. Then Q(A) 6= ? i↵ A accepts a finite pointed
model of size at most exponential in the state-size of A.

Because of the Simulation Theorem it su�ces to prove Theorem 11.1 for disjunctive modal
automata. Our proof will be based on an alternative perspective of these devices, revealing
their close resemblance the Kripke models that they operate on.

Kripke automata

The key observation in our proof is that the semantics of the cover modality and the notion of a
bisimulation are defined in a very similar fashion, both involving the coalgebraic presentation
of Kripke models, and the notion of relation lifting.

Fix a set P of proposition letters. Recall from Remark 1.3 and Definition 1.4 that we can
represent a Kripke model9 (S,R, V ) as a pair

S = (S,� : S ! KS),

where K is the Kripke functor given by putting, for an arbitrary set S:

KS := }(P)⇥ }(S).

In Definition 1.29 we introduced two notions of relation lifting. Given a binary relation
Z ✓ S ⇥ S0, we define the relation }Z ✓ }S ⇥ }S0 as follows:

}Z := {(X,X 0) | for all x 2 X there is an x0 2 X 0 with (x, x0) 2 Z
& for all x0 2 X 0 there is an x 2 X with (x, x0) 2 Z}.

Similarly, define, associated with the Kripke functor K, the relation KZ ✓ KS⇥KS0 as follows:

KZ := {((⇡, X), (⇡0, X 0)) | ⇡ = ⇡0 and (X,X 0) 2 }Z}.
9We restrict to the monomodal case in this section.
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Position Player Admissible moves
(a, s) 2 A⇥ S - {(↵(a),�(s))}
(�, ⌧) 2 KA⇥ KS 9 {Z 2 }(A⇥ S) | (�, ⌧) 2 KZ}
Z 2 }(A⇥ S) 8 Z = {(b, t) | (b, t) 2 Z}

Table 23: Bisimilarity game for Kripke models

To make our point we now introduce a new class of automata, consisting of so-called
Kripke automata, and show that these are in fact equivalent to the disjunctive automata
defined earlier on.

As our starting point we consider, for two Kripke models A = hA,↵i and S = hS,�i, the
bisimilarity game B(A, S) of Definition 1.26. Using the above notion of relation lifting, the
rules of this game can be reformulated as in Table 23. Recall that the winning conditions of
the bisimilarity game are such that all infinite games are won by 9.

The main conceptual step is to think of A as a ‘proto-automaton’ that we use to classify
S rather than as of a Kripke model that we are comparing with S. In order to turn A into a
proper Kripke automaton, four technical modifications have to be made:

(1) A small change is that we require A (i.e., its carrier set A) to be finite.
(2) Second, and equally undramatic, we add an initial state to the structure of A.
(3) Third, whereas the winner of an infinite match of a bisimulation game is always 9, the

winner of an infinite acceptance match will be determined by an explicit acceptance condition
on A! — a parity condition, in our case.

(4) The fourth and foremost modification is that we introduce nondeterminism to the
transition structure of A. That is, Kripke automata will harbour many ‘realizations’ of
Kripke models — and in each round of the acceptance game, it is 9’s task to pick an actual
local realization of the current state of A.

Definition 11.2 Given a set P of proposition letters, a Kripke automaton for P is a quadruple
A = hA,�,⌦, aIi such that the transition function � is given as a map � : A ! }(KA). The
acceptance game A(A, S) associated with a Kripke automaton A = hA,�,⌦, aIi and a Kripke
structure S is given by Table 24. A pointed Kripke model (S, s) is accepted by A if the position

Position Player Admissible moves Priority
(a, s) 2 A⇥ S 9 {(�,�(s)) 2 KA⇥ KS | � 2 �(a)} ⌦(a)
(�, ⌧) 2 KA⇥ KS 9 {Z ✓ A⇥ S | (�, ⌧) 2 KZ} 0
Z 2 }(A⇥ S) 8 Z 0

Table 24: Acceptance game for Kripke automata

(aI , s) is a winning position for 9 in the acceptance game. �

For an informal description of the acceptance game A(A, S), note that each round consists
of exactly three moves, with interaction pattern 998. At a basic position (a, s), the ‘K-
unfolding’ �(s) 2 KS of s is fixed, but 9 chooses the unfolding of a to be an arbitrary element
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� of �(a). After this move, the play arrives at a position of the form (�, s) 2 KA ⇥ S. The
players now proceed as in the bisimilarity game for Kripke models. First 9 chooses a ‘local
bisimulation’ linking � and �(s), that is, a relation Z ✓ A ⇥ S such that (�,�(s)) 2 KZ.
Spelled out, this means that 9 can only choose such a relation Z if � is of the form (c, B) 2
}(P)⇥}(A) with c = �V (s), and that Z has to satisfy the back and forth conditions, stating
that for all b 2 B there is t 2 R[s] with bZt, and vice versa. The round ends with 8 choosing
an element (b, t) from Z, thus providing the next basic position of the match.

We will now show that Kripke automata are nothing but disjunctive automata in disguise,
and vice versa.

Definition 11.3 First let A = hA,�,⌦, aIi be some Kripke automaton. We define its modal
companion AM as the disjunctive modal automaton AM := hA,�M ,⌦, aIi, where �M :
A⇥ }(P) ! 1DML(A) is given by putting

�M (a, c) :=
_

{rB | (c, B) 2 �(a)}.

Conversely, let D = hD,⇥,⌦, dIi be a disjunctive modal automaton. Without loss of
generality we may assume that the domain of ⇥ consists of formulas in the restricted format
of Remark 10.14, that is, for every pair (a, c) 2 A ⇥ }(P) there is a (possibly empty) index
set Ia,c such that

⇥(a, c) =
_

{rBi | i 2 Ia,c}.

We now define the transition map �⇥ by putting

�⇥(a) := {(c, Bi) 2 KA | c 2 }(P), i 2 Ia,c},

and define DK := hD,�⇥,⌦, dIi and call this structure the Kripke companion of D. �

Remark 11.4 For a better understanding of the equivalence between disjunctive modal au-
tomata and Kripke models, it may be useful to take the following perspective. Given sets P
(of proposition letters) and A of states, it is not hard to see that the collection of possible
transition functions of disjunctive modal automata (in the restricted format of Remark 10.14
corresponds to the set

TD :=
�
A⇥ }(P)

�
! }(}(A)),

while the set of possible transition maps of Kripke automata is given as the collection

TK := A ! }
�
}(P)⇥ }(A)

�
.

Now recall that by ‘currying’ there is a bijective correspondence
(†) (X ⇥ Y ) ! Z ⇠= X ! (Y ! Z)
for any triple of sets X,Y and Z. Furthermore, for any set X there is a well-known bijective
correspondence between the powerset }(X) of X and the collection of functions from X to
the two-element set 2 := {0, 1}:
(‡) }(X) ⇠= X ! 2.
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Using these observations it is straightforward to verify the following bijective correspon-
dences between the sets TD and TK :

�
A⇥ }(P)

�
! }}(A)

⇠= (‡)
�
A⇥ }(P)

�
!

�
}(A) ! 2)

�

⇠= (†)
�
A⇥ }(P)⇥ }(A)

�
! 2

⇠= (†) A !
⇣�
}(P)⇥ }(A)

�
! 2

⌘

⇠= (‡) A ! }
�
}(P)⇥ }(A)

�

In fact, the translations given in Definition 11.3 can be obtained by computing the bijections
between TD and TK , on the basis of those in (†) and (‡). �

Proposition 11.5 (i) Let A = hA,�,⌦, aIi be a Kripke automaton. Then A ⌘ AM .
(ii) Let D = hD,⇥,⌦, dIi be a disjunctive modal automaton. Then D ⌘ DK .

Proof. The proof of this proposition is straightforward. If we merge the two moves of 9 in
each round of the acceptance game for Kripke automata into one, we may in fact show that,
for any Kripke model S, the acceptance games A(AM , S) and A(A, S) are isomorphic, and
similarly for the acceptance games A(DK , S) and A(D, S). qed

Small model property for Kripke automata

We will now prove the small model property for Kripke automata. This framework allows us
to prove a result that is quite a bit stronger than just a small model theorem: we may show
that, if A is a Kripke automaton recognizing a non-empty query, then QA contains a Kripke
model that ‘lives inside’ or inhabits A.

Definition 11.6 Let A = hA,⇥,⌦, aIi be a Kripke automaton. If S is a subset of A, and
� : S ! KS is such that �(s) 2 �(s) for all s 2 S, then we say that the Kripke model
S = hS,�i inhabits A. When we use this terminology for a pointed Kripke model (S, s), we
require in addition that s = aI . �

The key tool in our proof of the small model property will be the following satisfiability
game that we may associate with a Kripke automaton. Intuitively the reader may think of
this game as the simultaneous projection on A of all acceptance games of A, as should become
clear from the proof of Theorem 11.8 below.

Definition 11.7 Let A = hA,�,⌦, aIi be a Kripke automaton. Then the satisfiability game
S(A) is given by Table 25. The winning condition for infinite matches is defined using the
priority map for game positions (see the table) as a parity condition. �

One last remark before we formulate and prove the main technical result of this section:
the proof of this theorem involves a crucial application of the Positional Determinacy of parity
games.
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Position Player Admissible moves Priority
a 2 A 9 �(a) ⌦(a)
(c, B) 2 KA 8 B 0

Table 25: Satisfiability game for Kripke automata

Theorem 11.8 The following are equivalent, for any Kripke automaton A = hA,⇥,⌦, aIi:
1) Q(A) 6= ?;
2) aI 2 Win9(S(A));
3) A accepts a pointed model inhabiting A.

Proof. 1 ) 2 Suppose that A accepts some pointed model (S, s0). Then by definition, 9
has a winning strategy in the acceptance game A(A, S)@(aI , s0). This strategy will be the
basis of her winning strategy in the satisfiability game of A.

Concretely, in S(A)@aI , 9 will maintain the following condition. Put a0 = aI , and let

a0(c1, B1)a1(c2, B2) . . . ak,

be an initial segment of an S(A)-match (with (ci+1, Bi+1) 2 ⇥(ai) being the move of 9 at
position ai, and ai+1 2 Bi+1 the next move of 8). Then 9 sees this match as the projection
of a parallel match of A(A, S)@(aI , s0) where she plays her winning strategy:

(a0, s0) ((c1, B1), s0) Z1 (a1, s1) . . . (ak, sk) ((ck+1, Bk+1), sk) Zk+1 . . .
+ + + + + + +
a0 (c1, B1) � a1 . . . ak (ck+1, Bk+1) � . . .

The existence of such a parallel match is easily proved by an inductive argument, of which
the base case is immediate by the shape (aI versus (aI , s0)) of the initial game positions.
Inductively assume that at stage k, the matches of S(A) and A(A, S) have arrived at the
positions ak and (ak, sk) respectively. We will show that there is a way to continue both
matches for one round in such a way that the next basic positions are of the form b and (b, t),
respectively, for some b 2 A and t 2 S, with the continuation in the acceptance game being
guided by 9’s winning strategy.

Suppose that 9’s winning strategy in the acceptance game tells her to choose position
((c, B),�(sk)), followed by the relation Z. Then at position ak of S(A), we define her strategy
to be such that she picks (c, B). Now suppose that in the match of S(A), 8 chooses some
element b 2 B as the next position. It follows by the assumption that 9’s strategy is winning,
that (c, B) 2 ⇥(ak), c = �V (sk) and (B,R[sk]) 2 }(Z). Hence there must be an element
t 2 R[sk] such that (b, t) 2 Z; in the acceptance game, she may look at a continuation of the
match where 8 picks the pair (b, t). In other words, we have proved that 9 can maintain the
parallel match for one more round.

Using this strategy in the satisfiability game will then guarantee her to win the match,
since the associated sequence of A-states is the same for both matches, and in the A(A, S)-
match 9 plays according to a strategy that was assumed to be winning.
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2 ) 3 Assume that 9 has a winning strategy in the satisfiability game starting from the
initial state aI of A. Let S := Win9(S(A)) be the set of positions in A that are winning
for 9. The key point of the satisfiability game for Kripke automata is that S(A) is a parity
game, and so we may without loss of generality assume that this strategy is positional, see
Theorem ??. In other words, we may represent it as a map � : S ! KA. We invite the reader
to check that �(a) 2 KS for all a 2 S. Now define S be the Kripke model hS,�i. The map
� : S ! KS then induces a binary relation R ✓ S ⇥ S and a valuation V : P ! }(S), viz.,
the unique R and V such that �(s) = (R[s],�V (s)). We claim that A accepts (S, aI).

To see why this is the case, we will prove that (aI , aI) is a winning position in the accep-
tance game A(A, S). The winning strategy that we may equip 9 with in this game is in fact
very simple:

• at position (a, s), pick (�(a),�(s)) as the next position if a = s 2 Win9(S(A)), and
choose a random element otherwise;

• at position ((c, B), (c0, B0)), pick the relation {(b, b) | b 2 B \B0}.

It can be proved that any match of the acceptance game in which 9 uses this strategy, can be
‘projected’ onto a match of the satisfiability game in which she plays her winning strategy:

(aI , aI) (�(aI),�(aI)) {(b, b) | b 2 R[aI ]} (a1, a1) (�(a1),�(a1)) . . . (an, an) . . .
+ + + + + +
aI �(aI) � a1 �(a1) . . . an . . .

Given the winning conditions of A(A, S) and S(A) it is then immediate that the given strategy
indeed guarantees that 9 wins any match starting at position (aI , aI).

3 ) 1 This implication is a direct consequence of the definitions. qed

11.2 Normal forms and decidability

In this section we will see two more corollaries of the results in the previous chapter.

Disjunctive normal form

As a first consequence, we now see that every formula of the modal µ-calculus can be brought
into so-called disjunctive normal form. For the definition of the connectives used below we
refer to Definition 1.37.

Definition 11.9 Given a sets P of proposition letters, the set of disjunctive modal µ-calculus
formulas10 over P is given by the following grammar:

' ::= x | ? | > |
_

� | ↵ • � | µx.' | ⌫x.'

Here x is a variable not in P, ↵ denotes a finite set of literals over P, and � is a finite collection
of disjunctive formulas over P.

10In this section we work with a variation of the earlier definition: it will be convenient for us here to have
> and ? as primitive formulas.
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We let µMLD(P) denote the sentences of this language, that is, the disjunctive formulas '
such that FV (') ✓ P. �

These formula are called disjunctive because the only admissible conjunctions are the
special ones of the form ↵ • �, where ↵ is a propositional formula (in fact, a conjunction of
literals).

Theorem 11.10 There is an e↵ective algorithm that rewrites a modal fixpoint formula ⇠ 2
µML(P) into an equivalent disjunctive formula ⇠d of closure size at most exponential in |⇠|.

I proof (based on the results of the previous chapters) to be supplied.

I size issues to be addressed!

Decidability

I Intro

Theorem 11.11 There is an algorithm that decides in linear time (measured in dag-size)
whether a given disjunctive formula ⇠ is satisfiable or not.

Proof. It is easy to see that the proof of this proposition is a direct consequence of the
following observations:

1. > is satisfiable;

2. ? is not satisfiable;

3.
W

� is satisfiable i↵ some ' 2 � is satisfiable;

4. ↵ •r� is satisfiable i↵ both ↵ and each ' 2 � is satisfiable;

5. if µx.' is disjunctive, then it is satisfiable i↵ '[?/x] is satisfiable;

6. if ⌫x.' is disjunctive, then it is satisfiable i↵ '[>/x] is satisfiable.

The proof of these claims is left as an exercise for the reader. qed

Decidability of the satisfiability problem for modal fixpoint formulas is then an immediate
consequence of the previous two results.

Corollary 11.12 There is an algorithm that decides in elementary time whether a given
modal fixpoint formula ⇠ is satisfiable or not.

I Corollary 11.12 does not provide the best complexity bound for the satisfiability
problem for the µ-calculus, which can in fact be solved in (singly) exponential
time.
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11.3 Uniform interpolation and bisimulation quantifiers

In this section we will prove that the modal µ-calculus enjoys the property of uniform inter-
polation by proving that we can express the so-called bisimulation quantifiers in the language.

Definition 11.13 Given two modal fixpoint formulas ' and  , we say that  is a (local)
consequence of ', notation: ' |=  , if S, s � ' implies S, s �  , for every pointed Kripke
model (S, s). �

A formalism has the (Craig) interpolation property if we can find an interpolant for every
pair of formulas ' and  such that ' |=  . This interpolant is a formula ✓ such that ' |= ✓
and ✓ |=  ; but most importantly, the requirement on ✓ is that it may only use proposition
letters that occur both in ' and  , or more precisely: FV (✓) ✓ FV (') \ FV ( ).

I why this is an important property

Uniform interpolation is a very strong version of interpolation in which the interpolant ✓
does not depend on the particular shape of one of the formulas, but only on its vocabulary
(set of free variables). More precisely, we define the following.

Definition 11.14 Let ' be a modal fixpoint formula, and P ✓ FV (') be a set of variables.
Then a (right) uniform interpolant of ' with respect to P is a formula ✓ with FV (✓) ✓ P,
such that

' |=  i↵ ✓ |=  . (121)

for all formulas  with FV ( ) \ FV (') ✓ P. �

In words, (121) states that ✓ has exactly the same consequences as ', at least, if we restrict
to formulas  such that all free variables shared by ' and  belong to P.

Remark 11.15 To justify the terminology ‘uniform interpolant’, take some formula  with
FV ( ) \ FV (') ✓ P. We claim that

' |=  implies ' |= ✓ and ✓ |=  (122)

for any uniform interpolant ✓ of ' with respect to P.
To see this, suppose that ' |=  , and let ✓ be a uniform interpolant of ' with respect

to P. Then we have ✓ |=  by (121), so it remains to show that ' |= ✓. But this follows
immediately from the fact that by definition we have FV (✓) \ FV (') ✓ P, so that we may
apply (121) to ✓ itself (and use that, obviously, ✓ |= ✓). �

Remark 11.16 Dually, we could have introduced the notion of a left uniform interpolant
for  , instead of a right interpolant for '. A left interpolant for  , with respect to a set
P ✓ FV ( ) of proposition letters, is a formula � with FV (�) ✓ P, and such that ' |=  i↵
' |= �. But since negation is definable in the modal µ-calculus as an operation ⇠ : µML(P) !
µML(P) and so we have ' |=  i↵ ⇠ |= ⇠', it is not hard to see that if ✓ is a (right) uniform
interpolant for  , then its negation ⇠✓ is a left interpolant for  . In other words, since our
language is closed under classical negation, requiring that every formula has a right uniform
interpolant is equivalent to requiring that every formula has a left uniform interpolant. �
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The following theorem states that uniform interpolants exist in the modal µ-calculus.

Theorem 11.17 (Uniform Interpolation) Let ' be a modal fixpoint formula, and let P
be a set of variables such that P ✓ FV ('). Then ' has a uniform interpolant with repect to
P.

The proof consists of showing that the modal µ-calculus can express the so-called bisim-
ulation quantifiers.

Definition 11.18 Given a proposition letter q, the bisimulation quantifier e9q is an operator
with the following semantics:

S, s � e9q.' i↵ S0, s0 � ', for some pointed model S0, s0 $R\q S, s, (123)

where S is some Kripke model over a set R of proposition letters, and $R\q is the bisimilarity
relation ‘up to q’, that is, we only require the condition (prop) of Definition 1.19 to hold for
proposition letters p 2 R \ q. �

The bisimulation quantifier e9q is a second-order existential quantifier, but nonstandard in
the sense that it does not quantify over subsets of the actual model S, but rather over subsets
of possibly distinct (but bisimilar-up-to-q) models. For instance, if s is a state in S with one
single successor, then obviously the formula e9q(3q^3q) would be false if we had to interpret
q as a subset of S. However, taking a bisimilar pointed model (S0, s0) such that s0 has two
successors, we can easily interpret q as a subset of S0 such that the formula 3q ^3q becomes
true at s0. Similarly, the formula e9q(q ^2q) holds at any point in any Kripke model.

The main result underlying the proof of Theorem 11.17 is that the bisimulation quantifiers
are definable in the modal µ-calculus. The following notation will be convenient.

Convention 11.19 Where P is a set of proposition letters, and q is a proposition letter
(which may or may not belong to P), we write P \ q rather than P \ {q}.

Theorem 11.20 For any set P of proposition letters, and any proposition letter q, there is
a map

e9q : µMLD(P) ! µMLD(P \ q)

such that for any formula ' 2 µMLD(P), we have FV (e9q.') = FV (') \ q, and the semantics
of e9q.' satisfies (123), for any Kripke model over a set of proposition letters R ◆ P.

The proof of Theorem 11.20 crucially involves disjunctive modal automata. Before going
into the details, there is a technicality that we need to get out of the way.

Remark 11.21 Let A = hA,⇥,⌦, aIi be a modal automaton over some set P of proposition
letters, and let S = (S,R, V ) be a Kripke model over some, possibly larger, set R. Then
strictly speaking the acceptance game A(A, S) is not well-defined since the domain of the
transition map ⇥ is of the form Dom(⇥) = A ⇥ }(P), while the range of the colouring map
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�V of S is the set Ran(�V ) = }(R). But clearly we can take care of this mismatch by working
with the map ⇥R : A⇥ }(R) ! 1ML(A) given by

⇥R(a, c) := ⇥(a, c \ P).

In the sequel we will largely ignore this issue. �

We now turn to the details of the proof of Theorem 11.20. Because of the existence of truth-
preserving translations between formulas and automata, it su�ces to provide a construction on
modal automata that instantiates the bisimulation quantifier, and because of the Simulation
Theorem it su�ces to define this construction for disjunctive modal automata.

Definition 11.22 Let P be a set of proposition letters and let q be a proposition letter
(possibly but not necessarily in P). Let A = hA,⇥,⌦, aIi be a disjunctive modal automaton
over the set P. We abbreviate C := }(P) and C� := }(P \ {q}).

Now we define the modal automaton e9q.A as the structure e9q.A := hA,⇥±q,⌦, aIi, where

⇥±q(a, c) := ⇥(a, c \ {q}) _⇥(a, c [ {q})

defines the transition map ⇥±q : A⇥ C� ! 1DML(A). �

The main technical result that we will prove is the following. Recall from Definition 10.16
that we write S, sI �s A in case 9 has a functional strategy in the game A(A, S)@(aI , sI).

Proposition 11.23 Let A be a disjunctive modal P-automaton, and let S be a Kripke model
over some set R ◆ P. Then the following are equivalent, for any state sI 2 S:
1) S, sI �s

e9q.A;
2) S[q 7! Q], sI �s A, for some subset Q ✓ S.

Proof. We only consider the case where R = P, leaving it for the reader to extend the result
to the more general case (cf. Remark 11.21). Fix a disjunctive P-automaton A = hA,⇥,⌦, aIi
and an R-model S = (S,R, V ); to simplify notation we will write ct := �V (t), for an arbitrary
point t 2 S. Similarly, we will write c � q := c \ {q} and c + q := c [ {q} for an arbitrary
colour c 2 }(P). Furthermore, we will use the one-step presentation of the acceptance game,
as in Table 21.

For the direction 1) ) 2) of the Proposition, assume that S, sI �s
e9q.A. In other words,

9 has a functional positional strategy f which is winning in the game A(e9q.A, S)@(aI , sI).
Abbreviate A := A(e9q.A, S).

Let U ✓ S be the set of points t in S such that, for some state a 2 A, the position (a, t)
is f -reachable in A@(aI , sI). It follows from functionality of f that for every t 2 U there is
a unique such state in A; we will denote this state as at. Furthermore, since f is a winning
strategy in A@(aI , sI), every position of the form (at, t) is winning for 9, and so by legitimacy
of f , the marking mt : R[t] ! }(A) picked by f at this position is such that

(R[t],mt) �1 ⇥±q(at, ct). (124)
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Given that ⇥±q(at, ct) = ⇥(at, ct � q)_⇥(at, ct + q), this observation provides the set Q ✓ S
that we are looking for:

Q := {t 2 U | (R[t],mt) �1 ⇥(at, ct + q)}.

We claim that S[q 7! Q], sI �s A, and to show this, we define the following positional strategy
fQ for 9 in AQ := A(A, S[q 7! Q]). At a position (a, t) 2 A⇥ S, 9 will play as follows:

• in case t 2 U and a = at, she picks the marking mt;

• in all other cases she picks a random marking.

We first show that for each t 2 U and a = at this strategy provides a legitimate move in
AQ, that is,

(R[t],mt) �1 ⇥(at,�V [q 7!Q](t)). (125)

To see this, make the following case distinction:

• If (R[t],mt) �1 ⇥(at, ct + q) then by definition of Q we find t 2 Q. This means that
�V [q 7!Q](t) = �V (t) [ {q} = ct + q. In other words, (125) holds indeed.

• If, on the other hand, (R[t],mt) 6�1 ⇥(at, ct + q) then by definition of Q we find t 62 Q.
Furthermore, by (124) and the definition of ⇥±q it must be the case that (R[t],mt) �1

⇥(at, ct � q). But since t 62 Q we have �V [q 7!Q](t) = �V (t) \ {q} = ct � q, so that again
we obtain (125).

It remains to show that fQ is functional, and winning for 9 in AQ@(aI , sI), but this is
in fact easy. The point is that at any position of the form (at, t) the strategies f and fQ
prescribe the same move, viz., mt, and that at the position mt the moves of 8 in A and AQ

are the same. From this it follows that every position for 9 that is reachable in an fQ-guided
match of AQ@(aI , sI) is of the form (at, t) (with t 2 U), and so by our previous claim about
the legitimacy of fQ at such positions, fQ is a surviving strategy. Now consider an fQ-guided
full match of AQ@(aI , sI); this very same match is also an f -guided match of A, and hence
won by 9 — after all we assumed that f is a winning strategy for 9 in A(aI , sI)@(aI , sI),
and the winning conditions in AQ and A are the same. In other words, every fQ-guided full
match of AQ@(aI , sI) is won by 9. Finally, since f is a functional strategy, so is fQ. This
finishes the proof that 1) ) 2).

The proof of the opposite implication, 2) ) 1), is similar; we omit the details. qed

From this, Theorem 11.20 is almost immediate.

Proof of Theorem 11.20. Let P and q be a set of proposition letters and a proposition
letter, respectively, let A be a disjunctive modal automaton over P, and let (S, r) be a pointed
model over a set R of proposition letters such that P ✓ R. It su�ces to show that

S, r � e9q.A i↵ S0, r0 � A, for some (S0, r0) with S, r $R\q S0, r0. (126)
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But since A is disjunctive, it is easy to see that e9q.A is disjunctive as well, and so it follows
from Theorem 10.18 that

S, r � e9q.A i↵ S0, r0 �s
e9q.A, for some (S0, r0) with S, r $R\q S0, r0. (127)

Combining this with Proposition 11.23 we find

S, r � e9q.A i↵ S0[q 7! Q], r0 �s A, for some (S0, r0) with S, r $R\q S0, r0 and some Q ✓ S0.
(128)

Now it is obvious that S0[q 7! Q], r0 $R\q S0, r0. But then (126) is immediate. qed

Finishing this section, we show how to derive the uniform interpolation property from the
definability of the bisimulation quantifiers.

Proof of Theorem 11.17. Fix the formula ' and the set P, and let q1, . . . , qn enumerate
the free variables of ' that are not in P, that is, {q1, . . . , qn} = FV (') \ P. We claim that
the formula e9q1 · · · e9qn.' is the required (right) uniform interpolant of ' with respect to P.

To prove this, take an arbitrary formula  such that FV ( ) \ FV (') ✓ P. Clearly this
implies that no qi is a free variable of  . We first show that

' |= e9q1 · · · e9qn.'.

To see this, let (S, s) be some pointed Kripke model (over some set R ◆ FV (')) such that
S, s � '. Since we obviously have that S, s $R\q S, s for any proposition letter q, it easily

follows that ' |= e9q1 · · · e9qn.'. This takes care of the right-to-left direction from (121).
For the opposite direction of (121), assume that ' |=  , and let (S, s) be a pointed

Kripke model such that S, s � e9q1 · · · e9qn.'. It follows that there is a sequence (Si, si)0in

of pointed models such that (S, s) = (S0, s0), Sn, sn � ', and Si, si $R\qi+1
Si+1, si+1 for

all i with 0  i < n. Then by assumption it follows from Sn, sn � ' that Sn, sn �  . But
since none of the proposition letters qi is free in  , step by step applying the bisimulation
invariance of the modal µ-calculus we may show that each pointed model Si, si satisfies  . In
particular, we find that S, s �  , as required. qed

Notes

The decidability of the satisfiability problem of the modal µ-calculus was first proved by
Kozen and Parikh [11] via a reduction to SnS. Emerson & Jutla [?] established the exptime-
completeness of this problem. The finite model property was proved by Kozen [?].

Uniform interpolation of the modal µ-calculus was proved by D’Agostino & Hollenberg [?],
who established some other model-theoretic results as well.

Exercises

Exercise 11.1 Let � be some disjunctive fixed point formula.

(a) Show that µx.� is satisfiable i↵ �[?/x] is satisfiable.
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(b) Show that ⌫x.� is satisfiable i↵ �[>/x] is satisfiable.

(c) Do the above statements hold for arbitrary fixed point formulas as well?

Exercise 11.2 Prove the left-to-right direction of (126) in Proposition 12.28.

Exercise 11.3 Is disjunctivity of the automaton A needed in the proof of Proposition 11.23?

Exercise 11.4 (PDL + bisimulation quantifier) Consider a setting with finitely many
atomic actions. Let PDL+e9 be the extension of propositional dynamic logic with (explicit)
bisimulation quantifiers. Show that there is a (truth-preserving) translation from the modal
µ-calculus to PDL+e9.


