
12 Expressive completeness

In this chapter we compare the expressive power of the modal µ-calculus to that of monadic
second-order logic. The key result that we will prove is that the modal µ-calculus has the
same expressive power as the bisimulation invariant fragment of monadic second-order logic,
in brief:

µML ⌘ MSO/$. (129)

In fact, Theorem 12.21, the actual result that we are going to prove is a bit stronger than
(129).

Our proof will be automata-theoretic in nature: after discussing two di↵erent (but equiv-
alent) versions of monadic second-order logic in section 12.1, we show in section 12.2 that on
tree models, MSO has the same expressive power as the class Aut(1FOE) of automata over
the one-step logic 1FOE. Since the modal µ-calculus corresponds to the class Aut(1FO), we
will prove (129) in section 12.3 via a comparison of the one-step languages 1FOE and 1FO.

12.1 Monadic second-order logic

Second-order logic is the extension of first-order logic where quantification is allowed, not only
over individuals, but also over relations on the domain. In monadic second-order logic, this
second-order quantification is restricted to unary relations, that is, subsets of the domain.
The syntax of monadic second-order logic is usually defined as the extension of that of first-
order logic by second-order quantifiers of the form 9p/8p, where p is a monadic predicate
symbol.

Definition 12.1 Given a set D of atomic actions, a set IVar of individual variables and a set
Prop of set variables, we define the language MSO2D as follows:

' ::= x
.
= y | Rdxy | p(x) | ¬' | ' _ ' | 9x.' | 9p.'

Here x and y are variables from IVar, p is a variable from P, and d 2 D is an atomic action.
We let MSO2D(X,P) denote the set of MSO2D-formulas ' of which all individual free variables

are from X and all free set variables are from P. In case X is a singleton {x}, we write
MSO

2
D(x,P) rather than MSO

2
D({x},P) �

This semantics of this language is completely standard, with 9x denoting first-order quan-
tification (that is, quantification over individual states), and 9p denoting monadic second-
order quantification (that is, quantification over sets of states).

It turns out, however, that for a nice inductive translation of MSO to automata, it is more
convenient to use a slightly nonstandard version of MSO that is single-sorted in that it only
admits second-order variables, not first-order ones. Quantification over individuals can then
be simulated by quantification over singleton sets. In addition, to facilitate the comparison
with modal languages, which are interpreted in pointed Kripke models, we need to install a
feature in the language that allows access to the designated or actual world of the Kripke
model.

12-2 Expressive Completeness

Definition 12.2 Given a set D of atomic actions, we define the language of monadic second-
order logic MSOD as follows:

' ::= p v q | Rdpq | +p | ¬' | ' _ ' | 9p.',

where p and q are propositional variables from P. We let MSOD(P) denote the set of MSOD-
formulas of which the free variables are from P. �

Definition 12.3 Given a Kripke model S = hS, V,Ri, and a designated point s 2 S, we
define the semantics of MSO as follows:

S, s |= p v q if V (p) ✓ V (q)
S, s |= Rdpq if for all t 2 V (p) there is a u 2 V (q) with Rdtu
S, s |= +p if V (p) = {s}
S, s |= ¬' if S, s 6|= '
S, s |= ' _ if S, s |= ' or S, s |=
S, s |= 9p.' if S[p 7! X], s |= ' for some X ✓ S.

An MSO-formula ' is bisimulation invariant if S, s $ S0, s0 implies that S, s |= ', S0, s |= '.
�

Remark 12.4 In fact, one may think of the formalism as a first-order logic of which the
intended models are power structures of the form h}(S),✓, ~R, {s}i, where Rd(Y, Z) i↵ for all
y 2 Y there is a z 2 Z such that Rdyz.) �

It is not too hard to see that the two languages are in fact equivalent.

Theorem 12.5 There are e↵ective procedures transforming a formula in MSO
2(x,P) into an

equivalent MSO(P)-formula, and vice versa:

MSO
2 ⌘ MSO.

To start with, there is a straightforward, inductively defined translation (·)0 : MSOD(P) !
MSO

2
D(x,P) such that

S, s |= ' i↵ S |= '0[s],

for all formulas ' 2 MSOD(P) and all pointed Kripke models S. The only interesting clause in
the inductive definition of this translation concerns the +-connective, for which we set

(+p)0 := 8y(p(y) $ y
.
= x).

For the opposite direction, the key observation is that MSO can interpret MSO2 by encoding
individual variables as set variables denoting singletons. To understand how this works, we
need to have a closer look at the semantics. Formulas of the language MSO2 are interpreted over
Kripke models S with an assignment, that is, a map ↵ : IVar ! S interpreting the individual
variables as elements of S. But then we can encode such an MSO

2-model S = (S,R, V) with
assignment ↵, as the MSO-model S↵ := (M,R, V ↵) over Prop[IVar, where V ↵(p) := V (p) if p
is a set variabe, and V ↵(x) := {↵(x)} if x is an individual variable.

Lectures on the modal µ-calculus 12-3

Proposition 12.6 There is a translation (·)t : MSO2D(X,P) ! MSOD(P] X) such that

S |= '[↵] i↵ S↵ |= 't (130)

for all ' 2 MSO
2
D(X,P), all Kripke models S = (S,R, V) and all assignments ↵ : X ! S.

As a corollary, for all ' 2 MSO
2
D(x,P) and all pointed Kripke models (S, s) we obtain

S |= '[s] i↵ S, s |= 8x.(+x ! 't). (131)

Proof. The translation crucially involves the MSO-formulas empty(p) and sing(p) given by

empty(p) := 8q (p v q)
sing(p) := 8q

�
q v p ! (empty(q) _ p v q)

�
.

It is not hard to prove that these formulas hold in S i↵, respectively, V (p) is empty and V (p)
is a singleton.

With these formulas defined, we can now inductively fix the translation as follows:

(p(x))t := x v p
(Rdxy)t := Rdxy
(x

.
= y)t := x v y ^ y v x

(¬'t := ¬'t

('0 _ '1)t := 't
0 _ 't

1

(9x.')t := 9x.(sing(x) ^ 't)
(9p.')t := 9p.'t

It is a routine exercise to verify (130), so we leave the details for the reader. Similarly, the
proof of (131) is immediate by (130) and the definitions of the semantics of +. qed

Note that the translation (·)t given in the proof of Proposition 12.6 does not involve the
connective +. The only use of + in this setting is to mark the designated node of a pointed
Kripke model.

12.2 Automata for monadic second-order logic

The aim of this section is to provide an automata-theoretic perspective on monadic second-
order logic. That is, we will provide a construction transforming an arbitrary MSO-formula '
into an automaton B' that is equivalent to ', at least, if we confine attention to tree models.
In fact, we will encounter various kinds of automata, all corresponding to MSO-formulas, and
all taking some fragment of monadic first-order logic as the co-domain of their transition map,
as in Definition 10.26 and Definition 10.27.

Recall that the set MFOE(A) ofmonadic first-order formulas over A is given by the following
grammar:

↵ ::= > | ? | a(x) | ¬a(x) | x .
= y | x 6 .= y | ↵ _ ↵ | ↵ ^ ↵ | 9x.↵ | 8x.↵

where a 2 A and x, y are first-order (individual) variables, and that MFO(A) is the set of
MFOE(A)-formulas without occurrences of identity formulas (or their negations). Recall as

12-4 Expressive Completeness

Position Player Admissible moves
(a, s) 2 A⇥ S 9 {U : A ! }(R(s)) | (R(s), U) |= ⇥(a,�V (s))}
U : A ! }(S) 8 {(b, t) | t 2 U(b)}

Table 26: Acceptance game for MSO-automata

well that 1FOE(A) and 1FO(A) are the one-step languages consisting of the sentences of,
respectively, MFOE(A) and MFO(A), where each monadic predicate a 2 A occurs only positively.
It will be convenient in this section to present one-step models using valuations rather than
markings; that is, a one-step model will be denoted as a pair (Y, V) consisting of some set Y
and an A-valuation V : A ! }(Y).

Definition 12.7 An MSO-automaton over a set P of proposition letters is nothing but a
1FOE-automaton over P, that is, a quadruple A = hA,⇥,⌦, aIi, where A, aI and ⌦ are as
usual, and ⇥ is a map ⇥ : A⇥ }(P) ! 1FOE(A).

The acceptance game of such an automaton with respect to a Kripke model S is given in
Table 12.2. The winning conditions for both finite and infinite matches are as usual. �

In words, the acceptance game proceeds as follows. At a basic position (a, s), 9 chooses a
valuation U interpreting each ‘predicate’ a 2 A as a subset U(a) of the set R(s) of successors
of s. In this choice, she is bound by the condition that the sentence ⇥(a,�V (s)) must be true
in the resulting A-structure (R(s), U). Once chosen, this map U itself determines the next
position of the match. As a position, U belongs to player 8, and all he has to do is to choose
a pair (b, t) such that t 2 U(b). This pair (b, t) is then the next basic position of the match.

The link with modal automata is given by Proposition 10.31, stating that, seen as one-step
languages, 1FO is equivalent to 1ML. From this we obtain the equivalence in expressive power
of the automata classes Aut(1FO) and Aut(1ML), which in its turn entails the following.

Theorem 12.8 There are e↵ective procedures transforming a µ-calculus formula into an
equivalent MSO-automaton in Aut(1FO), and vice versa:

µML ⌘ Aut(1FO).

The main result of this section states a very similar result for MSO and arbitrary MSO-
automata, if we confine our attention to tree models :

Theorem 12.9 There are e↵ective procedures transforming an MSO-formula ⇠ into an MSO-
automaton A, and vice versa, such that the corresponding formula ⇠ and automaton A are
equivalent on the class of tree models:

MSO ⌘ Aut(1FOE) (on tree models).

Note that on arbitrary models, monadic second-order logic can express properties that
cannot be captured by MSO-automata. For instance, it is easy to write an MSO-formula

Lectures on the modal µ-calculus 12-5

stating that the designated point of a Kripke model lies on a cycle, but there is no MSO-
automaton that recognizes exactly the class of pointed Kripke models with this property.

We will prove the two directions in the statement of Theorem 12.9 separately. Leaving
the transformation of automata to monadic second-order formulas to the end of the section,
we first concentrate on the opposite direction.

Proposition 12.10 There is an e↵ective procedure transforming a formula ' 2 MSO(P) into
an MSO-automaton B' over P that is equivalent to ' over the class of tree models. That is:

S, r |= ' i↵ B' accepts (S, r). (132)

for any tree model S with root r.

We will prove Proposition 12.10 by induction on the complexity of MSO-formulas. The
proposition below takes care of the atomic case.

Proposition 12.11 Let ' be one of the atomic MSO-formulas: Rpq, p v q, or +p. Then
there is an MSO-automaton B' that is equivalent to ' on tree models.

Proof. We restrict attention to the formula Rpq, leaving the other cases as an exercise for
the reader. The automaton BRpq is defined as the structure ({a0, a1},⇥,⌦, a0), where ⇥ is
given by putting:

⇥(a0, c) :=

⇢
9y

�
a1(y) ^ 8z (z 6= y ! a0(z))

�
if p 2 c

8z a0(z) otherwise

⇥(a1, c) :=

8
<

:

? if q 62 c
9y

�
a1(y) ^ 8z (z 6= y ! a0(z))

�
if q 2 c and p 2 c

8z a0(z) otherwise

Furthermore, ⌦ is defined via ⌦(ai) := 0 for each ai — as a consequence, 9 wins all infinite
games. We leave it for the reader to verify that this automaton is of the right shape, and that
it is indeed equivalent to the formula Rpq on tree models. qed

For the inductive step of the argument, there are three cases to consider, corresponding
to, respectively, the connectives _ and ¬, and the (second-order) existential quantification.
It turns out that the first two cases are relatively easy to handle, cf. Proposition 10.38. To
take care of the existential quantification however, we need to work with nondeterminis-
tic automata, in which every formula ⇥(a, c) has been brought into a certain normal form.
Fortunately, we can prove a simulation theorem for MSO-automata, implying that we may
transform any MSO-automaton into an equivalent nondeterministic one. We need some def-
initions on these normal forms of 1FOE-formulas.

Definition 12.12 Fix a set A of propositional variables. We introduce some abbreviations
for MFOE-formulas:

diff(y1, . . . , yn) :=
^

{yi 6= yj | 1 i < j n},

12-6 Expressive Completeness

and, for a set B ✓ A:

⌧B(x) :=
^

a2B
a(x).

Now define the following MFOE-sentences:

�=
B,C

:= 9y1 · · · yn
⇣
diff(y) ^

V
i ⌧Bi(yi) ^ 8z (diff(y, z) !

W
j ⌧Cj (z))

⌘

�B,C := 9y1 · · · yn
⇣V

i ⌧Bi(yi) ^ 8z
W

j ⌧Cj (z)
⌘

where B = B1, . . . , Bn and C = C1, . . . , Cm are two sequences of subsets of A.
Sentences of the form �=(B,C) are said to be in basic form, and in special basic form

in case each Bi and Cj is a singleton. The sets of these formulas are denoted as BF(A) and
SBF(A), respectively. �

In words, the formula diff(y1, . . . , yn) expresses that the variables y1, . . . , yn refer to n
distinct objects of the domain. The formula ⌧B(x) can be seen to state that x realises the
type B, that is: it satisfies all predicates a in B. The formula �=

B,C
expresses the existence of

n distinct objects realising the B-types, with all other objects realising one of the C-types.
This formula is (equivalent to) the formula 8z

W
j ⌧Cj (z) in the special case where n = 0,

and, in case m = 0 as well, to the formula 8z? (which holds in the empty model only). As
a simplified version of �=

B,C
, the sentence �B,C states that all types in B are witnessed by

some object, while every object satisfies some C-type. Note that for the latter reason, �B,C
is generally not a semantics consequence of �=

B,C
. Finally, observe that �=

B,C
and �B,C are

positive sentences, and hence, one-step formulas in 1FOE and 1FO, respectively.
Using these normal forms, we can now define the notion of a nondeterministic MSO-

automaton.

Definition 12.13 AnMSO-automaton A = hA,⇥,⌦, aIi is called nondeterministic if Ran(⇥) ✓
Dis(SBF(A)), that is, every formula ⇥(a, c) is a disjunction of special basic formulas. �

Nondeterministic automata are of interest because they admit functional strategies — in
tree models, that is. As in Definition 10.16, we call a strategy f for 9 in the acceptance game
A(A, S)@(aI , r) functional if for every s 2 S there is at most one a 2 A such that the position
(a, s) is reachable in an f -guided match of A(A, S)@(aI , r). In case 9 has a functional strategy
which is in addition winning, we write S, r �s A. The following proposition states that on
tree models, we may always assume that winning strategies are functional.

Proposition 12.14 Let A be a nondeterministic MSO-automaton, and let S be a tree-based
Kripke model with root r. Then S, r � A i↵ S, r �s A.

As a corollary, nondeterministic MSO-automata are closed under existential second-order
quantification.

Corollary 12.15 Let D = hD,�,⌦, dIi be a nondeterministic MSO-automaton over the set
P[{p}. Then there is a nondeterministic automaton D9p over P, such that for all tree models
(S, r):

D9p accepts (S, r) i↵ D accepts (S[p 7! T], r) for some T ✓ S. (133)

Lectures on the modal µ-calculus 12-7

Proof. Define the automaton D9p := hD,�9p,⌦, dIi, with alphabet C = }(P), by putting

�9p(a, c) := �(a, c) _�(a, c [{p}).

Clearly then D9p is a nondeterministic MSO-automaton, so it remains to prove that D9p

satisfies (133). But since we may assume winning strategies to be functional, this proof is a
variation on a proof given earlier, viz., that of Proposition 11.23. qed

But if nondeterministic MSO-automata admit existential second-order quantification, in
order to transfer this closure property to the class of arbitrary automata, all we need is the
following Simulation Theorem which states in particular that every MSO-automaton has a
nondeterministic equivalent.

Theorem 12.16 (Simulation Theorem) There are e↵ective constructions transforming
an automaton of any of the kinds below to an equivalent automaton of any other kind:

1) Aut(1FOE),
2) Aut(Dis(BF(A)),
3) Aut(Dis(SBF(A)).

To prove the implication from 1) to 2) of this result, we need a model-theoretic result on
monadic first-order logic, that will be of use later on as well.

Proposition 12.17 There is an e↵ective procedure transforming an arbitrary positive sen-
tence in MFOE(A) to an equivalent disjunction of sentences in basic form.

The proof of this result, which we omit for the time being, is a fairly straightforward
exercise in the theory of Ehrenfeucht-Fräıssé games.

Proof of Theorem 12.16. The implications from 3) to 2) and from 2) to 1) are trivial con-
sequences of the definitions. The implication from 1) to 2) is immediate by Proposition 12.17.

The hardest part of the proof concerns the remaining implication, from 2) to 3). This,
however, is an instance of the general simulation theorem that we proved in section 10.6. We
only need to verify that the language Dis(SBF), seen as a one-step language, is

V
-distributive

over Dis(BF), and therefore, over 1FOE, but we leave this as an exercise for the reader. qed

With this Simulation Theorem we have all the results that are needed for the inductive
translation of second-order formulas to MSO-automata.

Proof of Proposition 12.10. As mentioned, the proposition is proved by induction on the
complexity of ' 2 MSO. The atomic case of the induction is covered by Proposition 12.11.
For the induction step, the case where ' = 9p. is taken care of by Theorem 12.16 and
Corollary 12.15. The remaining cases, where respectively ' = ¬ and ' = '0 _ '1, are left
as exercises for the reader. qed

Proposition 12.10 takes care of one direction of Theorem 12.9; for the opposite direction
we need to find an equivalent formula ⇠A 2 MSO for each MSO-automaton A.

12-8 Expressive Completeness

Proposition 12.18 There is an e↵ective procedure transforming an MSO-automaton A into
a formula ⇠A 2 MSO

2(P) that is equivalent to ' over the class of tree models. That is:

A accepts (S, r) i↵ S, r |= ⇠A. (134)

for any tree model S with root r.

Proof. For the time being we confine ourselves to a proof sketch. The basic idea is to encode
the operational semantics of an MSO-automaton in monadic second-order logic; this works for
nondeterministic automata over tree models, since we can express the working of a functional
strategy.

To give a bit more detail, fix an MSO-automaton A. We first transform A into an equiv-
alent nondeterministic automaton D = (D,⇥,⌦, dI); this is possible by Theorem 12.16. It
then su�ces to write down a monadic second-order formula ⇠(x) in MSO

2(x) such that, for an
arbitrary tree model S with root r:

S |= ⇠[r] i↵ 9 has a functional positional winning strategy in A(A, S)@(aI , r).

Let S = (S,R, V) be a an arbitrary tree model with root r and let D = {a1, . . . , an}. Here
we think of the ai as second-order variables that will be quantified over existentially, in
order to express the existence of a functional positional strategy. Take an arbitrary valuation
U : D ! }(S). It is easy to write down an MSO

2(x)-formula '(a, x) which holds of the resulting
model S � U i↵ |U(ai)| 1 for each i, so that we may think of the associated marking mU

as a potential functional strategy of 9 in the acceptance game A(A, S). Writing as for the
unique state such that as 2 mU , we may then use the one-step formula ⇥(a,�V (s)) as a basis
for a first-order formula which expresses that this potential strategy induced by U actually
provides a legitimate move for 9 at position (as, s). Finally, note that any infinite match of
A(A, S)@(aI , r) corresponds to a branch of S (that is, an infinite path starting at r); using a
second-order variable b to range over such branches, it is then fairly straightforward to write
down a formula stating that the highest parity occurring infinitely often on any match of an
mU -guided match is even. qed

12.3 Expressive completeness modulo bisimilarity

A central result in the theory of basic modal logic states that modal logic corresponds to the
bisimulation invariant fragment of first-order logic. In this section we will prove an extension of
this result stating that the modal µ-calculus is the bisimulation invariant fragment of monadic
second-order logic. While it is not di�cult to show that every µML-formula is equivalent to
a bisimulation-invariant formula in MSO, it is the converse correspondence where the true
importance of the result lies. We may see it as an expressive completeness result, stating that
the modal µ-calculus is su�ciently strong to express every bisimulation-invariant formula in
monadic second-order logic. Note that in a context such as process theory, where we consider
bisimilar pointed Kripke models as di↵erent representations of the same process, bisimulation-
invariant properties are in fact the only relevant ones. In such a situation, we may read the
bisimulation-invariance result as saying that modal fixpoint logic has the same expressive
power as monadic second-order logic, when it comes to expressing relevant properties.

Lectures on the modal µ-calculus 12-9

I Add examples of what can be expressed in MSO, and not in µML:
- every point has exactly two d-successors

- the actual state does not lie on a cycle

We first show that there is truth-preserving translation mapping every formula of the
modal µ-calculus to an equivalent monadic second-order formula. Recall from Remark 12.4
that MSO2D(x,P) is the standard (two-sorted) version of monadic second-order logic.

Definition 12.19 For any individual variable x we define, by induction on the complexity
of a formula ' 2 µMLD, a translation STx : µMLD(P) ! MSO

2
D(x,P).

STx(p) := p(x)
STx(¬') := ¬STx(')
STx(3d') := 9y(Rdxy ^ STy('))
STx(3') := 9y(Rxy ^ STy('))

STx(µp.') := 9p.
⇣
p(x) ^ 8y.

�
p(y) $ 8q.(PRE(', q) ! q(y))

�⌘
,

where PRE(', q) abbreviates the formula 8y.(STy(')[q/p] ! q(y)). �

Theorem 12.20 For any formula ' 2 µML we have ' ⌘ STx('), in the sense that

S, s � ' i↵ S |= STx(')[s]

for every pointed Kripke model (S, s).

Proof. The proof of this theorem can be proved by a straightforward induction on the
complexity of µML-formulas.

For the inductive clause of the least fixpoint operator µ, consider the formula µx.'. We
leave it for the reader to verify (using the inductive hypothesis) that the formula PRE(', q)
expresses that q is a pre-fixpoint of ', and that the formula 8y.

�
p(y) $ 8q.(PRE(', q) ! q(y))

�

expresses that p is the intersection of all pre-fixpoints of '. qed

In the other direction, the actual result that we will prove is somewhat stronger than mere
expressive completeness.

Theorem 12.21 There is an e↵ectively defined translation (·)⇤ : MSO ! µML such that a
formula ' 2 MSO is invariant under bisimulations i↵ it is equivalent to '⇤.

We will prove this result by automata-theoretic means. Recall that in the previous section
we obtained the following characterisations of the languages MSO and µML:

MSO ⇠ Aut(1FOE) (on trees)
µML ⇠ Aut(1FO).

The translation (·)⇤ : MSO ! µML mentioned in Theorem 12.21 will be based on a construc-
tion transforming 1FOE-automata into 1FO-automata, whereas this construction in its turn is
based on a translation (·)⇤ at the one-step level. For the details, we need to develop some

12-10 Expressive Completeness

rudimentary model theory at the level of monadic first-order logic, in this case linking the
one-step languages MFOE and MFO.

Recall from Definition 10.26 that 1FOE(A) and 1FO(A) denote the sets of A-positive sen-
tence in the languages MFOE(A) and MFO(A) of monadic first-order logic with and without
identity, respectively. Our translation (·)⇤ involves the basic forms of Definition 12.13. Based
on Proposition 12.17, we can provide the required translation from 1FOE to 1FO.

Definition 12.22 Fix a setA of propositional variables. For an arbitrary sentence �=(B,C) 2
BF(A) we define �

�=(B,C)
�⇤

:= �(B,C),

and we extend this translation to the set Dis(BF(A)), simply by putting

�W
i↵i)⇤ :=

W
i↵

⇤
i .

By Proposition 12.17 we may extend this definition to a map (·)⇤ : 1FOE(A) ! 1FO(A). �

Observe that the translation is in fact very simple: we obtain
�
�=(B,C)

�⇤
from �=(B,C)

simply by forgetting about the identity formulas occurring in the latter formula.
To exhibit the model-theoretic relation between the formulas ↵ and ↵⇤, we need one

further definition.

Definition 12.23 Let f : D0 ⇣ D be a surjective map from one set D0 to another set D,
and let A be some set of variables. Given a valuation V : A ! }D, we define the valuation
Vf : A ! }D0, by putting, for a 2 A:

Vf (a) := {s0 2 D0 | f(s0) 2 V (a)},

and, conversely, given a valuation U : A ! }D0, we let

Uf (a) := {fs0 2 D | s0 2 U(a)}

define a valuation on D. �

The only fact that we need about these translations and valuations is the following Propo-
sition. We will use this result to transform the winning strategy of 9 in one acceptance game
to a winning strategy for her in a related acceptance game.

Proposition 12.24 Let ↵ 2 1FOE(A) be some one-step formula, and let D be some set. We
let ⇡ denote the left projection map ⇡ : D ⇥ ! ! D.
1) For any A-valuation V on D we have

D,V |= ↵⇤ i↵ D ⇥ !, V⇡ |= ↵. (135)

2) As a corollary, for any A-valuation U on D ⇥ ! we have

D ⇥ !, U |= ↵ only if D,U⇡ |= ↵⇤.

Lectures on the modal µ-calculus 12-11

Proof. We leave the case where D is the empty set as an exercise for the reader, and focus
on the case where D 6= ?.

For part 1) of the Proposition, let ↵, D and ⇡ be as in its formulation. We will prove the
equivalence (135).

For the left-to-right direction of (135), assume that hD,V i |= �(B,C). Let d1, . . . , dn
be elements in D satisfying the existential part of �(B,C), that is, for each i we find di 2T

b2Bi
V (b). From the universal part of the formula it follows that for each d 2 D there

is a subset Cd ✓ A such that d 2
T

c2Cd
V (c). Now we move to D ⇥ !; it is easy to see

that its elements (d1, 1), . . . , (dn, n) provide a sequence of n distinct elements that satisfy
(di, i) 2

T
b2Bi

V⇡(b) for each i. In addition, every element (d, n) distinct from the ones in the
mentioned tuple will satisfy (d, n) 2

T
c2Cd

V⇡(c). From these observations it is immediate

that hD ⇥ !, V⇡i |= �=(B,C).
For the opposite direction of (135), assume that hD⇥!, V⇡i |= �=(B,C). Let (d1, k1),. . . ,

(dn, kn) be the sequence of distinct elements of D ⇥ ! witnessing the existential part of
�=(B,C) in D0. Then clearly, d1, . . . , dn witness the existential part of �(B,C) in hD,V i.
In order to show that hD,V i also satisfies the universal part 8z

W
j ⌧Cj (z) of �, consider

an arbitrary element d 2 D. Take any m 2 ! \ {k1, . . . , kn}, then (d,m) is distinct from
each (di, ki). It follows that for some j we have (d,m) 2

T
c2Cj

V⇡(c), and so we obtain

d 2
T

c2Cj
V (c). Since d was arbitrary this shows that indeed hD,V i |= 8z

W
j ⌧Cj (z). So we

have proved that hD,V i |= �(B,C).

For part 2), assume that D ⇥ !, U |= ↵⇤. It is straightforward to verify that U(a) ✓
(U⇡)⇡(a), for all a 2 A. Hence by monotonicity of ↵ with respect to the proposition letters
in A, it follows that D ⇥ !, (U⇡)⇡ |= ↵⇤. But then we find D,U⇡ |= ↵⇤ by part 1) of the
proposition. qed

Automata

Any translation between one-step formulas naturally induces a transformation of automata.
In the current setting we obtain the following.

Definition 12.25 Given an automaton A = hA,⇥,⌦, aIi in Aut(1FOE), we define the map
⇥⇤ : (A⇥ }(P)) ! 1FO(A) by putting

⇥⇤(a) := (⇥(a))⇤,

and we let A⇤ denote the automaton A⇤ := hA,⇥⇤,⌦, aIi. �

We have now arrived at the main technical result of this section. It involves the notion
of the !-unravelling E!(S, s) of a model S around a point s. This construction11 generalizes
that of the unravelling of a model (Definition 1.23).

Definition 12.26 Let be a countable cardinal with 1 !, and let (S, s) be a pointed
Kripke model of type (P,D). A -path through S is a finite (non-empty) sequence of the form

11In a later version of the notes, this construction will be defined in Chapter 1.

12-12 Expressive Completeness

s0d1k1s1 · · · sn�1dnknsn, where si 2 S, di 2 D and ki < for each i, and such that Rdi+1sisi+1

for each i < n. The set of such paths is denoted as Paths(S); we use the notation Pathss (S)
for the set of paths starting at s. Given such a sequence ⇢, we let last(⇢) 2 S denote its last
item.

The -expansion of S around s is the transition system E(S, s) = hPathss (S),�i, where

�V (s0 · · · dnknsn) := �V (sn),

�d (s0 · · · dnknsn) := {(s0 · · · dnknsndkt) 2 Pathss(S) | Rdsnt, 0 < k < }.

defines the coalgebra map � = (�V , (�d | d 2 D)). �

It is not hard to check that the unravelling of a model (Definition 1.23) can be identified
with its 1-expansion. It is straightforward to verify the following proposition.

Proposition 12.27 For any countable cardinal with 1 !, the function last, mapping
a sequence to its last item, is a surjective bounded morphism from E(S, s) to S mapping the
single-item sequence s to its single state s.

Proposition 12.28 Let A be an automaton in Aut(1FOE), then for any pointed Kripke model
(S, s) we have that

S, s � A⇤ i↵ E!(S, s), s � A. (136)

Proof. Let A = hA,⇥,⌦, aIi and (S, s) be as in the formulation of the Theorem. Let f
denote the (surjective) bounded morphism from E!(S, s) to S, and recall that by definition f
is the function last mapping an !-path to its final element. We will only prove the right-to-left
direction of (136), leaving the (slightly easier) opposite direction as an exercise to the reader.

So assume that E!(S, s), s � A. Then 9 has a (positional) winning strategy h in the
acceptance game A! := A(A,E!(S, s))@(a0, s0), where we write a0 := aI and s0 := s. We
need to provide her with a winning strategy h0 in the acceptance game A := A(A⇤, S)@(a0, s0),
and we will define h0 by induction on the length of a partial A-match ⌃ = (ai, si)0in. Via a
simultaneous induction we define a partial A!-match ⌃0 = (ai, s0i)0in which will be guided
by 9’s winning strategy h and satisfies f(s0i) = si, for all i.

For the inductive step of these definitions, consider a partial A-match ⌃ = (ai, si)0in.
Without loss of generality we may assume that ⌃ itself is guided by h0, and inductively we
may assume the existence of an h-guided shadow match ⌃0 = (ai, s0i)0in of A! such that
f(s0i) = si, for all i. In order to extend the definition of h0, so that it defines a move for 9 in
the partial match ⌃, obviously we consider this partial shadow match. Let U : A ! }�!R(s

0)
be the A-valuation picked by 9’s winning strategy h in the match ⌃0. If we compare the
collections �R(s) and �!R(s

0) of successors of s and s0 respectively, it is obvious that f restricts
to a surjection from �!R(s

0) to �R(s). Hence we may take the valuation

Uf : A ! }�R(s),

induced by U as in Definition 12.23, as the move given by the strategy h in the partial match
⌃.

Lectures on the modal µ-calculus 12-13

To see that this move is legitimate, we need to show that

�R, U
f |= ⇥⇤(an,�V (sn)), (137)

that is, the one-step formula ⇥⇤(an,�V (sn) holds in the A-structure (�R, Uf). It will be
convenient to think of �!R(s

0) as the set �R(s) ⇥ !, and of f as the projection map ⇡ :
�R(s)⇥ ! ! �R(s). Then (137) is immediate by Proposition 12.242) and the fact that

�!R, U |= ⇥(an,�V (sn)), (138)

simply because the valuation U is the legitimate move provided by 9’s winning strategy h.
Clearly then, the valuation Uf is a legitimate move for 9.

In order to finish the inductive definition, we need to show how to extend, for any response
(b, t) of 8 to 9’s move Uf , the shadow match ⌃0 with a position (b, t0) such that ft0 = t. But
this is straightforward: if (b, t) is a legitimate move for 8 in A at position U , then we have
t 2 Uf (b), and so by definition there is a state t0 2 �!R(s

0) such that ft0 = t and t0 2 U(b).
Clearly then the continuation ⌃0 · (b, t0) of ⌃0 satisfies the requirements.

We will now show that the just defined strategy h0 is in fact winning for 9 in A. For this
purpose, consider a full A-match ⌃ which is guided by h0.

First consider the case where ⌃ is finite. It is not hard to prove, using the existence of
the h-guided shadow match ⌃0, that the player who got stuck in ⌃ is 8.

Having taken care of the finite matches, we now consider the case where ⌃ = (ai, si)0i<!

is infinite. It is not di�cult to see that in this case there is an h-guided infinite shadow match
⌃0 = (ai, s0i)0i<! of A!, such that fs0i = si for all i < !. But since h was assumed to be a
winning strategy for 9 in A!, ⌃0 is actually won by her. But since the priority maps of A and
A⇤ are exactly the same, from this it is immediate that 9 is also the winner the A-match ⌃.
qed

Proof of main result

As we shall see now, the expressive completeness of the modal µ-calculus is an almost imme-
diate corollary of Proposition 12.28, given our earlier automata-theoretic characterizations of
MSO and the modal µ-calculus.

Proof of Theorem 12.21. Let ' 2 MSO be a monadic second-order formula, and let B' 2
Aut(1FOE) be the automaton as given in Theorem 12.9. Then by Theorem 12.8 there is a
formula '⇤ 2 µML that is equivalent to the translation (B')⇤ of B'. Clearly then '⇤ has been
e↵ectively obtained from '.

We will show that ' is invariant under bisimulations i↵ it is equivalent to the formula
'⇤. The direction from right to left is immediate since formulas of the modal µ-calculus are
bisimulation invariant.

For the opposite direction, observe that by Proposition 12.28 and the definition on '⇤, for
an arbitrary pointed Kripke model (S, s) we have

S, s � '⇤ i↵ E!(S, s), s � '. (139)

12-14 Expressive Completeness

Now assume that ' is bisimulation invariant, then we have that

S, s � ' i↵ E!(S, s), s � '. (140)

Combining these two observations, we see that S, s � '⇤ i↵ S, s � '. But since (S, s) was
arbitrary, this means that ' and '⇤ are equivalent, as required. qed

Notes

The result that the modal µ-calculus is the bisimulation-invariant fragment of monadic second-
order logic is due to Janin & Walukiewicz [8].

Exercises

Exercise 12.1 Let (D,V) and (D0, V 0) be two one-step models over the same set A of
monadic predicates. Then (D,V) is a quotient of (D0, V 0) if there is a surjection f : D0 ! D
such that V 0 = Vf . An MFOE-sentence ↵ is invariant under taking quotients if we we have
that (D,V) |= ↵ i↵ (D0, V 0) |= ↵, whenever (D,V) is a quotient of (D0, V 0).

Let ↵ be an MFOE-sentence. Prove that ↵ is invariant under taking quotients i↵ ↵ ⌘ ↵⇤.
Conclude that 1FO is the ‘quotient-invariant fragment’ of 1FOE.

