
Coalgebra and Modal Logic:

a first introduction

Yde Venema∗

©YV 2025

DO NOT DISTRIBUTE

Abstract

These notes give a brief introduction to the theory of universal coalgebra and
coalgebraic modal logic.

∗Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, NL–1098XG
Amsterdam. E-mail: y.venema@uva.nl.

Contents

1 Introduction 1-1

2 Final Coalgebras and Coinduction 2-1

3 Bisimilarity and Behavioural Equivalence 3-1

4 Covarieties 4-1

5 Coalgebraic modalities via relation lifting 5-1

6 Coalgebraic modalities via predicate liftings 6-1

7 One-step logic 7-1

8 Soundness and completeness 8-1

A Appendix: Basic mathematical definitions A-1

B Appendix: The Category Set and its Functors B-1

1 Introduction

Starting from concrete examples, this chapter introduces (set-based) coalgebras, together
with some of the most important coalgebraic concepts, including coinduction, behavioural
equivalence and bisimilarity. We then give a first discussion of the relation between coalgebra
and modal logic, and we give some examples of coalgebraic modal logics.

1.1 State-based evolving systems

Example 1.1 Perhaps the simplest example of a computational process is the following
black-box machine with two buttons, h and n. If we press the h-button, the machine displays
some value from a data set C. No matter how many times we press the h-button, this value
remains the same. Each time we push the n-button, however, we may observe a different
value by pushing the h-button.

A natural way to formally describe this device is as a set S of internal states (that are not
visible to the user), together with two maps

h : S → C
n : S → S,

where h(s) indicates the observable value at state s, and n : S → S is a function mapping a
state s ∈ S to its unique next state.

All that we may observe of a state s, is the stream

h(s) · h(n(s)) · h(n(n(s))) · h(n3(s)) · · ·

of data. This stream will be called the behaviour of s in S = (S, h, n), notation: behS(s).

Two states s and s′ in two black boxes can then be called behaviourally equivalent, notation:
S, s ' S′, s′, if they display the same behaviour, that is, if behS(s) = behS′(s

′).

Example 1.2 A deterministic finite state automaton or DFA over an alphabet C is a triple
A = (A, δ, F), where A is a finite set of states, δ : A×C → A is the transition map of A, and
F ⊆ A is the set of accepting states of the automaton. In contrast to the usual presentation
we do not take the initial state of a DFA to be part of its structure; rather, we will consider
initialised versions of DFAs, where we explicitly single out an initial state for the automaton.

Let C∗ denote the set of finite words over C, then we may extend δ to a map δ̂ : A×C∗ → A
as follows:

δ̂(a, ε) := a

δ̂(a, cw) := δ̂(δ(a, c), w).

We define, for a state a ∈ A,

LA(a) := {w ∈ C∗ | δ̂(a,w) ∈ F},

as the language accepted by A, initialized at a. Two initialized automata (A, a) and (A′, a′)
are (language) equivalent if they accept exactly the same words, that is, if LA(a) = LA′(a

′).

1-1

Example 1.3 The key structures featuring in the semantics of modal logic are Kripke frames
and Kripke models. A Kripke frame is a pair (S,R) consisting of a set S of objects called
states, points or worlds, and an accessibility relation R ⊆ S × S. A Kripke model is a triple
S = (S,R, V) such that (S,R) is a Kripke frame (the underlying Kripke frame of the model),
and V is a valuation, i.e., a map Q→ PS, where Q is some fixed set of proposition letters.

A bisimulation between two Kripke models S and S′ is a binary relation Z ⊆ S × S′ such
that, for all s ∈ S and s′ ∈ S′ with Zss′ the following conditions hold:

(atom) s and s′ satisfy the same proposition letters;

(forth) for all t ∈ S such that Rst there is a t′ ∈ S′ with R′s′t′ and Ztt′;

(back) for all t′ ∈ S′ such that R′s′t′ there is a t ∈ S with Rst and Ztt′.

If there is a bisimulation Z linking s and s′ we say that s and s′ are bisimilar, notation
S, s↔ S′, s′ (or Z : S, s↔ S′, s′ if we want to make the bisimulation explicit).

Given a modal language L, we let ThLS (s) denote the set of L-formulas that are true at
s in S; then two states are called (L-)equivalent (notation: ≡L) if they satisfy the same L-
formulas. A theme in the theory of modal logic is to study the relation between equivalence
and bisimilarity. A class of models C is said to have the Hennessy-Milner property with
respect to a language L if ≡L =↔ on C.

Example 1.4 The theory of non-well-founded sets provides an alternative to the standard
axiomatic set theories by allowing sets to contain themselves, or otherwise violate the rule of
well-foundedness. More in detail, in non-well-founded set theories, the Foundation Axiom FA
is replaced by axioms implying its negation. For instance, working with the anti-foundation
axiom AFA we may associate, with each so-called apg or accessible pointed graph (that is, a
directed graph such that every node can be reached via a finite path from a specified root of
the graph) a hyperset, that is, a set that is not necessarily well-founded. And, two apgs yield
the same set iff they are bisimilar.

Example 1.5 As a final example of a state-based evolving system we mention Markov chains:
transition systems that evolve probabilistically. Recall that a (discrete) probability distribution
on a set S is a map µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. Formally, a Markov chain can be

modelled as a pair (S, σ), where σ assigns a probability distribution σs to each state s.

For a concrete example, think of a gambler wagering e1 on a series of fair coin tosses –
this series may be indefinite, or end if the gambler loses his money. This experiment can be
modelled by the Markov chain (S, σ) where S = {sn | n ∈ ω}, with state sn representing the
state where the gambler owns en. For n > 0 we have that σsn assigns a 0.5 probability to
both sn−1 and sn+1 (and a probability 0 to all other states), while σs0 assigns a 1.0 probability
to s0 (and a probability 0 to all other states).•

1.2 Coalgebras and their morphisms

As we will see now, the structures described in the previous section all are specimens of
coalgebras. Universal Coalgebra is a theory of state-based evolving systems, formulated in
the language of category theory.1

1See the appendix for some background definitions on category theory.

1-2

Definition 1.6 Given an endofunctor T : C→ C on some category C, a T -coalgebra is a pair
(X, ξ) where X is an object in C and ξ : X → TX is an arrow in C. We will sometimes refer
to T as the type of (X, ξ). If, for an arrow f : X ′ → X, the following diagram commutes:

X ′

ξ′

��

f // X

ξ
��

TX ′
Tf // TX

(1)

we call f a (coalgebra) morphism from X′ = (X ′, ξ′) to X = (X, ξ), and write f : X′ → X.
We let CoalgC(T) denote the category with T -coalgebras as objects and T -coalgebra mor-

phisms as arrows; the category C will be called the base category of CoalgC(T). �

We will usually (but not always) confine our attention to systems, that is, coalgebras over
the category Set. Intuitively, a set functor T specifies the one-step dynamics that a system
can engage in.

Definition 1.7 A set functor is an endofunctor T : Set→ Set on the category Set of sets and
functions; given such a set functor T , we will sometimes refer to T -coalgebras as T -systems.
Given the prominence of these coalgebras we will often simply write Coalg(T) rather than
CoalgSet(T) to denote the class of all T -systems. Where S = (S, σ) is a T -system, we refer to
S and σ as, respectively, the carrier or state space and the transition map or coalgebra map
of S. A pointed or initialized T -system is a triple (S, σ, s) such that (S, σ) is a T -system and
s ∈ S. �

The coalgebraic viewpoint on systems combines wide applicability and mathematical sim-
plicity: since every set functor determines its own type of coalgebra, notions, properties and
results of state-based systems can be uniformly explained just in terms of properties of their
type functors. This applies to systems as diverse as streams, probabilistic transition systems,
automata, Kripke structures and neighbourhood frames. In the appendix we give a list of set
functors; here we give a few examples of the associated coalgebras.

Example 1.8 (a) The black boxes of Example 1.1 are systems of the functor type KC × Id ,
where KC is the constant functor associated with the set C, and Id is the identity functor on
Set.

(b) Deterministic finite automata (Example 1.2) are systems of type 2× IdC , where 2 is
the set {0, 1}. To see this, consider a coalgebra X = (X, ξ) of this type; then ξ determines, for
each state x ∈ X, two things: an element ξ0(x) of the set 2, specifying whether x is accepting
(ξ0(x) = 1) or not (ξ0(x) = 0), and an element ξ1(x) ∈ XC , that is, a map ξ1(x) : C → X
providing a successor of x in X for each letter c ∈ C. A 2 × IdC-coalgebra (X, ξ) thus
corresponds to the DFA X, ξ−1

0 (1), ξ1).
(c) Kripke frames are coalgebras for the powerset functor P , whereas Kripke models are

coalgebras for the functor KPQ×P . We leave it for the reader to verify that, given two Kripke
frames S and S′, a map f : S → S′ is a coalgebra morphism iff it is a bounded morphism,
that is, for every s ∈ S it satisfies:

1-3

◦ if (s, t) ∈ R then (fs, ft) ∈ R′;
◦ if (fs, t′) ∈ R′ then (s, t) ∈ R for some t such that ft = t′.

(d) Non-well-founded sets can be represented by certain pointed P -systems.

(e) Markov chains are D-systems, where D is the distribution functor (which assigns, to
a set S, a discrete probability distribution on S).

(f) For every set functor T we will allow the empty T -coalgebra (∅,∅).

1.3 Final coalgebras and coinduction

For many coalgebra types T one may associate with an arbitrary state s in an arbitrary
T -coalgebra S, a natural notion of behaviour. This can often be formalised by defining a
behaviour map and proving that this map is the unique coalgebra morphism from S to some
final or terminal coalgebra Z of type T .

Definition 1.9 Let T be an endofunctor on some category C. A T -coalgebra Z = (Z, ζ)
is final or terminal if it is a final object in the category CoalgC(T); that is, if for every T -
coalgebra X = (X, ξ) there is a unique morphism from X to Z; this morphism will be denoted
as behX : X→ Z. �

Note that final coalgebras, when they exist, are unique modulo isomorphism. For this
reason we will often speak of the final T -coalgebra of a functor T .

Example 1.10 A stream over a set C is a map α : ω → C (where ω is the set of natural
numbers). We may turn the set Cω of C-streams into a KC × Id -coalgebra itself by endowing
it with a coalgebra map γ := (h, t) : Cω → C×Cω. Here we define the maps h : Cω → C and
t : Cω → Cω by putting, for an arbitrary C-stream α : ω → C:

h(α) := α(0)
t(α) := λn.α(n+ 1).

That is, the coalgebra map γ splits an infinite C-stream c0c1c2 · · · into its head c0 and its tail
c1c2c3 · · · .

It is then not very hard to prove that the stream coalgebra (Cω, γ) is a final coalgebra for
the functor KC × Id : this boils down to showing that, for an arbitrary ‘black box machine’
S = (S, h, n), the behaviour map beh : S → Cω is the unique coalgebra morphism from S to
(Cω, γ).

Example 1.11 For a second example, fix an alphabet C and define a (C-)language to be
any set of finite words. Further on we will see that we can endow the collection P (C∗) of
C-languages with a very natural coalgebra map for the functor 2× IdC of deterministic finite
C-automata, and prove that the resulting structure is in fact a final 2× IdC-coalgebra.

Finality is also the key categorical concept underlying the important coalgebraic principle
of coinduction. Here is a first example.

1-4

Example 1.12 Take the function zip that merges two streams by taking elements from either
stream in turn. For a coalgebraic definition of this map, define the transition map δ : (Cω ×
Cω)→ C × (Cω × Cω) as follows:

δ(α, β) := (h(α), (β, t(α)),

where h and t are the maps defined in Example 1.10. This defines a KC × Id -coalgebra on
the set (Cω×Cω), so that by finality of the stream coalgebra (Cω, γ) there is a (unique) map
zip : Cω × Cω → Cω which is a coalgebra morphism from (Cω × Cω, δ) to (Cω, 〈h, t〉):

Cω × Cω

δ
��

zip // Cω

〈h,t〉
��

C × (Cω × Cω)
(idC ,zip)

// C × Cω

One may verify that this coalgebra morphism indeed defines the map that zips two streams
together.

Unfortunately, as we will see further on, final coalgebras do not exist for every functor.

Example 1.13 In the categories of Kripke frames and Kripke models, final objects do not
exist. The canonical model comes close, but to turn this structure into a final coalgebra,
we have to enrich the base category Set with topological structure. As a result that we will
discuss later on, we may see the canonical general frame as a final coalgebra for a suitable
base category and coalgebra functor.

1.4 Behavioural equivalence and bisimilarity

Probably the most intuitive notion of equivalence between systems is that of behavioral, or
observational, equivalence. The idea here is to consider two states to be similar if we cannot
distinguish them by observations, because they display the same behavior. For instance, we
call two deterministic automata (pointed 2× IdC-coalgebras) equivalent if they recognize the
same language. In case the functor T admits a final coalgebra Z, this idea is easily formalized
by making state s in coalgebra S equivalent to state s′ in coalgebra S′ if behS(s) = behS′(s

′).
In case the functor does not admit a final coalgebra, we generalize this demand as follows.

Definition 1.14 Let S = (S, σ) and S′ = (S′, σ′) be two systems for the set functor T . Then
s ∈ S and s′ ∈ S′ are behaviorally equivalent, notation: S, s 'T S′, s′ if there is a T -system
X = (X, ξ) and homomorphisms f : S→ X and f ′ : S′ → X such that f(s) = f ′(s′). �

Remark 1.15 It is easily checked that in case T admits a final coalgebra Z, then indeed
S, s 'T S′, s′ iff behS(s) = behS′(s

′). The direction from right to left is trivial, so assume
that s and s′ are behaviorally equivalent because of the existence of X, f and f ′ as in the
formulation of the definition. Observe that the map behX◦f is a coalgebra morphism from S to
Z, and likewise for behX ◦f ′ and S′. It then follows from the finality of Z that behS = behX ◦f
and behS′ = behX ◦ f ′. Hence, from f(s) = f ′(s′) it follows that behS(s) = behS′(s

′), as
required.

1-5

As we will see further on, in many cases of interest, behavioral equivalence can be char-
acterized via the equally fundamental concept of bisimilarity, which involves the notion of a
coalgebraic bisimulation.

Definition 1.16 A bisimulation between two systems (S, σ) and (S′, σ′) is a relation B ⊆
S × S′ for which, as in the diagram below,

S

σ

��

B
πoo

β

��

π′ // S′

σ′

��
TS TB

Tπ
oo

Tπ′
// TS′

(2)

there is a (not necessarily unique) coalgebra map β : B → TB such that the two projection
maps, π and π′, from B to S and S′ respectively, are both coalgebra morphisms.

We write S, s↔ S′, s′ to denote that there is some bisimulation B between S and S′ that
links the states s in S and s′ in S′. �

That is, a bisimulation is a relation that, seen as a set, can itself be endowed with a
coalgebra structure satisfying some natural conditions.

1.5 Coalgebra and modal logic

Logic comes in when we want to design specification languages for describing the behaviour
of state-based evolving systems, and derivation systems for reasoning about this behaviour.

Definition 1.17 An (abstract) logic for T -coalgebras is a pair (L,
) consisting of a set L of
formulas and, for each T -coalgebra S = (S, σ), a satisfaction relation
S ⊆ S × L. In case
(s, ϕ) ∈
S, we say that ϕ is true or holds at s ∈ S, or that s satisfies ϕ in S; we often write
S, s
 s or even s
 ϕ instead of s
S ϕ.

Given a state s in a coalgebra S, we define ThLS (s) := {ϕ ∈ L | S, s
 ϕ}. Conversely,
given a formula ϕ ∈ L and a coalgebra S, we let [[ϕ]]S denote the set of states in S where ϕ
holds, that is, [[ϕ]]S := {s ∈ S | S, s
 ϕ}. If ThLS (s) = ThLS′(s

′), we say that s and s′ are
L-equivalent, and we write S, s ≡L S′, s′ (or simply s ≡L s′ if S and S′ are understood).

Finally, we will call a formula satisfiable if it is satisfied at some state in some coalgebra,
and valid if it holds at every state in every coalgebra. �

In the same way that universal coalgebra tries to give an account of state-based evolving
systems, uniformly in the coalgebra type T , research in coalgebraic logic has been directed
towards a development of logical languages and derivation systems that are similarly uniform
in the parameter T . Apart from uniformity, here are some other desiderata for a coalgebraic
logic.

1-6

Definition 1.18 Let (L,
) be a logic for a coalgebra type T . We say that this logic is in-
variant (for behavioural equivalence) if S, s ' S′, s′ implies ThLS (s) = ThLS′(s

′), and expressive
if conversely, ThLS (s) = ThLS′(s

′) implies that s and s′ are behaviourally equivalent. The logic
is decidable if there is an algorithm that decides, on input ϕ ∈ L, whether there is some
pointed coalgebra satisfying ϕ. �

In addition, for practical purposes one generally wants the logic to be finitary in the sense
that formulas are finite objects. Other desirable properties of a coalgebraic logic include
good model-theoretic behaviour, and the existence of a derivation system that is sound and
complete for the collection of valid formulas.

With Kripke models as paradigmatic examples of coalgebra, and modal logic providing
the bisimulation-invariant logic for Kripke models, it should come as no surprise that most
coalgebraic logics can be seen as generalisations of basic modal logic in some sense. The
literature on coalgebra witnesses different ways to generalise basic modal logic from Kripke
structures to arbitrary systems; here we mention two approaches.

First, however, we briefly discuss the role of proposition letters in coalgebraic modal logic.
Generalising the relation between Kripke models and Kripke frames, we introduce the notion
of a T -model.

Definition 1.19 Let T be a set functor, and let Q be an arbitrary but fixed set of proposition
letters. A T -model is a triple (S, σ, V) such that (S, σ) is a T -coalgebra, and V : Q→ PS is
a valuation. A morphism between T -models S = (S, σ, V) and S′ = (S′, σ′, V ′) is a coalgebra
morphism f : (S, σ)→ (S, σ′) such that s ∈ V (p) iff fs ∈ V ′(p), for all s ∈ S. �

There are two natural ways to think about T -models: either as T -coalgebras extended with
a Q-valuation, or as coalgebras for the functor TQ := KPQ × T . (Clearly, in the latter case it
would be more natural to represent the valuation V as its associated colouring V [: S → PQ
given by V [(s) := {p ∈ Q | s ∈ V (p)}, cf. Example A.5.) In these notes we will generally take
the first perspective, since it is more compatible with the perspective on proposition letters
as variables. Nevertheless we will apply various coalgebraic definitions to T -models as if they
were indeed KPQ × T -coalgebras.

Let us now take a quick look at two of the approaches towards coalgebraic modal logic.

Example 1.20 In the first approach towards coalgebraic modal logic, which is completely
parametric in the functor T , the set of formulas L is closed under the following clause, which
introduces a modal operator ∇:

if α ∈ TX for some finite set X of formulas, then ∇α is a formula.

In the case of the powerset functor (T = P), we can write, for instance, ∇{ϕ0, ϕ1}, where ϕ0

and ϕ1 are formulas. The formula ∇{ϕ0, ϕ1} will be equivalent to (3ϕ0 ∧3ϕ1)∧2(ϕ0 ∨ϕ1).
In general, the semantics of ∇ in a Kripke structure S = (S, σ) will be given as

S, s
 ∇α iff (σ(s), α) ∈ P (
),

1-7

where P (
) ⊆ PS × PL is the (Egli-Milner) lifting2 of the binary satisfaction relation
.
As we will see, this approach generalises well to any set functor T that ‘preserves weak

pullbacks’ — the point of this condition being that T preserves weak pullbacks iff its lifting
T preserves relation composition.

The ∇-logic provided by the relation-lifting approach described in Example 1.20 may
provide coalgebraic logics in a completely uniform way, but its unusual syntax makes it not
easy to work with.

The second approach to coalgebraic logic provides coalgebraic logics with a more standard
modal syntax. Here, the modalities of the language correspond to so-called predicate liftings,
where an n-ary predicate lifting is a natural transformation P̆n →̇ P̆ T . Here we confine
ourselves to a few examples of such coalgebraic modalities.

Example 1.21 The standard interpretation of the modalities 3 and 2 in Kripke structures
can be formulated as follows:

S, s
 2ϕ iff R(s) ⊆ [[ϕ]]
S, s
 3ϕ iff R(s) ∩ [[ϕ]] 6= ∅.

Example 1.22 Monotone modal logic is a variant of standard modal logic where formulas
are interpreted in so-called monotone neighbourhood models. These are structures of the
form S = (S, σ, V) where S is a set of states, V is a valuation, and σ is a map S → PPS that
assigns to each state s ∈ S a collection σ(s) ⊆ PS of neighbourhoods. Here, each collection
σ(s) is required to be upwards closed in the sense that X ∈ σ(s) implies Y ∈ σ(s) for all Y
with X ⊆ Y ⊆ S.

In these structures we may interpret the modalities 3 and 2 as follows:

S, s
 2ϕ iff [[ϕ]] ∈ σ(s)
S, s
 3ϕ iff (S \ [[ϕ]]) 6∈ σ(s).

Using the upwards-closedness of σ(s) ⊆ P (S) it is not hard to show that 2ϕ holds at s iff s
has a neighbourhood U ∈ σ(s) such that S, u
 ϕ, for each u ∈ U , whereas 3ϕ holds at s iff
every neighbourhood U ∈ σ(s) contains some point u where ϕ holds.

To see how monotone modal logic generalises standard modal logic, think of a Kripke
model (S,R, V) as the neighbourhood model (S, σ̂, V), where σ̂(s) := {X ∈ PS | R(s) ⊆ X}.

Example 1.23 Let (S, σ) be a Markov chain, that is, a coalgebra for the distribution functor
D . Given a rational number q ∈ [0, 1], we introduce a modality 3q, with the following intended
meaning:

S, s
 3qϕ iff
∑
t∈[[ϕ]]S

µs(t) > q.

That is, the formula 3qϕ holds at s iff the probability that ϕ holds at the next state after s
is bigger than q.

2The Egli-Milner lifting of a relation R ⊆ S×S′ is the relation P (R) ⊆ PS×PS′ given by (X,X ′) ∈ P (R)
iff for all x ∈ X there is an x′ ∈ X ′ such that Rxx′ and for all x′ ∈ X ′ there is an x ∈ X such that Rxx′.

1-8

1.6 Literature

Here are some relevant texts on coalgebra and modal logic. First we mention some books:

• J. Barwise and L. Moss, Vicious Circles, CSLI Publications, 1996.

• B. Jacobs, Introduction to Coalgebra: towards mathematics of states and observation,
Cambridge University Press, 2016.

• J. Rutten, The Method of Coalgebra: exercises in coinduction, CWI, Amsterdam, The
Netherlands, 2019, ISBN 978-90-6196-568-8.

Here is a list of introductory and survey articles:

• B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction, Bulletin of the
European Association for Theoretical Computer Science, 62 (1997), pp. 222–259..

• J.J.M.M Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Sci-
ence 249 (2000), pp. 3-80.

• H.P. Gumm, Universelle coalgebra, appendix to Th. Ihringer: Universelle Algebra, Hel-
dermann Verlag, Berlin, 2003. (available from the web page of H.P. Gumm.)

• A. Kurz, A. Palmigiano and Y. Venema, Coalgebra and logic: an overview, Journal of
Logic and Computation 20 (2010), pp. 985-988.

• C. Kupke and D. Pattinson, Coalgebraic Semantics of Modal Logics: an Overview,
Theoretical Computer Science, 412(38) (2011), pp. 5070-5094.

• C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder and Y. Venema, Modal logics are coal-
gebraic, The Computer Journal, 54 (2011), pp. 31-41.

1-9

2 Final Coalgebras and Coinduction

In section 1.3 we introduced final coalgebras. In this chapter we study the concept in more
detail, and we see how it relates to the fundamental coalgebraic definition and proof principle
of coinduction.

As a first example of a final coalgebra, it is instructive to look at a base category different
from Set.

Example 2.1 Let C = (C,≤) be an arbitrary poset, that is, ≤ is a reflexive, transitive
and antisymmetric relation on the set C. We may think of C as a category by taking C
as the set of objects and providing a unique arrow between any pair of elements c, d ∈ C
for which c ≤ d. An endofunctor on C is then nothing but a monotone or order-preserving
function F : C → C. Given that arrows between objects are unique if they exist, a coalgebra
(c, γ : c → Fc) for such a functor can be identified with its carrier c, and conversely, any
c ∈ C for which c ≤ Fc is the carrier of an F -coalgebra. In other words, we may identify
F -coalgebras with the prefixpoints of F .

We leave it for the reader to verify that a final coalgebra for a functor F on C is a greatest
fixpoint of the map F .

2.1 The language coalgebra

As a key example of a final coalgebra we will show how to endow the collection of languages
over some finite alphabet C with coalgebra structure that turns it into the final coalgebra for
the set functor 2× IdC associated with deterministic automata.

Here we will represent a deterministic automaton over an alphabet C as a triple S =
(S, χ, τ), where χ : S → 2 and τ : S → SC correspond to the acceptance condition and
the transition map, respectively. Note that we drop the condition that the carrier of the
automaton is finite. We will also use the convention that s

a→ t means t = τ(s)(a) and s↓
indicates that s is accepting, i.e., χ(s) = 1.

As we saw in the introduction, we can identify deterministic automata with coalgebras of
the functor 2× IdC . It is easy to see that a map f : S → S′ is a coalgebra morphism between
two automata S = (S, χ, τ) and S′ = (S′, χ′, τ ′) if it satisfies, for all s ∈ S and a ∈ C, the
conditions χ(s) = χ′(fs) and f(τ(s)(a)) = τ ′(fs)(a).

Definition 2.2 Consider the following language coalgebra L := (LC , ω, δ), where
• LC := P (C∗) is the collection of all languages over C,
• ω : LC → 2 is given by ω(L) := 1 if ε ∈ L, and ω(L) = 0 if ε 6∈ L;
• δ : LC → (LC)C is the map given by δ(L)(a) := La, the so-called a-derivative of L:

La := {u ∈ C∗ | au ∈ L}.

If no confusion concerning the alphabet is likely, we will usually write L rather than LC . �

Recall that for an arbitrary automaton S = (S, χ, τ), we defined the language recognized
by a state s ∈ S by putting

LS(s) := {u ∈ C∗ | χ(τ̂(s)(u)) = 1},

2-1

where τ̂ : S → SC
∗

is inductively defined by putting τ̂(s)(ε) := s and τ̂(s)(cu) := τ̂
(
τ(s)(c)

)
(u).

We claim that, for any alphabet C, L is the final coalgebra of type 2 × IdC , with the
language maps as the witnessing coalgebra morphisms.

Proposition 2.3 (Finality of L) For any 2 × IdC-coalgebra S, the map LS is the unique
coalgebra morphism LS : S→ L.

Proof. Fix S = (S, χ, τ). We first show that LS is a coalgebra morphism. For acceptance,
we check that χ(s) = ω(LS(s)):

χ(s) = 1 iff ε ∈ LS(s) (definition LS)

iff ω(LS(s)) = 1 (definition ω)

With respect to the transition function, we need to show that LS(τ(s)(c)) = δ(LS(s))(c), for
all s ∈ S and c ∈ C. But this identity holds because of the following chain of equivalences,
for an arbitrary word u ∈ C∗:

u ∈ LS(τ(s)(c)) iff χ
(
τ̂(τ(s)(c))(u)

)
= 1 (definition LS)

iff χ(τ̂(s)(cu))) = 1 (definition τ̂)

iff cu ∈ LS(s) (definition LS)

iff u ∈ δ(LS(s))(c) (definition δ)

Second, we prove uniqueness. Assuming that f : S→ L is a coalgebra morphism, we need
to show that f = LS. It suffices to show that any word u ∈ C∗ satisfies the following:

for all s ∈ S : u ∈ LS(s) iff u ∈ f(s). (3)

We will prove (3) by induction on u. In the base case, where u = ε, we have

ε ∈ LS(s) iff ω(LS(s)) = 1 (definition ω)

iff χ(s) = 1 (LS is a morphism)

iff ω(f(s)) = 1 (f is a morphism)

iff ε ∈ f(s) (definition ω)

Now assume that u = cv, for some c ∈ C, then we find

cv ∈ LS(s) iff χ(τ̂(s)(cv)) = 1 (definition LS)

iff χ
(
τ̂(τ(s)(c))(v)

)
= 1 (definition τ̂)

iff v ∈ LS(τ(s)(c)) (definition LS)

iff v ∈ f(τ(s)(c)) (induction hypothesis)

iff v ∈ δ(f(s))(c) (f is a morphism)

iff cv ∈ f(s) (definition δ)

This suffices to prove the induction step of (3). qed

2-2

2.2 Properties of final coalgebras

Final coalgebras have various interesting properties. We first show that, if existing, final
coalgebras are unique modulo isomorphism3. Because of this fact we will often speak of ‘the’
final T -coalgebra if T admits final coalgebras.

Proposition 2.4 Let Z = (Z, ζ) and Z′ = (Z ′, ζ ′) be final T -coalgebras for some functor
T : C→ C. Then Z and Z′ are isomorphic.

Proof. By finality of Z there is a coalgebra morphism g : Z′ → Z, and by finality of Z′ there
is a coalgebra morphism f : Z → Z′. But then the composition g ◦ f : Z → Z is a coalgebra
morphism as well, and by unicity it must be identical to the identity arrow idZ. Similarly, we
find that g ◦ f = idZ′ . Thus Z and Z′ are isomorphic indeed. qed

The following proposition states a key fact about final coalgebras.

Proposition 2.5 (Lambek’s Lemma) Let Z be a final T -coalgebra for some functor T :
C→ C. Then the coalgebra map ζ : Z → TZ of Z is an isomorphism in C.

Proof. Applying the functor T to the coalgebra map ζ of Z, we obtain the map Tζ : TZ →
TTZ, and hence, a coalgebra Z2 := (TZ, Tζ). By finality of Z we obtain a coalgebra morphism
! from Z2 to Z, given by a C-arrow ! : TZ → Z. But then the composition ! ◦ ζ is a coalgebra
morphism from Z to itself, just like the identity arrow idZ . In a diagram:

Z

ζ
��

ζ //

idZ

''
TZ

Tζ
��

! // Z

ζ
��

TZ
Tζ
// TTZ

T !
// TZ

(4)

It follows by unicity that ! ◦ ζ = idZ .
For the reverse composition ζ ◦ ! we have that ζ ◦ ! = T ! ◦Tζ since ! is a morphism, cf. the

right rectangle in the diagram above. But then we easily derive that ζ ◦ ! = T (! ◦ ζ) = T idZ =
idTZ . In other words, ζ ◦ ! is the identity arrow on TZ.

Finally, since ! ◦ ζ = idZ and ζ ◦ ! = idTZ we see that ζ is an isomorphism indeed, with !
as its inverse. qed

As an immediate corollary of this, we see that set functors involving the full powerset
functor in a nontrivial way, will generally not admit a final coalgebra.

Corollary 2.6 The categories of Kripke frames and of Kripke models do not admit final
coalgebras.

3See the appendix for the categorical definition of an isomorphism. In the case of coalgebras, two coalgebras
S and S′ are isomorphic if there are coalgebra morphisms f : S → S′ and g : S′ → S such that g ◦ f and f ◦ g
are the identity arrows on S and S′, respectively.

2-3

Proof. Recall that Kripke frames are coalgebras for the powerset functor P . Now suppose
for contradiction that P admits a final coalgebra Z = (Z, ζ). It would follow by Lambek’s
Lemma that ζ is a bijection between Z and its powerset; but this is impossible by Cantor’s
theorem. The case of Kripke models can be proved similarly. qed

The following proposition is one way to formalise the proof principle of coinduction — we
shall come back to this.

Proposition 2.7 Let Z be a final T -coalgebra for some set functor T . Then the relation 'Z
of behavioural equivalence on Z is the identity relation ∆Z on Z:

'Z = ∆Z . (5)

Proof. Suppose that z and z′ are two states in Z that are behaviourally equivalent. In
Remark 1.15 we saw that this implies that behZ(z) = behZ(z′), and since behZ is the identity
map on Z, it follows that z = behZ(z) = behZ(z′) = z′. qed

2.3 Existence of final coalgebras

If not all set functors admit final coalgebras, which ones do? Some good sufficient conditions
are known.

Definition 2.8 Let T be some set functor, and κ some cardinal. Call T κ-small if

T (S) =
⋃
{(TιAS)[T (A)] | ιAS : A ↪→ S, |A| < κ},

for all sets S 6= ∅, where for an arbitrary subset A of S, the arrow ιAS denotes the inclusion
map of A into S. T is small if it is small for some cardinal κ. An ω-small functor is usually
called finitary. �

In words, the definition requires every element of T (S) to be in the range of Tι for an
appropriate inclusion map ι : A ↪→ S, where A is of size smaller than κ. In case T preserves
inclusions (meaning that T maps any inclusion ι : A ↪→ B to an inclusion Tι : TA ↪→ TB),
the definition boils down to the requirement that

T (S) =
⋃
{T (A) | A ⊆ S, |A| < κ}.

Fact 2.9 Every small set functor admits a final coalgebra.

Examples of small functors abound; for instance, whenever we replace, in a Kripke polyno-
mial functor, the power set functor by a bounded variant such as the finite power set functor,
the result is a small functor.

In particular, the finite power set functor Pω itself is ω-small. As an immediate corollary
of this fact, the categories of image-finite frames and models, which can be represented as
coalgebras for, respectively, the functors Pω and PQ × Pω, both have final objects. More in
general we can prove the following.

2-4

Corollary 2.10 Every finitary Kripke polynomial functor admits a final coalgebra.

For Set-based functors that do not admit a final coalgebra, there are various ‘second-best’
ways to proceed. For instance, one may show that T does have a final coalgebra in an extended
or modified category.

Example 2.11 If one is willing to allow coalgebras taking a class rather than a set as their
carrier, one may create a final coalgebra, outside the category Set, as follows. Let T be a set
functor for which final coalgebras do not exist; for convenience we assume that all functors
preserve inclusions.

Let SET be the category that has classes as objects, and class functions as arrows, that is,
functions that map sets to sets but may have a class rather than a set as their (co-)domain.
Call an endofunctor T on SET set-based if for each class C and each X ∈ TC there is a set
S ⊆ C such that X ∈ TS. Now Aczel & Mendler proved that every set-based endofunctor on
SET admits a final coalgebra – the similarity to Fact 2.9 is no coincidence.

This fact can be used as follows. Given an endofunctor T on Set, there is a unique way to
extend T to a set-based endofunctor T+ on SET. (On objects, simply put T+(C) :=

⋃
{T (S) |

S ⊆ C a set}.)
The theorem of Aczel & Mendler then guarantees the existence of a final object Z in

Coalg(T+). This coalgebra will be class-based if T does not admit a final coalgebra, but it
will be final, not only with respect to the set-based coalgebras in Coalg(T+), but also with
respect to the class-based ones. As an important manifestation of this idea, Aczel showed that
the class of non-well-founded sets provides the final coalgebra for (the SET-based extension
of) the power set functor.

Example 2.12 One way to look at Lambek’s Lemma is that final T -coalgebras provide
solutions to the ‘equation’ S ∼= TS. In the case of the powerset functor, Cantor’s theorem
states that this equation does not have a solution in the category Set. This situation is
reminiscent of that in domain theory, which provides solutions to the equation X ∼= XX by
imposing topological structure on sets.

Something similar can be done here. Define a Stone space to be a pair X = (X, τ), where
τ is a zero-dimensional compact Hausdorff space, and let Stone denote the category of Stone
spaces as objects with continuous maps as arrows. As an analog to the powerset functor on
Set, we can define the Vietoris functor V on the category Stone; on objects, the Vietoris space
VX is based on the collection of compact subsets of X. We may then show that, indeed, the
final coalgebra for this functor exists.

Further on we will see that in modal logic, whereas the canonical model (over a finite
set Q of proposition letters) is not final in the category of coalgebras for the Kripke model
functor KPQ×P , we may identify the canonical general model over Q with the final KPQ×V -
coalgebra. Thus we can solve the equation S ∼= TS by modifying the base category of our
coalgebras.

2.4 The terminal sequence

Whether the functor admits a final coalgebra or not, one may always (try to) approximate it
by considering the so-called final or terminal sequence.

2-5

Example 2.13 Let us first consider an example outside the category Set. Suppose that the
poset C = (C,≤) is in fact a complete lattice, that is, with each subset X ⊆ C we may
associate a meet or greatest lower bound

∧
X; this means in particular that C is bounded: it

has a largest element > :=
∧
∅, and a smallest element ⊥ :=

∨
∅.

The Knaster-Tarski theorem states that in this setting, every monotone map F : C → C
has both a least and a greatest fixpoint. That is, every endofunctor F on the category C
admits both an initial and a final coalgebra (see Example 2.1).

It is instructive for our purposes to prove this theorem, and in particular, to see how
to find the greatest fixpoint by approximating it from above. We define an ordinal-indexed
sequence 〈zα〉 using transfinite induction:

zα :=


> if α = 0
Fzβ if α = β + 1 is a successor ordinal∧
{zβ | β < α} if α is a limit ordinal

Note that in fact, if we take 0 to be a limit ordinal, we can reduce the first clause of the
definition to the third.

It is not hard to prove, for a monotone map F : C → C, the existence of an ordinal α for
which zα = zα+1, and to show that the object zα is in fact the greatest fixpoint of F .

In the case of set functors, we may take inspiration from this example to define the terminal
sequence associated with T .

Definition 2.14 The final or terminal sequence associated with a given set functor T , is an
ordinal indexed sequence of objects 〈Zα〉 with maps pαβ : Zα → Zβ for β ≤ α, such that (i)

Zα+1 = TZα and pα+1
β+1 = Tpαβ , (ii) pαα = idZα and pβγ ◦ pαβ = pαγ , (iii) if λ is a limit ordinal,

then Zλ with {pλα | α < λ} is a limit4 of the diagram with objects {Zα | α < λ} and arrows
{pαβ | α, β < λ}. (In particular, taking 0 to be a limit ordinal, we find that Z0 = 1 is some
final object of the category Set, i.e., a singleton set.) �

In the diagram below we depict an initial part of this construction:

Z0 = 1 Z1 = T1
p1

0oo Z2 = T 21
p2

1oo

p2
0

jj
oo · · · Zω

pω2
ss

pω1

ww

pω0

xx
Zω+1 = TZω

pω+1
ωoo · · ·oo

(6)
It is not hard to prove that, modulo isomorphism, the terminal sequence is uniquely

determined by these conditions. Intuitively, it can be seen as an approximation of the final
coalgebra for T . That is, where elements of the final coalgebra represent ‘complete’ behavior,
elements of Zα represent behavior that can be ‘performed in α many steps’.

4See the appendix for the categorical definition of a limit.

2-6

To make this precise and formal, observe that for any T -coalgebra S there is a unique
ordinal-indexed class of functions behα : S → Zα such that beh0 is fixed by the finality of Z0

in Set, behα+1 := (Tbehα) ◦ σ:

· · · Zα Zα+1
pα+1
αoo · · ·

S σ
//

behα

OO

behα+1

==

TS

Tbehα

OO
(7)

while for a limit ordinal λ, behλ is given as the unique map behλ : S → Zλ such that
behα = pλα ◦ behλ for all α < λ. It is not hard to prove that, for instance, S, s ' S′, s′ implies
that behα(s) = behα(s′) for all α.

The relation with final coalgebras can be made precise, as follows. On the one hand,
if the terminal sequence converges, in the sense that some arrow pα+1

α is a bijection, then
the coalgebra (Zα, (p

α+1
α)−1) is a final coalgebra for T . And conversely, under some mild

constraints on T , Adámek & Koubek proved that if T admits a final coalgebra, then the
terminal sequence converges to it.

2.5 Coinduction as a definition principle

Coinduction is an important coalgebraic principle, and just like its algebraic counterpart of
induction, it can be used as a tool to define various operations, but also as a coalgebraic proof
principle.

To see how coinductive definitions work, suppose that Z = (Z, ζ) is the final coalgebra for
some set functor T . Coinduction is based on the observation that, in order to define a map
from some set S to Z, it suffices to turn S into a coalgebra by endowing it with coalgebra
structure: any coalgebra map σ : S → TS canonically induces a map from S to Z, namely
the unique coalgebra morphism !σ : (S, σ) → Z. (In fact, we saw this principle already at
work in the proof of Lambek’s Lemma, where we defined a map from TZ to Z by considering
the coalgebra map Tζ on TZ.)

Example 2.15 Let Z = (Cω, h, t) be the stream coalgebra of Example 1.10 — here we write
h and t rather than head and tail. We already saw that Z is the final KC × Id -coalgebra, we
can now use the finality to define operations on streams.

To start with, consider the coalgebra map 〈h, t ◦ t〉 : Cω → C × Cω defined as γe(α) :=
(h(α), t(t(α))). By finality of Z there is a unique map e : Cω → Cω making the following
diagram commute:

Cω

〈h,t◦t〉
��

e // Cω

〈h,t〉
��

C × Cω
idC×e

// C × Cω

(8)

2-7

Another way of looking at this definition is that, in order to define e(α), we specfify

h(e(α)) := h(α)
t(e(α)) := t(t(α)).

In fact, the map e : Cω → Cω is the operation on streams that creates a new stream out of
all items at an even position in the input stream. To prove this, it suffices to show that the
map λα.(λn.α(2n)) makes the diagram (8) commute.

Similary, we can define a map q : Cω → Cω selecting the odd items of an input stream,
by means of the following diagram:

Cω

〈h◦t,t◦t〉
��

q // Cω

〈h,t〉
��

C × Cω
idC×q

// C × Cω

(9)

Example 2.16 Fix an alphabet C. Recall from Proposition 2.3 that the language coalgebra
L = (L, ω, δ) is the final coalgebra for the ‘automaton’ functor 2× IdC . We can use this fact
to define operations on languages.

For instance, given a word u = c1 · · · ck (with k ≥ 0), we let ⊗u denote its converse,
⊗u := ck · · · c1, and we set ⊗L := {⊗u | u ∈ L}. Coinductively, we can define this language
by imposing the following structure on L. As the acceptance condition we simply take the
same map ω as for L, while for the transition map τ we put

τ(L)(c) := {u ∈ C∗ | uc ∈ L}.

We leave it as an exercise for the reader to verify that the following diagram commutes:

L

〈ω,τ〉
��

⊗ // L

〈ω,δ〉
��

2× LC
id2×⊗C

// 2× LC

(10)

so that by finality, ⊗ : L → L is the unique coalgebra morphism ⊗ : (L, τ, ω) → L. That
means that (10) can be seen as a coinductive definition of ⊗.

Example 2.17 As a slightly different example, we give a coinductive definition of the shuffle
K ||L of two languages K and L. For an intuitive description of this operation5 , a word
belongs to K ||L if it consists of two interleaved words, from K and L, respectively. In
particular, we want that

(K ||L)c = Kc ||L ∪ K ||Lc,
5For a more precise definition of the language K ||L, first define the relation � on finite words by putting

c1 · · · ck � d1 · · · dn if there is an order-preserving map on the indices f : {1, . . . , k} → {1, . . . , n} such that
ci = dfi, for all i ∈ {1, . . . , k}. Say that w merges u and v if |w| = |u|+ |v| and both u�w and v�w. We can
then define K ||L as the collection of all words that merge words from K and L.

2-8

for all c ∈ C, where we recall that, for a language L ∈ L, we let La denote its a-derivative,
La := {u ∈ C∗ | au ∈ L}.

For a coinductive definition, we consider the set E of expressions defined by the following
grammar:

E ::= L | E0 + E1 | E0 ||E1

where L ∈ L, i.e., we associate a formal symbol L with every language L.

To turn the set E into an automaton E := (E , χ, τ), consider the following axioms and
rules (where we use the notation introduced in the beginning of section 2.1):

ε ∈ L
L↓

E↓
(E + F)↓

F↓
(E + F)↓

E↓ F↓
(E ||F)↓

L
c→ Lc

E
c→ E′ F

c→ F ′

E + F
c→ E′ + F ′

E
c→ E′ F

c→ F ′

E ||F c→ E′ ||F + E ||F ′

It is not hard to see that this deductive system uniquely determines two operations, χ : E → 2
and τ : E → EC . Hence by finality of L there is a unique coalgebra morphism f : E → L.
Think of f(E) as the interpretation of the term E. We can then define

K ||L := f(K ||L).

To get a feeling for this definition we compute the derivative (K ||L)c:

(K ||L)c = f(K ||L)c (definition ||)
= δ(f(K ||L))(c) (definition δ)

= f(τ(K ||L)(c)) (f is a morphism)

= f(Kc ||L+K ||Lc) (definition τ)

= f(Kc ||L) ∪ f(K ||Lc) (*)

= Kc ||L ∪K ||Lc (definition ||)

Here we use in (*) the observation that f(E + F) = f(E) ∪ f(F), which is easily proved by
coinduction, see Example 2.20.

2.6 Coinduction as a proof principle

As a proof principle, coinduction has two manifestations. In its most direct form, proofs by
coinduction use the uniqueness of coalgebra morphisms to a final coalgebra.

Example 2.18 Consider the maps e and q of Example 2.15. We claim that

q = e ◦ t, (11)

as should be clear intuitively. To prove (11) coinductively, it suffices to prove that the map
e ◦ t, just like q, is a coalgebra morphism e ◦ t : (Cω, 〈h ◦ t, t ◦ t〉) → (Cω, 〈h, t〉); that is, the

2-9

diagram below commutes:

Cω

〈h◦t,t◦t〉
��

e◦t // Cω

〈h,t〉
��

C × Cω
idC×e◦t

// C × Cω

(12)

But for this purpose it suffices to show that the following two equations hold:

h ◦ (e ◦ t) = h ◦ t (13)

t ◦ (e ◦ t) = (e ◦ t) ◦ (t ◦ t) (14)

This is not so hard. For (13), we may calculate

h ◦ (e ◦ t) = (h ◦ e) ◦ t (associativity)

= (idC ◦ h) ◦ t (diagram (8))

= h ◦ t, (idC ◦ h = h)

while we prove (14) as follows:

t ◦ (e ◦ t) = (t ◦ e) ◦ t (associativity)

= (e ◦ (t ◦ t)) ◦ t (diagram (8))

= (e ◦ t) ◦ (t ◦ t) (associativity)

Example 2.19 In a similar way we can prove that

zip ◦ 〈e, q〉 = idCω , (15)

where zip is the map defined in Example 1.12.
By finality it suffices to show that zip ◦ 〈e, q〉 is a coalgebra morphism on the stream

coalgebra, and since we know that zip is a coalgebra morphism (i.e., the right rectangle below
commutes), we can confine ourselves to proving that the left rectangle in the diagram below
commutes:

Cω

〈h,t〉
��

〈e,q〉 // Cω × Cω

δ
��

zip // Cω

〈h,t〉
��

C × Cω
T 〈e,q〉
// C × (Cω × Cω)

T zip
// C × Cω

Here T 〈e, q〉 = idC × 〈e, q〉, T zip = idC × zip, and δ is as given in Example 1.12: δ(α, β) :=
(h(α), (β, t(α)).

To verify that the left rectangle above commutes we need to check that δ ◦ 〈e, q〉 =
T 〈e, q〉 ◦ 〈h, t〉, which boils down to proving

(a) h ◦ e = h,
(b) q = e ◦ t
(c) t ◦ e = q ◦ t.

But we obtain (a) because h ◦ e = idC ◦ h (definition of e), and (b) was shown in the previous
example, cf. (11). Finally, for (c), observe that t◦e = e◦(t◦t) by definition of e (diagram (8)),
and e ◦ (t ◦ t) = q ◦ t by associativity and (11).

2-10

Often, coinduction is referred to as the proof principle that uses the fact that behavioural
equivalence is the identity relation on a final coalgebra (Proposition 2.7). More specifically,
given the fact that bisimilarity implies behavioural equivalence (as we will see further on), one
may prove two states in a final coalgebra to be identical if we can link them by a bisimulation.

Example 2.20 In the case of C-automata (coalgebras of type 2× IdC), a bisimulation on a
coalgebra (S, χ, τ) is a relation B ⊆ S × S such that, whenever (s0, s1) ∈ B, we have
(acc) χ(s0) = χ(s1) (that is: s0↓ iff s1↓), and
(nxt) (τ(s0)(c), τ(s1)(c)) ∈ B, for all c ∈ C.

Let us now prove the statement that (cf. Example 2.17)

f(L) = L, (16)

for every language L ∈ L. By coinduction, it suffices to show that the relation

B := {(f(L), L) | L ∈ L} (17)

is a bisimulation. We check the two conditions.
For (acc), we observe that f(L)↓ (in L) iff L↓ (in E) since f is a coalgebra morphism. But

we have L↓ in E iff ε ∈ L by definition of acceptance in E, and we have L↓ (in L) iff ε ∈ L by
definition of acceptance in L. This suffices to prove (acc).

For (nxt) we need to show, for an arbitrary language L ∈ L and an arbitrary letter c ∈ C,
that the pair

(
δ(f(L), c), δ(L, c)

)
∈ B. To that aim, observe that δ(f(L), c) = f(τ(L)(c)) =

f(Lc), respectively since f is a morphism and by definition of τ . But since we have δ(L)(c) =
Lc (by definition of δ), it is immediate that

(
δ(f(L), c), δ(L, c)

)
=
(
f(Lc), Lc

)
∈ B. This

finishes the proofs of (17) and (16).
Similarly, we can prove that

f(E0 + E1) = f(E0) ∪ f(E1), (18)

for all expressions E0 and E1, by showing that the relation

R :=
{(
f(E0 + E1), f(E0) ∪ f(E1)

)
| E0, E1 ∈ E

}
is a bisimulation on L.

Finally, we can use coinduction to establish, in a relatively straightforward way, various
useful properties of the operation ||, such as commutativity, associativity, or distribution with
respect to +/∪.

2-11

3 Bisimilarity and Behavioural Equivalence

In section 1.4 of the Introduction we defined two coalgebraic notions of equivalence: behavioral
equivalence and bisimilarity. In this chapter we discuss these notions in more detail.

3.1 Basic observations

Obviously, the first question is how the notions of behavioral equivalence and bisimilarity
relate to each other. One direction is clear: bisimilarity is a sufficient condition for behavioral
equivalence.

Proposition 3.1 Let T : Set → Set be some functor, and let s0 and s1 be states of the
T -coalgebras S0 and S1, respectively. Then S0, s0 ↔ S1, s1 implies S0, s0 ' S1, s1.

Proof. In the special case that T admits a final coalgebra, a very simple proof obtains.
Assume that S0, s0 ↔ S1, s1, and let B ⊆ S0×S1 with β : B → TB be a coalgebra witnessing
this. It follows from the definitions that both behS0 ◦ π0 and behS1 ◦ π1 are coalgebraic
morphisms from (B, β) to the final coalgebra, so from finality it follows that behS0 ◦ π0 =
behS1 ◦ π1. From this it is immediate that B ⊆ '; and so from (s0, s1) ∈ B it follows that
S0, s0 ' S1, s1.

In the general case the proof of this proposition is similar to the one of Theorem 3.13
below (with an application of pushouts instead of pullbacks), so we omit details. qed

The converse statement of Proposition 3.1 does not hold: in general, bisimilarity is a
strictly stronger notion than behavioral equivalence.

Example 3.2 Consider the so-called ‘3-2-functor’ T 3
2 : Set→ Set given on objects by

T 3
2 (S) :=

{
(s0, s1, s2) ∈ S3 | |{s0, s1, s2}| ≤ 2},

while for an arrow f : S → S′ we define (T 3
2 f)(s0, s1, s2) := (fs0, fs1, fs2). We leave it as an

exercise to the reader to verify that this indeed defines a set functor.
Now consider the following coalgebra S = (S, σ), where S = {0, 1} and σ is given by

σ(0) = (0, 0, 1) and σ(1) = (1, 0, 0). Then it is not hard to see that S, 0 ' S, 1, but at the
same time we claim that there is no T 3

2 -bisimulation on S linking 0 and 1. To see this, suppose
for contradiction that R ⊆ S × S would be such a bisimulation, witnessed by the coalgebra
map ρ : R → T 3

2R. If the projection maps π0, π1 : R → S are to be coalgebra morphisms, ρ
has to map the pair (0, 1) to some triple ρ(0, 1) =

(
(s0, s1), (t0, t1), (u0, u1)

)
such that

(s0, t0, u0) = ((T 3
2 π0) ◦ ρ)(0, 1) = (σ ◦ π0)(0, 1) = σ(0) = (0, 0, 1)

(s1, t1, u1) = ((T 3
2 π1) ◦ ρ)(0, 1) = (σ ◦ π1)(0, 1) = σ(1) = (1, 0, 0).

Clearly then we find ρ(0, 1) =
(
(s0, s1), (t0, t1), (u0, u1)

)
=
(
(0, 1), (0, 0), (1, 0)

)
. But this

object does not belong to the set T 3
2R, since (s0, s1), (t0, t1) and (u0, u1) are all distinct.

Example 3.3 A more natural example of a set functor for which behavioural equivalence
and bisimilarity are properly distinct notions, is the monotone neighbourhood functor M . We
will come back to this example later.

3-1

In section 3.3 below we will discuss an important class of set functors for which we do
have ' = ↔. First, however, we make some basic observations on bisimulations and, in the
next section, we give an alternative characterization of bisimulations.

Example 3.4 For an arbitrary set functor T , it is easy to see that for any coalgebra S,
the diagonal relation ∆S is a bisimulation equivalence on S. Furthermore, the converse of a
bisimulation is again a bisimulation.

As another general example, coalgebra morphisms can be seen as functional bisimulations.
To be more precise, let f : S0 → S1 be a function between the carriers of two T -coalgebras S0

and S1. Recall that the graph of f is the relation Grf := {(s, f(s)) | s ∈ S0}. Then it holds
that

f is a coalgebra morphism iff its graph Grf is a bisimulation. (19)

In order to see why this is so, first suppose that Grf : S0 ↔ S1. Since the projection
map π0 : Grf → S0 is a bijective morphism, its inverse π−1

0 is also a morphism. But then
f = π1 ◦ π−1

0 , as the composition of two morphisms, is also a morphism. For the other
direction, suppose that f is a morphism; then it is straightforward to verify that the map
(Tπ0)−1 ◦ σ ◦ π0 equips the set Grf with the required coalgebraic structure.

However, the collection of bisimulations is not in general closed under taking relational
composition, and the relation ↔ of bisimilarity on a given coalgebra is generally not an
equivalence relation.

3.2 Bisimulations and relation lifting

Bisimulations admit an elegant alternative characterization which involves the notion of re-
lation lifting.

Example 3.5 As an example, consider the power set functor P . Recall that a relation
B ⊆ S0×S1 is a bisimulation between two P -coalgebras (Kripke frames) S0 = (S0, R0[·]) and
S1 = (S1, R1[·]) iff B satisfies the conditions (back) and (forth) of Example 1.3. Now suppose
that we define, for an arbitrary relation R ⊆ S0 × S1, the relation P (R) ⊆ P (S0)× P (S1) by
putting

P (R) := {(Q0, Q1) | ∀q0 ∈ Q0 ∃q1 ∈ Q1. (q0, q1) ∈ R and ∀q1 ∈ Q1 ∃q0 ∈ Q0. (q0, q1) ∈ R}.
(20)

In other words, we lift the relation R to the level of the power sets of S0 and S1. The definition
of a bisimulation between P -coalgebras can now be characterized as follows:

B : S0 ↔ S1 iff (R0[s0], R1[s1]) ∈ P (B) for all (s0, s1) ∈ B.

This nice way of characterizing bisimulation via relation lifting is not limited to the power
set functor — it applies in fact to every set functor.

Definition 3.6 Let T be some set functor. Given a relation R ⊆ S0 × S1, consider R as a
span

S0 R
π0oo π1 // S1 ,

3-2

where πi : R → Si and pi : TS0 × TS1 → TSi denote the respective projection maps. We
define the relation lifting of R as the relation TR ⊆ TS0 × TS1 given by

TR := {((Tπ0)(u), (Tπ1)(u)) | u ∈ TR}, (21)

that is, TR is the image of TR under the map τR := 〈Tπ0, Tπ1〉. �

In other words, we apply the functor T to the relation R, seen as a span. It follows
from the category-theoretic properties of the product TS0 × TS1 that there is a unique map
τR := 〈Tπ0, Tπ1〉 from TR to TS0 × TS1 such that pi ◦ τR = Tπi for i = 0, 1. Now we define
TR as the image of TR under the map τR obtained from the lifted projection maps Tπ0 and
Tπ1. In a diagram:

TS0 TR
Tπ0oo

����
τR

��

Tπ1 // TS1

TR� _

��
TS0 × TS1

p0

\\

p1

BB

Remark 3.7 Strictly speaking, the definition of the relation lifting of a given relation depends
on its type. That is, given sets A,B,A′ and B′, and a relation R such that R ⊆ A × B and
and R ⊆ A′×B′, for the definition of TR it matters whether we look at R as a relation from
A to B or as a relation from A′ to B′.

This possible source of ambiguity evaporates if we require the functor T to be standard,
see the appendix for more details. In this chapter we will only use the lifting of a relation in
a setting where its type is fixed, but readers who are worried about this issue may add the
(fairly harmless) condition that T is standard.

The results listed in the following theorem summarize the most important properties of
bisimulations.

Theorem 3.8 Let S0 and S1 be two coalgebras for some set functor T .

1. For any set B ⊆ S0×S1, we have B : S0 ↔ S1 iff (σ0(s0), σ1(s1)) ∈ T (B), all (s0, s1) ∈
B.

2. The collection of bisimulations between S0 and S1 forms a complete lattice under the
inclusion order, with joins given by unions.

3. The bisimilarity relation ↔ is the largest bisimulation between S0 and S1.

Proof. The first part of the theorem is an almost immediate consequence of the definitions.
To see this, recall that B : S0 ↔ S1 iff we can find a coalgebra map β : B → TB such that
(Tπi) ◦ β = σi ◦ πi for i = 0, 1, and that the latter requirement is equivalent to stating that
(Tπi)(β(s0, s1)) = σsi. From this it easily follows that B : S0 ↔ S1 iff for every (s0, s1) ∈ B
there is a u ∈ TB such that (σ0s0, σ1s1) = ((Tπ0)(u), (Tπ1)(u)). This suffices by (21).

3-3

The crucial observation in the proof of the other two parts is that

T : P (S0 × S1)→ P (TS0 × TS1) is a monotone operation. (22)

For a proof, let R ⊆ R′ be two relations between S0 and S1, with ι : R → R′ denoting the
inclusion map. By definition of T , we may without loss of generality represent an arbitrary
element of T (R) as a pair τR(u) = ((Tπ0)(u), (Tπ1)(u)) for some u ∈ TR. Define u′ :=
(Tι)(u), then u′ belongs to TR′, and for each i we find that (Tπ′i)(u

′) = (Tπ′i ◦ Tι)(u) =
T (π′i ◦ ι)(u) = (Tπi)(u). That is, τR(u) = τR′(u

′), which shows that τR(u) belongs to TR′.
This proves (22).

Now for the proof of part 2, recall that a partial order is a complete lattice if it is closed
under arbitrary joins. Hence, it suffices to prove that the union B of a collection {Bj |
j ∈ J} of bisimulations is again a bisimulation. Take an arbitrary pair (s0, s1) ∈ B. Then
(s0, s1) belongs to Bj for some j ∈ J . Hence, by part 1, we find (σ0s0, σ1s1) in T (Bj), so
(σ0(s0), σ1(s1)) ∈ T (B) by the monotonicity of T . But then B is a bisimulation by part 1.

Finally, for part 3, note that it is an immediate consequence of part 2 that ↔, being the
union of all bisimulations between S0 and S1, is a bisimulation itself. Hence, by definition,
it is the greatest bisimulation between S0 and S1. In fact, it follows by the Knaster-Tarski
theorem (on fixed points of monotone operations on complete lattices), that ↔ is in fact the
greatest fixed point of the map Λ : R 7→ {(s0, s1) | (σ0(s0), σ1(s1)) ∈ T (R)}. qed

In the case of Kripke polynomial functors, relation lifting can be characterized using
induction on the construction of the functor.

Proposition 3.9 Let S and S′ be two sets, and let R ⊆ S × S′ be a binary relation between
S and S′. Then the following induction defines the relation lifting K (R) ⊆ KS × KS′, for
each Kripke polynomial functor K :

Id(R) := R,

KC(R) := ∆C ,

K0 ×K1(R) := {((x0, x1), (x′0, x
′
1)) | (x0, x

′
0) ∈ K0(R) and (x1, x

′
1) ∈ K1(R)},

K0 + K1(R) := {(κ0x0, κ0x
′
0) | (x0, x

′
0) ∈ K0(R)} ∪ {(κ1x1, κ1x

′
1) | (x1, x

′
1) ∈ K1(R)},

KD(R) := {(f, f ′) | (f(d), f ′(d)) ∈ K (R) for all d ∈ D},
PK (R) := {(Q,Q′) | ∀q ∈ Q∃q′ ∈ Q′. (q, q′) ∈ K (R) and ∀q′ ∈ Q′ ∃q ∈ Q. (q, q′) ∈ K (R)}.

Here κ0 and κ1 are the co-projection maps associated with the coproduct, cf. Definition B.14.

3.3 Bisimilarity and behavioural equivalence: smooth functors

In Example 3.2 we saw that bisimilarity is a strictly stronger notion than behavioural equiv-
alence. Here is a constraint on the functor that guarantees the two notions to coincide.

3-4

Definition 3.10 A weak pullback of two arrows f0 :
A0 → B, f1 : A1 → B in a category C is a pair of arrows
p0 : W → A0, p1 : W → A1 such that (i) f0 ◦p0 = f1 ◦p1,
while (ii) for every pair p′0 : W ′ → A0, p′1 : W ′ → A1 that
also satisfies f0 ◦ p′0 = f1 ◦ p′1, there is a mediating arrow
w′ : W ′ →W such that p0 ◦ w′ = p′0 and p1 ◦ w′ = p′1.
We will call a functor T : C → C′ smooth if it preserves
weak pullbacks; that is, if for any weak pullback (p0, p1)
of any (f0, f1) in C, the pair (Tp0, Tp1) is a weak pullback
of (Tf0, T f1) in C′. �

A0
f0 // B

W

p0

OO

p1 // A1

f1

OO

W ′

p′0

II

w′
==

p′1

44

Note that the mediating arrow w′ need not be unique: adding this requirement to the
definition would give the more familiar, and stronger, notion of a pullback. The category Set
has pullbacks: for f0 : A0 → B and f1 : A1 → B, we can take the projections to A0 and A1

from the set pb(f0, f1) := {(a0, a1) ∈ A0 ×A1 | f0(a0) = f1(a1)}.
Many but not all endofunctors on Set in fact preserve weak pullbacks.

Proposition 3.11 All polynomial functors preserve pullbacks, and all Kripke polynomial
functors preserve weak pullbacks.

The main reason that this prima facie rather exotic property is in fact of great importance
in the theory of universal coalgebra, is the following fact.

Fact 3.12 For any set functor T the following are equivalent:

(1) T is smooth;

(2) T (R ;Q) = TR ; TQ, for all pairs of relations R ⊆ X × Y and Q ⊆ Y × Z.

Theorem 3.13 If T is a smooth set functor, the following hold on the class of T -coalgebras:

(1) the relational composition of two bisimulations is again a bisimulation;

(2) the notions of bisimilarity and behavioral equivalence coincide:

'T = ↔T .

Proof. For the proof of the first statement, let S0,S1 and S2 be T -coalgebras, and let B′ :
S0 ↔ S1 and B′′ : S1 ↔ S2 be bisimulations. We will show that B := B′;B′′ is a bisimulation
as well, between S0 and S2. For that purpose, take an arbitrary pair (s0, s2) ∈ B; then by
definition there must be a state s1 ∈ S1 such that (s0, s1) ∈ B′ and (s1, s2) ∈ B′′. But since B′

and B′′ are bisimulations, this means that (σ0s0, σ1s1) ∈ TB′ and (σ1s1, σ2s2) ∈ TB′′, so that
(σ0s0, σ2s2) ∈ TB′;TB′′. Hence by smoothness we find that (σ0s0, σ2s2) ∈ T (B′;B′′) = TB,
as required.

Turning to the second statement, let s0 and s1 be states of the T -coalgebras S0 and
S1, respectively. We need to prove that S0, s0 ↔ S1, s1 iff S0, s0 ' S1, s1. Because of
Proposition 3.1 it suffices to prove the direction from right to left.

3-5

Let f0 : S0 → X and f1 : S1 → X be two coalgebra morphisms such that f0(s0) = f1(s1).
Then in Set, the set B := {(s0, s1) ∈ S0 × S1 | f0(s0) = f1(s1)}, together with the projection
functions π0 : B → S0 and π1 : B → S1 constitutes a pullback of f0 and f1, cf. the square
in the foreground of the picture. Because T preserves weak pullbacks, the square in the
background of the picture is then a weak pullback diagram in Set.

Now consider the two arrows σi ◦ πi : B →
T (Si). First observe that Tfi ◦ σi = ξ ◦ fi for
each i, because each fi is a coalgebra mor-
phism. Hence, chasing the diagram we find
that

Tf0 ◦ σ0 ◦ π0 = ξ ◦ f0 ◦ π0

= ξ ◦ f1 ◦ π1 = Tf1 ◦ σ1 ◦ π1.

Since Tπ0 and Tπ1 form a weak pullback of
Tf0 and Tf1, this implies the existence of a
mediating function β : B → TB such that
Tπi ◦β = σi ◦π1. In other words, B := (B, β)
is a T -coalgebra, and the projection maps π0

and π1 are morphisms from B to S0 and S1,
respectively.

TS0
Tf0 // TX

S0

σ0

==

f0 // X

ξ

==

TB

Tπ0

OO

Tπ1

// TS1

Tf1

OO

B

π0

OO

β
==

π1

// S1

f1

OO

σ1

==

qed

Corollary 3.14 Let T be a smooth functor. Then for any T -coalgebra S, the maximal bisim-
ulation ↔ on S is an equivalence relation.

Proof. It is not hard to see that the maximal bisimulation ↔ is always reflexive and sym-
metric. For transitivity, it follows by smoothness of T that the composition ↔;↔ is again a
bisimulation; but since ↔ is maximal we find that ↔;↔ ⊆ ↔, which is just another formu-
lation of the transitivity of ↔. qed

3-6

4 Covarieties

In universal algebra an important part is played by varieties: classes of algebras that are closed
under the operations of taking homomorphic images, subalgebras and products of algebras.
In this chapter, we introduce the notion of a covariety as a natural coalgebraic analog of a
variety, and we consider some natural closure operations on classes of coalgebras.

4.1 Homomorphic images

Definition 4.1 Let T be some endofunctor on Set. If f : S → S′ is a surjective coalgebra
morphism between the T -coalgebras S and S′, then we say that S′ is a homomorphic image
of S, and write S� S′, or f : S� S′ if we want to make the morphism explicit. �

In universal algebra, one finds a one-one correspondence between homomorphic images
and congruences. Something similar applies here, but the analogy is perfect only in the case
of functors that preserve weak pullbacks.

Proposition 4.2 Let S = (S, σ) be a T -coalgebra for some set functor T .
(1) Given a bisimulation equivalence6 E on S, there is a unique coalgebra structure σ on

S/E such that the quotient map q : S → S/E is a coalgebra morphism.
(2) If T preserves weak pullbacks, then the relation ker(f) := {(s, t) ∈ S2 | fs = ft} is a

bisimulation equivalence, for any coalgebra morphism f : S→ S′.

Proof. For part (1), we leave it as an exercise for the reader to show that the set S = S/E
of E-cells, together with the quotient map q, is a coequalizer of the projection maps π0, π1 :
E → S:

E
π0 //
π1

// S
q // S

Now assume that, next to being an equivalence relation, E is also a bisimulation on S.
Then by definition there is a coalgebra map η : E → TE such that both πi are coalgebra
morphisms πi : (E, η)→ S. It follows that

Tq ◦ σ ◦ π0 = Tq ◦ Tπ0 ◦ η (π0 is a morphism)

= T (q ◦ π0) ◦ η (functoriality)

= T (q ◦ π1) ◦ η (q is a coequalizer)

= Tq ◦ Tπ1 ◦ η (functoriality)

= Tq ◦ σ ◦ π1 (π1 is a morphism)

In other words, the map Tq ◦ σ : S → TS is a competitor for the coequalizer map q, and so
there is a unique map σ : S → TS such that σ ◦ q = Tq ◦ σ, in a diagram:

E

η

��

π0 //
π1

// S

σ

��

q // S

σ
��

TE
Tπ0 //

Tπ1

// TS
Tq
// TS

6A bisimulation equivalence is a bisimulation that is also an equivalence relation.

4-1

Clearly then σ is the required coalgebra map on S.

For the second part of the proposition, observe that ker(f) is the relational composition
of the graph of f with its converse. The result then follows from Theorem 3.13. qed

4.2 Subcoalgebras

The next class operation that we consider is that of taking subcoalgebras.

Definition 4.3 Let X = (X, ξ) and S = (S, σ) be two T -coalgebras, such that S is a subset
of X. If the inclusion map ι : S → X is a coalgebra morphism from (S, σ) to (X, ξ), then
we say that S is open with respect to X, and we call the structure (S, σ) a subcoalgebra of X,
writing S ≤ X. �

Interestingly enough, the transition map of a subcoalgebra is completely determined by
the underlying open set.

Proposition 4.4 Let S0 = (S, σ0) and S1 = (S, σ1) be two subcoalgebras of the coalgebra X.
Then σ0 = σ1.

Proof. The case of S being empty is trivial, so suppose otherwise. Then from the assumption
that S0 and S1 are subcoalgebras of A, we may infer that (Tι) ◦σ0 = ξ ◦ ι = (Tι) ◦σ1, where ι
is the inclusion map of S into X. It follows from the functoriality of T that Tι is an injection,
so that we may conclude that σ0 = σ1. qed

Remark 4.5 In case T is a standard functor, we may simplify Definition 4.3: in this case
any subcoalgebra of X = (X, ξ) must be of the form S = (S, ξ �S) with S ⊆ X and ξ(s) ∈ TS,
for all s ∈ S.

Example 4.6 (a) Given a Kripke frame (S,R) we call a structure (S′, R′) a subframe of S if
S′ ⊆ S and R′ = R∩ (S′×S′). Such a subframe is generated if its universe S′ is closed under
the relation R, that is, if s ∈ S′ and (s, t) ∈ R imply t ∈ S′. It is easy to see that the generated
subframes of a frame correspond to the subcoalgebras of its coalgebraic representation.

(b) Similarly, a state b in a deterministic finite automaton A = (A, δ, F) is reachable from
a state a ∈ A if there is some word u such that δ̂(a, u) = B. Given some automaton A, the
states that are reachable from a given state a form an open set.

(c) The empty set is always open: every coalgebra has the empty coalgebra as a subcoal-
gebra.

Some further observations concerning subcoalgebras are in order. First of all, the topo-
logical terminology is justified by the following proposition.

Proposition 4.7 Given a coalgebra X for some set functor T , the collection τX of X-open
sets forms a topology.

4-2

Proof. Closure of τX under taking (arbitrary) unions follows from Theorem 3.8, together
with the observation that

S ⊆ X is open with respect to X iff ∆S is a bisimulation on X, (23)

which in its turn is an immediate consequence of (19).

To prove that τX is closed under taking finite intersections, assume that A = (A,α) and
B = (B, β) are two subcoalgebras of S. The case where A ∩ B = ∅ is trivial, so assume
otherwise. Define C := A ∩ B, fix some element c ∈ C, and consider the maps fc : A → C
and gc : S → B, given by

fc(a) :=

{
a if a ∈ C
c otherwise

and gc(s) :=

{
s if s ∈ B
c otherwise.

Now consider the following diagram:

TA //
TιAS //

Tfc

		

TS

Tgc

		

A

fc

		

α

==

� � ιAS // S

σ

==

gc

		

TC
OO

TιCA

OO

//
TιCB

// TB
OO

TιBS

OO

C
?�

ιCA

OO

γ
==

� �

ιCB

// B
?�

ιBS

OO

β

==

We define the map γ : C → TC by putting

γ := Tfc ◦ α ◦ ιCA,

and claim that the resulting structure (C, γ) is a subcoalgebra of S = (S, σ). For this purpose
we have to show that

σ ◦ ιCS = TιCS ◦ γ. (24)

We leave it as an exercise for the reader to show (24), using equalities such as ιCB ◦fc = gc ◦ ιAS
and gc ◦ ιBS = idB. qed

Remark 4.8 In the case where T is standard, the proof that τX is closed under taking finite
intersections can again be simplified. In order to prove that C := A ∩ B is the carrier
of a subcoalgebra of S, it suffices to show that σ(c) ∈ TC for an arbitrary element c of
C := A ∩B. But since T is standard we have TC = TA ∩ TB, and we find σ(c) ∈ TA ∩ TB
by the assumptions on A and B, respectively.

4-3

It follows from Proposition 4.7 that the partial order (τX,⊆), consisting of the collection
of open subsets of X ordered by set inclusion actually forms a complete lattice. In this lattice,
the join of a collection U of opens is simply given as its union, but its meet, that is, the largest
open set contained in each open U ∈ U , is not necessarily its intersection.

In particular, given a subset S of X, there is an open set V ⊆ X which is the meet of the
collection {U ∈ τX | S ⊆ U}. However, there is no guarantee that V is the intersection of this
collection, or, indeed, that S is actually a subset of V , as is witnessed by the example below.
This example thus shows that it does not make sense to speak of the smallest subcoalgebra
containing a given subset, or of point-generated subcoalgbras.

It follows from Proposition 4.7 that, given a subset S of (the carrier of) a coalgebra X,
there is a largest subcoalgebra 〈S〉X of X (of which the carrier is) contained in S: Its carrier is
given as the union of all open subsets of S. Note however, that this carrier might be empty,
even if S is not.

Example 4.9 Consider the standard Euclidean topology on the real numbers, seen as a coal-
gebra for the filter functor F . This functor is a subfunctor of the (monotone) neighborhood
functor which maps a set S to the collection of all filters on S7 and a function f : S → S′

simply to the function M f = P̆ P̆ f . Prime examples of F -coalgebras are the topological
spaces. To see this, represent a topology σ on the set S by the function mapping a point
s ∈ S to the collection {U ∈ σ | s ∈ U} of its neighborhoods.

One can show that a set S of reals is open in the topological sense iff it is open in the sense
of Definition 4.3 — in fact, this holds for any topology. Now take an arbitrary point r in R.
Obviously, the meet of all open neighborhoods containing r is the empty set. This example
thus shows that in general it does not make sense to speak of point-generated subcoalgebras.

Before we turn to further coalgebraic constructions, consider the following natural link
between homomorphic images and subcoalgebras.

Proposition 4.10 Given a coalgebra morphism f : S → S′, there is a (unique) subcoalgebra
f [S] of S′ such that f : S→ f [S] is a surjective morphism.

Proof. For a proof of this proposition, let X := f [S] be the (set-theoretic) image of S under
f , and let g : X → S be a right inverse of f , that is, f(g(x)) = x for all x ∈ X. Now define
ξ : X → TX by ξ := Tf ◦ σ ◦ g. It can be shown that the resulting structure X is always a
subcoalgebra of S′, and that f : S → X is a surjective morphism; further details are left for
the reader. qed

4.3 Sums and other colimits

Our last example of a coalgebraic construction concerns the straightforward generalization
of the disjoint union of Kripke models and frames. The idea is embodied in the following
Proposition.

7Recall that a filter on S is a collection F of subsets of S which is not only upward closed (with respect to
the inclusion relation), but also closed under taking (finite) intersections, that is, X ∩ Y ∈ F if X,Y ∈ F .

4-4

Proposition 4.11 Let S0 = (S0, σ0) and S1 = (S1, σ1) be two T -coalgebras, and let S :=
S0]S1 be the disjoint union of S0 and S1. Then there is a unique arrow σ : S → TS making
the embeddings κi into coalgebra morphisms.

Proof. Consider the diagram below, where S, together with the embedding maps κ0 and κ1,
is the coproduct of S0 and S1. Since the maps Tκ0 ◦ σ0 and Tκ1 ◦ σ1 provide an alternative
co-cone, there must be a (unique) mediating arrow σ : S → TS, making the two rectangles
in the diagram commute.

S0
κ0 //

σ0

��

S

σ

��

S1
κ1oo

σ1

��
TS0

Tκ0

// TS TS1
Tκ1

oo

(25)

Clearly then this σ meets the requirements stated in the Proposition. qed

The sum of an arbitrary collection of coalgebras is defined as follows.

Definition 4.12 The sum
∐
I Si of a family {Si | i ∈ I} of coalgebras for some set functor

T , is defined by endowing the disjoint union S :=
⊎
I Si with the unique map σ : S → TS

which turns all embeddings κi : Si → S into coalgebra morphisms. �

Sums are coproducts in the category of coalgebras.

Proposition 4.13 Let {Si | i ∈ I} be a family of coalgebras for some set functor T . Then∐
I Si is a coproduct of {Si | i ∈ I} in the category Coalg(T).

In particular, Proposition 4.13 implies that coproducts actually exist (in the category of
coalgebras for a given set functor T).

Remark 4.14 This result can be in fact be generalised to arbitrary colimits: it can be shown
that for every set functor T , the category Coalg(T) has all colimits, and that these colimits
are in fact based on the underlying colimits n Set.

4.4 Covarieties

We have now gathered all the basic class operations needed to define the notion of a covariety.

Definition 4.15 Let T be some endofunctor on Set. A class of T -coalgebras is a covariety if it
is closed under taking homomorphic images, subcoalgebras and sums. The smallest covariety
containing a class K of T -coalgebras is called the covariety generated by K, notation: Covar(K).
�

As in the case of universal algebra, in order to obtain a more succinct characterization of
the covariety generated by a class of coalgebras, one may develop a calculus of class operations.

Definition 4.16 Let H, S and Σ denote the class operations of taking (isomorphic copies of)
homomorphic images, subcoalgebras, and sums, respectively. �

4-5

On the basis of these (and other) operations one may investigate the validity of ‘inequal-
ities’ like HS ≤ SH (meaning that HS(K) ⊆ SH(K) for all classes K of coalgebras). We first
prove that each of the three operations H, S and Σ is a closure operation; in each case the
proof of this observation is straightforward.

Proposition 4.17 Let C be one of the class operations H, S or Σ, and let K and K′ be
arbitrary classes of T -coalgebras. Then we find

1) K ⊆ C(K);

2) K ⊆ K′ implies C(K) ⊆ C(K′);
3) C(C(K)) ⊆ C(K).

In the following proposition we list some relevant inequalities involving class operations.

Proposition 4.18 Let K be an arbitrary class of T -coalgebras. Then we find

1) HS(K) ⊆ SH(K);

2) ΣS(K) = SΣ(K);

3) ΣH(K) ⊆ HΣ(K).

Proof. For part (1), let A be a coalgebra in HS(K). Then there is a coalgebra C in K, and a
coalgebra B, with morphisms e and f such that e : B� C and f : B� A. Now consider the
following push-out diagram in Coalg(T) (cf. Example B.20):

B f // //
��

e
��

A
pA
��

C pC
// P

Since (P, pA, pC) is also the push-out of (B, e, f) in Set, it follows that the maps pA and pC
are, respectively, surjective and injective.8 But then we immediately find that P ∈ H(K) and
A ∈ SH(K), as required.

We leave the proof of part (2) as an exercise for the reader. For part (3), assume that
we have B ∈ ΣH(K). That is, there is a family of algebras {Ai | i ∈ I} in K, and a family
of surjective morphisms {fi : Ai � Bi | i ∈ I} such that B = ΣiAi, with the injections
κi : Bi� B.

Let A be the sum of the coalgebras Ai, with the morphisms λi : Ai � A. Then the
coalgebra B, with the morphisms {κi ◦ fi : Ai → Bi}, is a competitor cone of A, and so there
is a unique morphism f : A→ B such that f ◦ λi = κi ◦ fi, for all i:

Ai
fi // //

��

λi
��

B
κi
��

A
f
// B

8Some justification is needed here.

4-6

It remains to show that f is surjective. For that purpose, take an arbitrary state b ∈ B,
then b must be of the form b = κi(bi) for some bi ∈ Bi. By surjectivity of fi there is a state
a ∈ Ai such that bi = fiai. But then we find that b = κifiai = fλiai, which obviously implies
that b lies in the range of f . So f is surjective indeed. qed

The above results easily lead to the following coalgebraic analog of Tarski’s HSP-theorem
in universal algebra.

Theorem 4.19 Let K be a class of T -coalgebras for some set functor T . Then

Covar(K) = SHΣ(K).

Proof. It is an immediate consequence of the definitions that SHΣ(K) ⊆ Covar(K). For the
opposite inclusion it suffices to show that the class SHΣ(K) is closed under the operations S,
H and Σ(K), but this is rather obvious by the Propositions 4.17 and 4.18. For instance, we
easily verify that Σ(SHΣ(K)) = SΣHΣ(K) ⊆ SHΣΣ(K) = SHΣ(K). qed

4-7

5 Coalgebraic modalities via relation lifting

In this chapter we take an approach to coalgebraic logic which is completely uniform in the
type functor T . We introduce a coalgebraic modality ∇ of which the ‘arity’ is the finitary
version Tω of the functor itself. That is, the set L of formulas will be closed under the following
clause:

if α ∈ TX for some finite set X of formulas, then ∇α is a formula.

whereas the semantics of ∇ will be defined by lifting the satisfaction relation
 between states
and formulas to the relation T (
).

In the special case where T is the powerset functor P , the nabla operator ∇ is known
under the name of the cover modality ; we discuss this case in some detail before moving on
to the more general case.

Convention 5.1 Throughout this chapter we will assume that T is a smooth and standard
set functor; that is, T preserves both weak pullbacks and inclusions. The first restriction
is to ensure optimal behaviour of the relation lifting T , while the second one is mainly for
convenience. In the Facts B.36 and B.39 we list a number of properties of the operation T
(all of which will be used throughout this chapter).

Furthermore, we will assume that Q is an arbitrary but fixed set of proposition letters.

5.1 The cover modality

As we will see now, there is an interesting coalgebraic alternative for the standard formulation
of basic modal logic in terms of boxes and diamonds. This alternative set-up is based on a
connective ∇, sometimes referred to as the cover modality, which turns a (finite) set α of
formulas into a formula ∇α.

Definition 5.2 Formulas of the language ML∇(Q) are given by the following recursive defi-
nition:

a ::= p | ⊥ | ¬a | a0 ∨ a1 | ∇α

where p ∈ Q, and α denotes a finite set of formulas. �

Observe that formulas will be denoted by lower case letters a, b, . . .

For the semantics of the cover modality, observe that we may think of the forcing or
satisfaction relation
 simply as a binary relation between states and formulas. This relation
can thus be lifted to a relation P (
) between sets of formulas and sets of states.

Definition 5.3 The semantics of this modality in a Kripke model S = (S,R, V) is given by

S, s
 ∇α iff (R(s), α) ∈ P (
),

where P (
) denotes the Egli-Milner relation lifting of the relation
. �

5-1

In words: ∇α holds at s iff every successor of s satisfies some formula in α, and every
formula in α holds at some successor of s. The modality ∇ is sometimes called the cover
modality : it holds at a state s if the set {[[a]]S | a ∈ α} covers the collection R(s) of successors
of s, in the sense that R(s) ⊆

⋃
{[[a]]S | a ∈ α}, while at the same time R(s) ∩ [[a]]S 6= ∅, for

every a ∈ α.

Remark 5.4 It is not so hard to see that the cover modality can be defined in the standard
modal language:

∇α ≡ 2
∨
α ∧

∧
3α, (26)

where 3α denotes the set {3a | a ∈ α}. Things start to get interesting once we realize that
both the ordinary diamond 3 and the ordinary box 2 can be expressed in terms of the cover
modality (and the disjunction):

3a ≡ ∇{a,>},
2a ≡ ∇∅ ∨∇{a}. (27)

Here, as always, we use the convention that
∨
∅ = ⊥ and

∧
∅ = >.

Given that ∇ and {3,2} are mutually expressible, we arrive at the following proposition.
Here we say that two languages are effectively equi-expressive if there are effectively definable
truth-preserving translations from one language to the other, and vice versa. Recall that ML
is the language of standard modal logic.

Proposition 5.5 The languages ML and ML∇ are effectively equi-expressive.

A remarkable observation about the cover modality is that we can do far better than
this: based on the following modal distributive law, we can almost completely eliminate the
Boolean connective of conjunction from the language ML∇.

Proposition 5.6 Let α and α′ be two sets of formulas. Then the following two formulas are
equivalent:

∇α ∧∇α′ ≡
∨

Z∈α./α′
∇{a ∧ a′ | (a, a′) ∈ Z}, (28)

where α ./ α′ is the set of all binary relations Z ⊆ α× α′ such that (α, α′) ∈ P (Z).

Proof. For the direction from left to right, suppose that S, s
 ∇α ∧ ∇α′. Let Z ⊆ α × α′
consist of those pairs (a, a′) such that the conjunction a ∧ a′ is true at some successor t of s.
It is then straightforward to verify that Z is full on α and α′, that is: (α, α′) ∈ P (Z), and
that S, s
 ∇{a ∧ a′ | (a, a′) ∈ Z}.

The converse direction is a fairly direct consequence of the definitions. qed

As a corollary of Proposition 5.6 we can restrict the use of conjunction in modal logic
to that of a special conjunction connective • which may only be applied to a propositional
formula and a ∇-formula.

5-2

Definition 5.7 We first define the set CL(Q) of literal conjunctions by the following gram-
mar:

π ::= p | ¬p | ⊥ | > | π ∧ π,

and then let the following grammar define the set DML∇(Q) of disjunctive modal formulas
in Q:

a ::= p | ¬p | ⊥ | > | a0 ∨ a1 | π • ∇α.

Here p ∈ Q, π ∈ CL(Q) and α ∈ PωDML∇(Q). �

As mentioned, the bullet connective is semantically equivalent to conjunction:

S, s
 π • ∇α iff S, s
 π and S, s
 ∇α.

Note however, that this conjunction is special in the sense that it combines ‘local’ information
about s itself with information about the unfolding of s. The point is that this is the only
form of conjunction that the language DML∇ allows.

Theorem 5.8 The languages ML and DML∇ are effectively equi-expressive.

Proof. We will show how to rewrite a formula a ∈ ML into an equivalent formula in DML∇.
Start by rewriting a into negation normal form:

a ::= p | ¬p | ⊥ | > | a0 ∨ a1 | a0 ∧ a1 | 3a | 2a,

then by (27) we can find an equivalent formula a′ in the language given by

a ::= p | ¬p | ⊥ | > | a0 ∨ a1 | a0 ∧ a1 | ∇α.

Finally, the modal distributive law (28) allows us to push down nabla’s to the propositional
level, and so using the propositional distributive law (a ∧ (b0 ∨ b1) ≡ (a ∧ b0) ∨ (a ∧ b1)), we
can rewrite a′ into an equivalent disjunctive modal formula. qed

Theorem 5.8 can be used to prove various interesting results about modal logic, such as
the finite model property, or the decidability of the satisfiability problem — in linear time,
once the formula is in disjunctive normal form. Rather than proving these corollaries here,
we will prove these results in the far more general setting of the coalgebraic cover modality.

5.2 Moss’ coalgebraic cover modality

We will now generalise the cover modality from the case where T = P to the setting where T
is an arbitrary smooth and standard functor. We are eager to keep our language finitary, in
the sense that formulas will be finitary objects, with for instance finitely many subformulas.
For this reason we will work with the finitary version of the functor T .

Recall from Convention 5.1 that T preserves inclusions; because of this we may define its
finitary version Tω : Set→ Set by putting

Tω(S) :=
⋃
{TX | X ⊆ω S},

Tω(f : S → S′) := (Tf)�TωS .

5-3

It is easy to verify that Tω also preserves inclusions; given the definition of Tω on functions,
we may write Tf instead of Tωf without causing confusion. Note, however, that Tω being
finitary does not necessarily mean that TωS is finite, even if S is so; a simple counterexample
is given by the bag functor.

Definition 5.9 Formulas of the language MLT (Q) are given by the following recursive defi-
nition:

a ::= p | ⊥ | ¬a | a0 ∨ a1 | ∇α

where p ∈ Q, and α ∈ Tω(MLT (Q)). We will often write MLT instead of MLT (Q) if the set Q
of proposition letters is either understood or irrelevant. �

The semantics of MLT is defined as follows. Recall that a T -model is a triple (S, σ, V), where
(S, σ) is a T -coalgebra and V : Q→ PS is a valuation.

Definition 5.10 Let S = (S, σ, V) be a T -model. Then by induction on the complexity of
MLT -formulas we define the satisfaction relation
:

S, s
 p iff s ∈ V (p)
S, s
 ⊥ : never
S, s
 ¬a iff S, s 6
 a
S, s
 a0 ∨ a1 iff S, s
 a0 or S, s
 a1

S, s
 ∇α iff (σ(s), α) ∈ T (
).

A formula a ∈ MLT is satisfiable iff a is satisfiable in some state of some T -model, and valid
if its negation is not satisfiable.

Furthermore, we say that two pointed T -models are MLT -equivalent or (modally) equiva-
lent if they satisfy the same MLT -formulas, notation: S, s ≡T S′, s′. �

Remark 5.11 Before we consider the instantiations of this logic for some set functor T , we
argue that the semantics of MLT is well defined. The reader might have some worries about
the inductive clause for the ∇ modality, since the definition refers to the lifting of the full
satisfaction relation.

The point is that because of our assumptions on T , its associated relation lifting T com-
mutes with restrictions, cf. Fact B.39. This means that

(σ(s), α) ∈ T (
) iff (σ(s), α) ∈ T (
�S×X), (29)

where X is any finite set of formulas such that α ∈ TωX. Thus, in order to determine whether
∇α holds at s or not, we only have to know the interpretation of the formulas used in the
justification that ∇α is a formula. Below we shall see that in fact there is a unique set Base(α)
which is the smallest (finite) set X such that α ∈ TX. In other words, we may replace the
‘quasi-inductive’ clause for ∇ in Definition 5.10 with the following, properly inductive one:

S, s
 ∇α iff (σ(s), α) ∈ T (
�S×Base(α)). (30)

5-4

Example 5.12 In this example we look at the interpretation of the coalgebraic cover modal-
ity instantiated for various coalgebra types T . That is, let S = (S, σ, V) be a T -model and
consider an element α ∈ Tω(MLT); below we will explain what it means for the formula ∇α
to hold at s.

(a) In case T = KC is a constant functor, α ∈ T (MLT) = C is just a colour α ∈ C. In
this case we find S, s
 ∇α iff σ(s) = α.

(b) If T = Id is the identity functor, α ∈ T (MLT) = MLT is just a formula. We obtain
the next-time operator of linear temporal logic: S, s
 ∇α iff S, σ(s)
 α.

(c) For the binary tree functor T = Id × Id , the semantics of nabla is as follows: given
α = (a0, a1) ∈ MLT ×MLT = T (MLT), we have S, s
 ∇(a0, a1) iff S, t0
 a0 and S, t1
 a1,
where t0 and t1 are the ‘left’ and ‘right’ successor of s, respectively, given by σ(s) = (t0, t1).

(d) For the automata functor T = 2 × IdC , an element α ∈ T (MLT) is of the form (i, a)
with i ∈ {0, 1} and a = (ac)c∈C , with each ac ∈ MLT . With σ = 〈χ, τ〉 we have S, s
 ∇(i, a)
iff χ(s) = i and S, τ(s)(c)
 ac.

(e) Where T = P is the power set functor, it is easy to verify that ∇P is the cover modality
discussed in the previous section.

Example 5.13 In this example we look at the ∇-logic of the distribution functor D ; the
nabla modality for the bag functor is defined similarly.

First of all, observe that defined as in Example B.6, D does not preserve inclusions. We
can remedy this by taking a variant D′ of D which takes a set S to the collection D′S of partial
maps from S to (0, 1]. We will not pursue this road further, but we may use it to observe
that an element α ∈ Dω(MLD) can be represented as a finite set {(a1, pn), . . . , (an, pn)} such
that pi > 0 for all i, and Σipi = 1.

For the definition of relation lifting D , consider a relation R ⊆ X0 ×X1. We claim that
the relation DR ⊆ DX0×DX1 consists of those pairs (µ0, µ1) for which there is a distribution
ρ : R→ [0, 1] satisfying the ‘magic square conditions’:

for all x0 ∈ X0. µ0(x0) =
∑

y1∈X1
ρ(x0, y1),

and for all x1 ∈ X1. µ1(x1) =
∑

y0∈X0
ρ(y0, x1).

For a concrete example, consider the table below:

a b c d e

1 2 .17 2 .08 .08 .33
2 .10 .03 .12 2 .08 .33
3 2 .00 .18 .12 .04 .34.

.10 .20 .30 .20 .20

Here we have X0 = {a, b, c, d, e}, X1 = {1, 2, 3} and R ⊆ X0 ×X1 consists of those pairs of
which the corresponding entry in the table is marked by a number (that is, not by 2). The
distributions µ0 and µ1 are given, respectively, in the bottom row and rightmost column of
the table. The entries in the table represent a distribution ρ that meets the magic square
conditions.

5-5

Now let S = (S, σ, V) be a D-model, and consider a formula∇α with α = {(a1, pn), . . . , (an, pn)}.
Then we find that

S, s
 ∇α iff there is a relation R ⊆
 and a map ρ : R→ [0, 1] such that

for all i :
∑

{t|S,t
ai}

ρ(t, ai) = pi,

and for all t ∈ S :
∑

{i|S,t
ai}

ρ(t, ai) = σ(s)(t).

5.3 Basic properties of ∇

In this section we prove some of the basic properties of the coalgebraic cover modality. We
start with showing that MLT is a finitary logic indeed, i.e., that every formula has only
finitely many subformulas. The key property of finitary functors that will make this possible
is that for every α ∈ TωA there is a smallest subset A′ ⊆ A that supports α, i.e., is such that
α ∈ TωA′.

Definition 5.14 Given a finitary functor T and an element α ∈ TX, we define

BaseTX(α) :=
⋂
{Y ⊆ω X | α ∈ TY }.

We write BaseT rather than BaseTω , and in fact omit the superscript whenever possible. �

Example 5.15 The following examples are easy to check: BaseId
X : X → PωX is the singleton

map, BasePX : PωX → PωX is the identity map on PωX, BaseId2

X : X × X → PωX maps
the pair (x1, x2) to the set {x1, x2}, and BaseD maps a finitary distribution µ to its support
{s ∈ S | µ(s) > 0}.

Proposition 5.16 Let T : Set→ Set be smooth and standard. Then the following hold:

(1) for any α ∈ TωX, BaseTX(α) is the smallest set supporting α;

(2) BaseT provides a natural transformation Base : Tω →̇ Pω.

Recall that BaseT being a natural transformation means that the following diagram com-
mutes, for any map f : X → Y :

X

f
��

TωX

Tf
��

BaseTX // PωX

Pωf
��

Y TωY
BaseTY

// PωY

(31)

Proof. Part (1) of the Proposition is an immediate consequence of Proposition B.33.

For the second part, consider a map f : X → X ′. We have to show Pωf ◦ BaseX =
BaseX′ ◦ Tωf . Fix α ∈ TωX and write B = BaseX(α) and B′ = BaseX′(Tωf(α)). We need

5-6

to prove B′ = f [B]. For the inclusion ⊆, first note that the following diagram must commute
(recall that hooked arrows denote inclusions):

TωB� _

��

Tωf�B // Tω(f [B])� _

��
TωX

Tωf
// TωX

′

From this it follows that Tωf(α) actually belongs to Tω(f [B]). In other words, f [B] supports
Tωf(α) and, as B′ is by definition the smallest such set, it follows that B′ ⊆ f [B]. •

For the opposite inclusion ⊇, we consider the diagram below. Here 1 denotes some arbi-
trary singleton set, and the arrow α denotes any function from 1 to TωX mapping the unique
element of 1 to α.

1

α

Tωf(α)

((%%
Tω(f−1(B′))� _

��

// Tω(B′)� _

��
TωX

Tωf // TωX
′

But since Tω preserves weak pullbacks, the dotted arrow exists and shows that α ∈ Tω(f−1(B′)).
By minimality of the base, it follows B ⊆ f−1(B′), that is, B′ ⊇ f [B]. qed

By Fact 5.16(1) we may find for any formula ∇α a smallest (and finite) collection X of
formulas such that α ∈ TωX, namely, the set X = Base(α). This means that we can define
a natural notion of subformula.

Definition 5.17 We define the set Sfor(a) of subformulas of a formula a ∈ MLT by the
following induction:

Sfor(a) := {a} if a ∈ {p,⊥}
Sfor(¬a) := {¬a} ∪ Sfor(a)
Sfor(a0 ∨ a1) := {a0 ∨ a1} ∪ Sfor(a0) ∪ Sfor(a1)
Sfor(∇α) := {∇α} ∪

⋃
{Sfor(a) | a ∈ Base(α)}

The elements of Base(α) will be called the immediate subformulas of ∇α. �

The next properties that we consider are invariance and expressivity.

Theorem 5.18 For any smooth and standard functor T , the language MLT is invariant:
Given any two pointed T -models (S, s) and (S′, s′) we have

(S, s) 'T (S′, s′) implies (S, s) ≡T (S′, s′). (32)

5-7

Proof. Given the smoothness of T , it suffices to prove that bisimilarity implies modal
equivalence. Assuming that Z : S ↔ S′, we will prove by induction on the complexity of
MLT -formulas that, for every MLT -formula a:

S, s
 a iff S′, s′
 a, (33)

for every pair of states (s, s′) ∈ Z. Clearly this suffices to prove the proposition.
Skipping the routine parts of the proof (i.e., the base step and boolean cases of the

inductive step), we focus on the case where a = ∇α. We only prove the direction from right
to left of (33).

So, assume that (s, s′) ∈ Z and S′, s′
 ∇α, and let
 ⊆ S ×MLT and
′ ⊆ S′ ×MLT
denote the satisfaction relations on S and S′, respectively. It follows from (s, s′) ∈ Z that
(σ(s), σ′(s′)) ∈ TZ, and from S′, s′
 ∇α that (σ′(s′), α) ∈ T (
′); but from the latter
fact, together with the observation that α ∈ TBase(α), we may derive that (σ′(s′), α) ∈
T (
′�S×Base(α)) (cf. Fact B.39). Putting these observations together with the fact that T
preserves relation composition, we find that

(σ(s), α) ∈ T
(
Z ;
′�S×Base(α)

)
.

But by the inductive hypothesis we obtain that Z ;
′�S′×Base(α) ⊆
. so that it follows by

the monotonicity of relation lifting that (σ(s), α) ∈ T (
). From this it is immediate by the
semantics of ∇ that S, s
 ∇α, as required. qed

As could be expected, the converse of this proposition only holds if we restrict attention
to image-finite coalgebras.

Definition 5.19 A T -coalgebra S = (S, σ) is image-finite if σ(s) ∈ TωS, for all s ∈ S. �

Theorem 5.20 For any smooth and standard functor T , the language MLT is expressive on
the class of image-finite T -models: Given any two pointed Tω-models (S, s) and (S′, s′) we
have

(S, s) ≡T (S′, s′) implies (S, s) 'T (S′, s′). (34)

Proof. It suffices to show that the relation of modal equivalence is itself a bisimulation, when
restricted to the class of image-finite coalgebra models.

Fix two T -models S = (S, σ, V) and S′ = (S′, σ′, V ′), and let ≡ ⊆ S × S′ denote the
relation of modal equivalence between S and S′. (That is, we avoid notational clutter and
write ≡ instead of ≡T .) We will use Theorem 3.8 in order to prove that ≡ is a bisimulation,
and suppose for contradiction that s ≡ s′. Our goal will be to show that

(σs, σ′s′) ∈ T (≡). (35)

First of all, it follows by image-finiteness that we may define the (finite) sets B := Base(σs)
and B′ := Base(σ′s′). Since T commutes with restrictions it suffices to prove that

(σs, σ′s′) ∈ T (≡�B×B′). (36)

5-8

Furthermore, since B and B′ are finite, for every t ∈ B we may find a formula ct such
that, for all t′ ∈ B′,

S′, t′
 ct iff t ≡ t′,

as the reader can easily verify. But with H := {ct | t ∈ B}, we may think of c as a surjection
c : B � H satisfying Gr(c) ⊆
 and

≡�B×B′ = Gr(c) ; (
B′×H)̆ .

From this we may conclude, using various properties of relation lifting, that

T (≡�B×B′) = Gr(Tc) ; (T
B′×H)̆ . (37)

Now let
γ := (Tc)(σs),

then by definition we have (σs, γ) ∈ Gr(Tc). Furthermore, from Gr(c) ⊆
 we derive Gr(Tc) ⊆
T
, so that we find (σs, γ) ∈ T
. This implies that the formula ∇γ is true at s, and since
s ≡ s′, it is also true at s′. By the semantics of the ∇ modality this means that (σs′, γ) ∈ T
.
Using various properties of relation lifting we find that (γ, σs′) ∈ (T
B′×H)̆ . We may then
conclude that (σs, σs′) ∈ Gr(Tc) ; (T
B′×H)̆ , which by (37) suffices to prove (36), and thus
(35). In other words, we are done. qed

The last basic property that we mention is that of satisfiability reduction.

Proposition 5.21 Let ∇α be a formula in MLT . Then ∇α is satisfiable iff every a ∈ Base(α)
is satisfiable.

Proof. For the direction from right to left, assume that every a ∈ Base(α) is satisfiable.
That is, assume that for every a ∈ Base(α) there is a pointed model (Sa, sa), with Sa =
(Sa, σa, Va) and such that S, sa
 a, for each a. We define a new model S = (S, σ, V), where
S := {r}]

⊎
{Sa | a ∈ Base(α)}. For the valuation V we simply define V (p) :=

⋃
a Va(p),

while on an element s ∈ Sa the coalgebra map σ : S → TS is defined by putting σ(s) := σa(s).
For the definition of the unfolding σ(r) of the ‘root’ r, consider the map f : Base(α) → S
given by a 7→ sa, and simply put σ(r) := (Tf)(α). It is then immediate by the definition of
f that (Grf)̆ ⊆
, so that we find, using various properties of relation lifting (cf. Fact B.36
and B.39):

(σr, α) ∈ (Gr(Tf))̆ = T ((Grf)̆) ⊆ T (
),

from which it follows that S, r
 ∇α indeed.

For the opposite direction, we need the following little fact about the functor T :

for any f : A→ B and any α ∈ TA we have (Tf)(α) ∈ T (f [A]). (38)

To see why (38) holds, factorize f as the unique composition f = ι ◦ f ′ of a surjection
f ′ : A � f [A] and an inclusion ι : f [A] ↪→ B. From this factorization it follows that Tf =
(Tι)◦(Tf ′), where f ′ : TA� Tf [A] is surjective since every set functor preserves surjections,

5-9

and Tι : Tf [A] ↪→ TB is an inclusion by assumption on T . From these observations (38) is
easy to derive.

Now assume that ∇α is satisfiable, then there is a T -model S = (S, σ, V) such that
S, s
 ∇α for some state s ∈ S. Then by definition of the semantics of ∇ we have that
(σs, α) ∈ T (
), and so by definition of T there is an object ρ ∈ T (
) such that Tπ0(ρ) = σ(s)
and Tπ1(ρ) = α, where π0 :
 → S and π1 :
 → MLT are the projection functions
on the relation
. But then it follows by (38) that α ∈ T (π1[
]) = T (Ran(
)), so that
Base(α) ⊆ Ran(
). In other words, for every a ∈ Base(α) there is an s ∈ S where a holds.
In particular, this means that every a ∈ Base(α) is satisfiable. qed

5.4 Coalgebraic modal distributive laws

In this section we will formulate three coalgebraic modal distributive laws (CMDLs) describ-
ing the interaction between the coalgebraic modality ∇ on the one hand, and the boolean
operations on the other. For a concise formulation of these principles it will be convenient to
slightly rearrange the coalgebraic modal language, working with the finitary versions

∧
and∨

of the binary connectives for conjunction and disjunction. That is, in this section we will
be working with the following variant of the language.

Definition 5.22 The language LT is given by the following grammar:

a ::= p | ¬a |
∧
A |

∨
A | ∇α

where p ∈ Q, A ∈ PωLT and α ∈ TωLT . �

The semantics of
∧

and
∨

is as expected:

S, s

∧
A iff S, s
 a for all a ∈ A

S, s

∨
A iff S, s
 a for some a ∈ A

In particular, this means that instead of taking > and ⊥ to be primitive symbols, we may
consider them as abbreviations:

> :=
∧
∅

⊥ :=
∨
∅.

A key aspect of the formulation of the CMDLs is the observation that we may think
of the connectives

∧
,
∨

and ¬ as maps of the respective types
∧
,
∨

: PωLT → LT and
¬ : LT → LT . In particular, this perspective allows us to apply the functor T to these
connectives, obtaining maps T

∧
, T
∨

: TωPωLT → TωLT , and T¬ : TωLT → TωLT . Thus, for
any object Φ ∈ TωPωLT we find (T

∨
)Φ ∈ TωLT , which means that ∇(T

∨
)Φ is a well-formed

formula.

Convention 5.23 Since we will be dealing here with formulas and similar objects in various,
closely related sets, incuding Q,LT , TωLT , PωLT , PωTωLT and TωPωLT , it will be convenient
to use some kind of naming convention, see Table 1.

In order to formulate the modal distributive laws we need some auxiliary definitions.

5-10

Set Elements

Q p, q, . . .
LT a, b, . . .
TωLT α, β, . . .
PωLT A,B, . . .
PωTωLT Γ,∆, . . .
TωPωLT Φ,Ψ, . . .

Table 1: Naming convention

Definition 5.24 Given a smooth and standard set functor T , we define, for every set X, a
function λTX : TPX → PTX by putting

λTX(Φ) := {α ∈ TX | (α,Φ) ∈ T (∈X)}, (39)

where ∈X denotes the membership relation ∈, restricted to X × PX. Elements of λTX(Φ)
will be referred to as lifted members of Φ. The family λT = {λTX}X∈Set will be called the
T -transformation.

A set Φ ∈ TPX is a redistribution of a set Γ ∈ PTX if Γ ⊆ λTX(Φ), that is, every
element of Γ is a lifted member of Φ. In case Γ ∈ PωTωX, we call a redistribution Φ slim if
Φ ∈ TωPω(

⋃
γ∈Γ Base(γ)). The set of slim redistributions of Γ is denoted as SRD(Γ). �

Remark 5.25 Properties of T are intimately related to those of λT . In order to express the
connection, we need to introduce the concept of a (categorical) distributive law.

Let T be a covariant set functor. A distributive law of T over a (co- or contravariant)
set functor M is a natural transformation θ : TM → MT ; that is, the following diagram
commutes, for every map f : X → Y :

X

f
��

TMX

TMf
��

θX //MTX

MTf
��

Y TMY
θY //MTY

(In case M is a covariant functor the downward arrows have to be reversed.)
Now observe that we can in fact define the family of functions λT = {λTX}X∈Set as in (39)

for any set function T . If T preserves weak pullbacks, λT = {λTX}X∈Set is a distributive law
of T over the power set functor P .

Definition 5.26 Let T be a smooth and standard set functor which restricts to finite sets.
Consider the following coalgebraic modal distributive laws:

(DL∨) ∇(T
∨

)(Φ) ≡
∨{
∇α | (α,Φ) ∈ T (∈LT)

}
(DL∧)

∧{
∇γ | γ ∈ Γ

}
≡
∨{
∇(T

∧
)(Φ) | Φ ∈ SRD(Γ)

}
(DL¬) ¬∇α ≡

∨{
∇T (

∧
◦ P¬)Ψ | Ψ ∈ TωPωBase(α) and (α,Ψ) 6∈ T (6∈)

}
�

5-11

Note that the restriction to finite sets is needed in order to keep the disjunctions on the
right hand side of the equivalences finite

Proposition 5.27 Let T be a smooth and standard set functor which restricts to finite sets.
All three coalgebraic modal distributive laws are valid.

Proof. In order to understand the validity of these laws, fix some T -model S = (S, σ, V).
We first consider (DL∨), proving the direction from left to right. First observe that for

any A ⊆ω LT we have S, s

∨
A iff S, s
 a, for some a ∈ A. Putting it differently, the

relations
 ; ∈ and
 ;
∨

˘ coincide9. From this it follows that

T (
 ; ∈) = T (
 ;
∨

)̆. (40)

Now fix some object Φ ∈ TωPωL, and suppose that s is a state in S such that s
 ∇(T
∨

)Φ. By
the truth definition, the pair (σ(s), (T

∨
)(Φ)) belongs to the relation T (
), and so (σ(s),Φ)

belongs to (T
);(T
∨

)̆ = T (
 ;
∨

)̆. But then by (40), we find (σ(s),Φ) ∈ T (
 ;∈) = T
 ;T∈.
In other words, there is some object β such that (σ(s), β) ∈ T (
) and (β,Φ) ∈ T (∈). Clearly

then s
 ∇β, and so we have s

∨
{∇β | β T∈ Φ}, as required.

For the validity of (DL∧), we also confine attention to the direction from left to right.
Assume that S, s
 ∇γ for all γ ∈ Γ. We need to come up with some slim redistribution Φ of
Γ such that S, s
 ∇(T

∧
)Φ. For this purpose we associate, with any state t ∈ S, the finite

set

At := {a ∈
⋃
γ∈Γ

Base(γ) | S, t
 a}.

Taking A to be the map A : S → PωLT , we may define Φ := (TA)(σ(s)) ∈ TωPωLT .
First we show that S, s
 ∇(T

∧
)Φ. Observe that by definition of the map A : S → PωLT ,

the function
∧
◦A : S → LT is such that

Gr(
∧
◦A) ⊆
.

From this we obtain

Gr((T
∧

) ◦ (TA)) ⊆ T (
)

by the properties of the operation T . But that means that for every element τ ∈ TS,
we have that

(
τ, ((T

∧
) ◦ (TA))(τ)

)
∈ T
. In particular, we find that (σs, (T

∧
)Φ) =

(σs, (T
∧

)(TA)(σ(s)) ∈ T
, showing that S, s
 ∇(T
∧

)Φ as required.
It is left to prove that Φ is a slim redistribution of Γ. Observe that by definition of the

map A, we have that

Gr(A) ; ∈̆ =
�S×B ,

where B :=
⋃
γ∈Γ Base(γ). From this it follows by the properties of relation lifting that

Gr(TA) ; (T∈)̆ = T (
)�TS×TB .

9Here we write
∨

instead of Gr(
∨

)

5-12

But then for each γ ∈ Γ we may derive from the fact that (σs, γ) ∈ T (
)�TS×TB that there
is some object Ψ such that (σs,Ψ) ∈ Gr(TA) and (Ψ, γ) ∈ (T∈)̆ . It then easily follows that
Ψ = (TA)(σs) = Φ and so (γ,Φ) = (γ,Ψ) ∈ T (∈). In other words, each γ ∈ Γ is a lifted
member of Φ, and so Φ is a redistribution of Γ; but then by its definition it is slim.

Finally, the validity of (DL¬) is left as an exercise to the reader. qed

5.5 Coalgebraic Logic

We will now see that the coalgebraic modal distributive laws that we proved in the previous
section are in fact quite strong principles, with important applications.

We start with the coalgebraic generalisation of the disjunctive normal form result on the
cover modality, Theorem 5.8.

Definition 5.28 We let the following grammar:

a ::= p | ¬p | ⊥ | > | a0 ∨ a1 | π • ∇α.

define the set DMLT (Q) of disjunctive T -modal formulas in Q. �

The proof of the following theorem is completely analogous to that of Theorem 5.8.

Theorem 5.29 Let T be a smooth and standard set functor which restricts to finite sets.
The languages MLT and DMLT are effectively equi-expressive.

For the following result recall that a modal logic (L,
) has the finite model property if
every satisfiable L-formula is satisfiable in a finite model.

Theorem 5.30 Let T be a smooth and standard set functor which restricts to finite sets.
Then MLT has the finite model property.

Proof. By Theorem 5.29 it suffices to prove the finite model property for disjunctive formulas.
We leave it as an exercise for the reader to establish this result — this goes by a straightforward
proof by induction on the complexity of DMLT -formulas, of which the inductive case for the
∇ modality uses the observation underlying the proof of our satisfiability reduction result,
Proposition 5.21. qed

Remark 5.31 Theorem 5.29 can also be used to obtain decidability results for logics MLT .
For instance, it can be proved that the satisfiability problem for the language MLP = ML∇
can be solved in linear time. However, since these results depend on the functor, or more
specifically: on the representation of formulas of the form ∇α, we refrain from going into
detail here.

Remark 5.32 As another corollary of Theorem 5.29 we can show that for any smooth and
standard set functor T which restricts to finite sets, the logic ML has uniform interpolation,
a strong version of Craig’s interpolation property. •

5-13

Finally, we briefly mention a sound and complete derivation system for the set of valid
ML-formulas.

Definition 5.33 Let T be a smooth and standard set functor which restricts to finite sets.
For the derivation system M, we start with fixing an arbitrary sound and complete set of
axioms and rules for classical propositional logic; we extend this with the following derivation
rule:

{a→ b | (a, b) ∈ Z}
∇α→ ∇β

(α, β) ∈ TZ,

together with the one-sided versions of the coalgebraic modal distributive laws:

(A∨) ∇(T
∨

)(Φ)→
∨{
∇α | (α,Φ) ∈ T (∈X)

}
(A∧)

∧{
∇γ | γ ∈ Γ

}
→
∨{
∇(T

∧
)(Φ) | Φ ∈ SRD(Γ)

}
(A¬) ¬∇α→

∨{
∇T (

∧
◦ P¬)Ψ | Ψ ∈ TωPωBase(α) and (α,Ψ) 6∈ T (6∈)

}
�

I Formulate completeness

5-14

6 Coalgebraic modalities via predicate liftings

In this chapter we take an approach to coalgebraic modal logic where the modalities are in 1-1
correspondence with so-called predicate liftings for the functor T . That is, with each set Λ of
such predicate liftings we will associate a modal formalism MLΛ for T -coalgebras. As a result
this set-up is not completely uniform in the coalgebra type T , but it has some advantages
over the approach based on relation lifting. First of all, the language of MLΛ is completely
standard, with a syntax that adds to the language of propositional logic an n-ary modality
♥λ for each n-ary predicate lifting λ ∈ Λ. Second, there is no reason to restrict attention to
functors that are smooth (preserve weak pullbacks). And finally, predicate liftings provide a
uniform framework to many well-known variants of standard modal logic (including monotone
and probabilistic modal logic, which were already mentioned in section 1.5).

Before we introduce the approach in full generality, we briefly discuss a few other concrete
variants of standard modal logic that are covered by the approach.

6.1 Variants of modal logic

Example 6.1 (1) The next-time operator © of linear time logic is perhaps the most simple
example. For its definition, consider models of the form (ω, V), where V : Q → P (ω) is a
valuation on the set ω of natural numbers; the modality © is interpreted as follows:

ω, V, n
 ©ϕ iff ω, V, n+ 1
 ϕ.

Clearly the semantics of this operator can be generalised to arbitrary T -models for the identity
functor T = Id .

(2) Similarly, on the binary tree 2ω we can interpet two modalities ©0 and ©1, with the
following interpretation:

2ω, V, u
 ©iϕ iff 2ω, V, u · i
 ϕ,

where i ∈ {0, 1} and V : Q→ P (2ω) is a valuation on the set of finite words over the alphabet
2 = {0, 1}.

The semantics of these operators can be generalised to arbitrary models for the binary
tree functor T = Id × Id .

(3) Graded modal logic is a version of modal logic that allows statements about the
number of successors that satisfy a certain formula. Formally, interpreted in Kripke models,
the modality 3≥k has the following semantics:

S, n
 3≥kϕ iff s has at least k ϕ-successors,

where a ϕ-successor of s is a state t ∈ R(s) where ϕ holds. If we restrict attention to image-
finite Kripke models, it also makes sense to introduce the following ‘majority modality’ M :

S, n
M(ϕ,ψ) iff s has more ϕ-successors than ψ-successors.

Note that these modalities are not bisimulation invariant if we consider Kripke frames as
coalgebras for the powerset functor. However, as we will see below, we may also see Kripke

6-1

frames as coalgebras for the bag functor B (see the appendix for its definition), and for that
functor both modalities will turn out to be invariant.

As we will see in this section, the common semantic pattern in many of these formalisms
can be captured rather nicely in a coalgebraic framework by the notion of a predicate lifting.

6.2 Modalities via predicate liftings

To introduce the notion of a predicate lifting, we consider the example of probabilistic modal
logic. In Example 1.8 we defined the semantics of the modality 3q (with q a rational number
in [0, 1]) in a model S = (S, σ, V) for the distribution functor D, as follows:

S, s
 3qϕ iff
∑
u∈[[ϕ]]

σ(s)(u) > q, (41)

where we recall that [[ϕ]] denotes the extension of ϕ, i.e., the set [[ϕ]] = {t ∈ S | S, t
 ϕ} of
states in S where ϕ is true. The way that we will be thinking of this definition now is as

S, s
 3qϕ iff σ(s) ∈
{
µ ∈ D(S) |

∑
u∈[[ϕ]]

µ(u) > q
}
, (42)

or, in fact, as

S, s
 3qϕ iff σ(s) ∈ θqS([[ϕ]]), (43)

where θqS : PS → PDS is defined by

θqS : U 7→ {µ ∈ D(S) |
∑
u∈U

µ(u) > q}.

In other words, we may think of the semantics of the modality 3q as being indexed by a
family θq of maps θqS : PS → PDS, where each θqS lifts a predicate on S (i.e., a subset of S)
to a predicate on DS.

Now in principle we may associate a modality with each such family θ. However, as we
will see below, it will make a lot of sense to impose the following uniformity condition on
the family of maps: We will require that, for each map f : S′ → S, the following diagram
commutes:

S′

f
��

PS′
θS′ // PDS′

S PS

P̆ f

OO

θS
// PDS

P̆Df

OO

That is, we will require a ‘proper’ predicate lifting for the distribution functor to be a
natural transformation θ : P̆ →̇ P̆D , where P̆ is the contravariant powerset functor. In
general, for an arbitrary set functor T we introduce the concept of a predicate lifting of some
arbitrary but fixed finite arity, as follows.

6-2

Definition 6.2 A predicate lifting is a natural transformation of the form λ : P̆n →̇ P̆ T , for
some number n ∈ ω which we shall refer to as the arity of λ, notation: n = arλ. �

Recall that the naturality condition on predicate liftings means that the following diagram
commutes, for every function f : S′ → S:

S′

f

��

(PS′)n
λS′ // PTS′

S (PS)n

(P̆ f)n

OO

λS
// PTS

P̆ Tf

OO (44)

The idea now is that with each predicate lifting λ we may associate a modality ♥λ, of the
same arity as λ, and that the semantics of ♥λ in a coalgebra (S, σ) is defined in terms of the
predicate lifting λ itself (and the coalgebra map σ). The logics that we about to introduce
are thus parametrised by a collection of predicate liftings; such collections we shall refer to as
modal signatures.

Definition 6.3 A modal signature for a set functor T is nothing but a set of predicate liftings
for T . Given such a collection Λ, and a set Q of proposition letters, the formulas of the modal
logic MLΛ(Q) are given by the following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ0, . . . , ϕn−1),

where p ∈ Q, and λ is an n-ary predicate lifting for T . �

We will also use the connectives ∧, → and ↔ as the standard abbreviations.

The semantics of the languages MLΛ is defined in a uniform way, with the modality ♥λ
being interpreted ‘by λ itself’.

Definition 6.4 Let S = (S, σ, V) be a T -model for some set functor T . We define the
satisfaction relation
S ⊆ S ×MLΛ(Q) by induction on the complexity of MLΛ(Q)-formulas.
With all other clauses of this definition being standard, we only mention the clause for the
coalgebraic modalities:

S, s
 ♥λ(ϕ0, . . . , ϕn−1) iff σ(s) ∈ λ([[ϕ0]]S, . . . , [[ϕn−1]]S). (45)

The notions of satisfiability, validity, and MLΛ-equivalence are all defined in the obvious way •
(cf. Definition 5.10 for the ∇-logic); the relation of MLΛ-equivalence between formulas will
usually be denoted as ≡Λ rather than as ≡MLΛ

. �

Remark 6.5 A succinct way of defining the semantics of the modality ♥λ (45) is as follows:

[[♥λ(ϕ0, . . . , ϕn−1)]]S := (P̆ σ)
(
λ([[ϕ0]]S, . . . , [[ϕn−1]]S)

)
. (46)

6-3

Example 6.6 (1) The box and diamond modalities of standard modal logic can be seen as
the coalgebraic modalities associated with the unary predicate liftings λ2, λ3 : P̆ →̇ P̆P given
by

λ2S : U 7→ {X ∈ PS | X ⊆ U},
λ3S : U 7→ {X ∈ PS | X ∩ U 6= ∅}.

We quickly verify that λ2 satisfies the naturality condition (44). In order to show that
λ2S′ ◦ P̆ f = (P̆Pf) ◦λ2S , it suffices to show that the following identies hold, for every U ∈ PS:

λ2S′(P̆ f(U)) = {X ′ ∈ PS′ | X ′ ⊆ P̆ f(U)} (definition λ2S′)

= {X ′ ∈ PS′ | fx′ ∈ U, all x′ ∈ X ′} (obvious)

= {X ′ ∈ PS′ | Pf(X ′) ⊆ U} (obvious)

= {X ′ ∈ PS′ | Pf(X ′) ∈ λ2S (U)} (definition λ2S′)

= (P̆Pf)(λ2S (U)). (definition P̆Pf)

(2) In the case of monotone modal logic, the box and diamond modalities are induced by
the following predicate liftings µ2, µ3 : P̆ →̇ P̆M :

µ2S : U 7→ {σ ∈ MS | U ∈ σ},
µ3S : U 7→ {σ ∈ MS | (S \ U) 6∈ σ}.

(3) The next-time operator © of linear temporal logic is obtained from the identity lifting

λ© : P̆ → P̆ :
λ
©
S : U 7→ U.

Example 6.7 Similarly to the case of probabilistic modal logic, for each k ∈ N we can define
a predicate lifting λ≥k : P̆ → P̆B for the bag functor B :

λ≥kS : U 7→ {µ : S → N∞ |
∑
u∈U

µ(u) ≥ k}.

Now consider a Kripke model S = (S, σ, V), with σ : S → PS. We may think of σ as a
coalgebra map σ◦ : S → BS for the functor B , by putting

σ◦(s)(t) :=

{
1 if t ∈ σ(s),
0 if t 6∈ σ(s).

It is then straightforward to verify that for any Kripke model S we have

S, n
 ♥λ≥kϕ iff s has at least k ϕ-successors,

so that we can indeed think of graded modal logic as a coalgebraic logic.
Similarly, the ‘majority modality’ M of Example 6.1(3) can be seen as the coalgebraic

modality that is induced by the binary predicate lifting λM : P̆ 2 →̇ P̆Bω given by

λMS : (U0, U1) 7→ {µ : S → N |
∑
u∈U0

µ(u) >
∑
u∈U1

µ(u)}.

6-4

Remark 6.8 Nullary predicate liftings exist. To unravel their meaning, note that we may
think of any set of the form (PS)0 as a singleton (more precisely, as the singleton consisting
of the unique map !S : 0 → PS, where 0 = ∅ is the empty set). Hence, we may identify a
map λS : (P̆S)0 → P̆ TS with a distinguished element λS(!S) of the set P̆ TS, i.e., a subset of
TS, and the naturality condition states that

(PTf)(λS′(!S′)) = λS(!S),

for any map f : S → S′.
Now suppose that λ is such a nullary predicate lifting, then the nullary modality ♥λ

associated with λ can be seen as a modal constant :

S, σ, s
 ♥λ iff σ(s) ∈ λS(!S).

Below we give two natural examples of this phenomenon.

Example 6.9 A natural example of a nullary modality is the constant
√

that is sometimes
used to indicate that a state in a finite deterministic automaton is accepting. Recall that
these devices are coalgebras for the functor 2× IdC , and consider the nullary predicate lifting
λ
√

: P̆ 0 →̇ P̆ (2× IdC) given by

λ
√

S (!S′) := {(i, f) ∈ 2× SC | i = 1}.

We obtain, for any state s in a deterministic automaton S = (S, σ), that s is accepting iff

σ(s) ∈ λ
√

S (!S), so that we may think of the predicate lifting λ
√

as inducing the modality
√

.

Example 6.10 Let T be a functor, and Q a set of proposition letters. Recall that we may
see a T -model (S, σ, V) over Q as a coalgebra (S, σV) for the functor TQ = KPQ × T , where
σV : S → PQ× TS is defined by putting

σV (s) := (V [(s), σ(s)).

Now fix a proposition letter q ∈ Q, and consider the following nullary predicate lifting λq :
P̆ 0 →̇ P̆ TQ for this functor:

λqS(!S) := {(c, τ) ∈ PQ× TS | q ∈ c}.

Furthermore, observe that the modality associated with this predicate lifting is also nullary,
that is, a constant; its semantics in a TQ-coalgebra (X, ξ) is given by

X, ξ, x
 ♥λq iff q ∈ π0(λqX(!X)).

In particular, this means that if (X, ξ) is of the form (S, σV) for some T -model (S, σ, V), we
obtain that

(S, σ, V), s
 q iff (S, σV), s
 ♥λq . (47)

Based on this equivalence, we may think of proposition letters as modalities associated with
nullary predicate liftings.

6-5

Remark 6.11 Given a set functor T and a set Q of proposition letters, we can now make
the connection explicit between modal languages for T -models over Q on the one hand, and
for TQ-coalgebras on the other.

Based on Example 6.10, we see that there is a 1-1 connection between proposition letters
in Q and nullary predicate liftings for TQ that disect the ‘PQ-part’ c of an arbitrary object
(c, τ) ∈ TQS.

To finish the picture, we now associate with an arbitary n-ary predicate lifting λ : Pn →̇
PT for T , an n-ary predicate lifting λ′ : Pn →̇ PTQ for TQ as follows:

λ′S(X0, . . . , Xn−1) :=
{

(c, τ) ∈ TQ | τ ∈ λS(X0, . . . , Xn−1)
}
.

Then, given a modal signature Λ for T and a set Q of proposition letters, we define the
signature Λ + Q for the functor TQ by putting

Λ + Q := {λ′ |∈ Λ} ∪ {λq | q ∈ Q},

and we leave it for the reader to verify that with this definition, we can see the language
MLΛ(Q) (for T -models over Q) and MLΛ+Q(∅) (for TQ-coalgebras) as notational variants of
one another. In the sequel we will use this observation and use the language MLΛ(Q) for
TQ-coalgebras; in particular, we will always simply write q instead of ♥λq .

6.3 Basic properties of MLΛ

In this subsection we make some first observations about the modal logic of predicate lift-
ings. First we show how the naturality condition (44) implies invariance under behavioural
equivalence.

Theorem 6.12 Let Λ be a modal signature for the set functor T . Then the language MLΛ

is invariant: Given any two pointed T -models (S, s) and (S′, s′) we have

(S, s) 'T (S′, s′) implies (S, s) ≡Λ (S′, s′). (48)

Proof. Given the definition of behavioural equivalence, it suffices to prove that for any
coalgebra morphism f : S → S′, and any state s ∈ S, we have (S, s) ≡Λ (S′, fs). So fix
f : S→ S′; we will show that every formula ϕ ∈ MLΛ(Q) satisfies the following:

S, s
 ϕ iff S′, fs
 ϕ, for all states s ∈ S,

or equivalently,

[[ϕ]]S = (P̆ f)[[ϕ]]S
′
. (49)

We will prove (49) by a straightforward formula induction. Leaving the routine cases as an
exercise to the reader, we focus on the case where ϕ = ♥λ(ψ0, ..., ψn−1). Our proof makes use
of the fact that the diagram below commutes. This should be obvious for the left rectangle,

6-6

witnessing the naturality of λ; observe that the right rectangle is obtained by applying the
(contravariant!) functor P̆ to the diagram indicating that f : S → S′ is a coalgebra morphism.

(PS)n
λS // PTS

P̆ σ // PS

(PS′)n

(P̆ f)n

OO

λS′
// PTS′

P̆ Tf

OO

P̆ σ′ // PS′

P̆ f

OO (50)

Now consider the following calculation:

[[♥λ(. . . , ψi, . . .)]]
S = (P̆ σ)λS(. . . , [[ψi]]

S, . . .) (semantics ♥λ in S, as in (46))

= (P̆ σ)λS(. . . , (P̆ f)[[ψi]]
S′ , . . .) (induction hypothesis)

= (P̆ σ)(P̆ Tf)λS′(. . . , [[ψi]]
S′ , . . .) (naturality of λ, (50) left)

= (P̆ f)(P̆ σ)λS′(. . . , [[ψi]]
S′ , . . .) (f is a morphism, (50) right)

= (P̆ f)[[♥λ(. . . , ψi, . . .)]]
S′ (semantics ♥λ in S′, as in (46))

showing that (49) holds for ϕ = ♥λ(ψ0, ..., ψn−1) indeed. qed

Concerning the property of expressiveness, we find that a general result can be obtained
if we put some constraints on the signature Λ.

Definition 6.13 Let Λ be a modal signature for a set functor T . We say that Λ is separating
for T , if for all sets S and all pairs of distinct objects σ0, σ1 ∈ TS there is a λ ∈ Λ and a tuple
(A0, . . . , An−1) such that exactly one of the two objects σi belongs to the set λS(A0, . . . , An−1).
�

Example 6.14 (1) The box relation lifting λ2 is separating on its own, for the powerset
functor P . To see this, consider two subsets X,Y ∈ PS. If X and Y are distinct, suppose
without loss of generality that Y 6⊆ X, so that Y 6∈ λ2(X) = {U ∈ PS | U ⊆ X}.

(2) The predicate liftings associated with the graded modalities are jointly separating. To
see this, consider two bags β0, β1 : S → N∞ over some set S. If β0 and β1 are distinct, then
we must have β0(s) 6= β1(s), for some s ∈ S. Without loss of generality we may assume
that β0(s) < β1(s), so that in particular, β0(s) belongs to N, say, β0(s) = m. Recall that
λm+1
S ({s}) = {β ∈ BS | β(s) ≥ m+ 1}, so that we find β0 6∈ λm+1

S ({s}) but β1 ∈ λm+1
S ({s}).

Theorem 6.15 Let Λ be a separating modal signature for the set functor T . Then the lan-
guage MLΛ is expressive on the class of image-finite T -coalgebras: Given any two pointed
Tω-models (S, s) and (S′, s′) we have

(S, s) ≡Λ (S′, s′) implies (S, s) 'T (S′, s′). (51)

Proof. For notational simplicity we will confine ourselves to a setting where all predicate
liftings in Λ are unary, leaving the (routine) generalisation to an arbitrary signature as an

6-7

exercise. It will also be convenient to assume that T preserves inclusions. Furthermore, we
will only treat the special case where the coalgebras S and S′ coincide (i.e., S = S′); the general
case, where the two coalgebras are distinct, can easily be reduced to this by considering their
disjoint union.

So let Λ be a separating set of unary predicate liftings for some set functor T , and let
S = (S, σ, V) be an image-finite T -model, that is, σ : S → TωS. To avoid notational clutter
we will simply write ≡ for the equivalence relation ≡Λ.

Our aim is prove that s0 ≡ s1 implies s0 ' s1, for all s0, s1 ∈ S. Clearly then it suffices
to show that the relation ≡ is contained in the kernel of some coalgebra morphism. We will
show that in fact we may define coalgebra structure σ : S → TS on the set S of ≡-cells in
such a way that the quotient map q : S → S becomes a coalgebra morphism:

S

σ

��

q // S

σ
��

TS
Tq
// TS

Now suppose that we can show that

q(s0) = q(s1) implies (Tq)(σs0) = (Tq)(σs1), (52)

then putting
σ(s) := (Tq)(σs)

would give a correctly defined map, for which the quotient map q is trivially a coalgebra
morphism.

That is, we have reduced our problem to finding a proof for (52), and to this aim we
reason by contraposition: Assuming that

(Tq)(σs0) 6= (Tq)(σs1), (53)

we will show that q(s0) 6= q(s1) (that is, s0 6≡Λ s1). It follows by separation from (53) that
there is some λ ∈ Λ and some A ⊆ S such that (without loss of generality) we have

(Tq)(σs0) ∈ λS(A), but (Tq)(σs1) 6∈ λS(A). (54)

Our purpose is now is find a formula witnessing this, in the sense that this formula holds at
s0 but not at s1: this would show indeed that s0 6≡ s1, and so q(s0) 6= q(s1). Note that A ⊆ S
simply means that A is a collection of equivalence classes.

Now if we would have
⋃
A = [[ϕ]] we would be done immediately since in this case we could

prove that S, s0
 ♥λϕ while S, s1 6
 ♥λϕ. To see this, note that we have si
 ♥λϕ iff σ(si) ∈
λS([[ϕ]]) and that

⋃
A = [[ϕ]] implies λS([[ϕ]]) = λS(

⋃
A) = λS(P̆ q(A)) = (P̆ T q)(λS(A)),

where the last identity is by naturality of λ. It is thus immediate by (54) that σs0 ∈ λS([[ϕ]])
but σs1 6∈ λS([[ϕ]]), as required.

In the general case we need to work harder. But since S is a Tω-coalgebra, and T preserves
inclusions, there is a finite subset X ⊆ S such that both σs0 and σs1 belong to the set TX.

6-8

We leave it for the reader to verify that there is a formula ϕ ∈ MLΛ that characterizes, within
X, the union

⋃
A, in the sense that

for all x ∈ X : S, x
 ϕ iff x ∈
⋃
A,

or equivalently, since x ∈
⋃
A is another way of saying that q(x) ∈ A:

X ∩ [[ϕ]] = X ∩ (P̆ q)A. (55)

We now claim that, for this formula ϕ, we have

S, s0
 ♥λϕ but S, s1 6
 ♥λϕ. (56)

To prove this, we first observe that by the semantics of ♥λ we have that S, si
 ♥λϕ iff
σ(si) ∈ λS([[ϕ]]), while it follows from (54) that σ(s0) ∈ (P̆ T q)λS(A) but σ(s1) 6∈ (P̆ T q)λS(A).
Hence, because both σ(s0) and σ(s1) belong to TX, it suffices to show that

TX ∩ (P̆ T q)λS(A) = TX ∩ λS [[ϕ]]. (57)

We will establish this by chasing the diagram below, where we use a trick to interpret the
intersection with X in (55) and with TX in (57) using the inclusion map ι : X ↪→ S. That
is, we observe that P̆ ι : PS → PX is given by U 7→ X ∩ U ; as a consequence another way of
formulating (55) is:

(P̆ ι)([[ϕ]]) = (P̆ ι)(P̆ q)(A). (58)

Similarly, since T preserves inclusions we have that Tι : TX → TS is the inclusion map
witnessing that TX ⊆ TS, and so P̆ T ι : PTS → PTX is given by Σ 7→ (TX) ∩ Σ.

S PS

P̆ q
��

λS // PTS

P̆ T q
��

S

q

OO

PS

P̆ ι
��

λS // PTS

P̆ T ι
��

X

ι

OO

PX
λX // PTX

TX ∩ (P̆ T q)λS(A)

= (P̆ T ι)(P̆ T q)λS(A) (just discussed)

= λX(P̆ ι)(P̆ q)(A) (naturality of λ)

= λX(P̆ ι)([[ϕ]]) (see (58))

= (P̆ T ι)λS([[ϕ]]) (naturality of λ)

= TX ∩ λS [[ϕ]] (just discussed)

This proves (57), and therefore (56). That is, we have shown that s0 6≡ s1, on the assumption
that (Tq)(σs0) 6= (Tq)(σs1). This means that (52) holds, and as we argued already, this
suffices to prove the Theorem. qed

•

6.4 Finite model property

In this subsection we will show that the coalgebraic modal logic MLΛ has the (strong) finite
model property. That is, we will show that any satisfiable MLΛ-formula ϕ can in fact be
satisfied in a finite coalgebra of which the size (number of states) is exponentially bounded
by the size of ϕ. We will prove this result by adapting the method of filtration, which is well
known in the theory of standard modal logic, to the more general coalgebraic setting.

First we need some preliminary definitions.

6-9

Definition 6.16 The collection Sfor(ϕ) of subformulas of a MLΛ-formula ϕ is defined in the
standard way. The size |ϕ| of a ϕ is defined as its number of subformulas: |ϕ| := |Sfor(ϕ)|.

A set of formulas Σ is called subformula-closed if it is closed under taking subformulas,
that is, if Sfor(ϕ) ⊆ Σ for all ϕ ∈ Σ. �

The idea behind the method of filtration is fairly simple: given a subformula-closed set Σ
and a T -model S = (S, σ, V), define on S a suitable equivalence relation ≡Σ of finite index,
build a new T -model S on the finite set of ≡Σ-cells, and show that any state s ∈ S satisfies
the same formulas in S as its cell s does in the filtrated model S.

Definition 6.17 Let Σ be a finite, subformula closed set of formulas in MLΛ(Q), and let
S = (S, σ, V) be a T -model. We define ≡Σ ⊆ S × S as the equivalence relation given by

s ≡Σ t iff for all ϕ ∈ Σ : S, s
 ϕ ⇐⇒ S, t
 ϕ,

and denote the ≡Σ-cell of a state s as s. We also let S := {s | s ∈ S} denote the set of cells,
and let q : s 7→ s denote the quotient map q : S → S. �

In order to define a coalgebra map σ : S → TS, we may pick any choice function c : S → S,
and define σ := Tq ◦ σ ◦ c, cf. the diagram below:

S
q
55

σ

��

S
c

uu

σ
��

TS
Tq
// TS

Here we call c : S → S a choice function if c picks an element from each ≡Σ-cell; in other
words, we require that q ◦ c = idS and ker(c ◦ q) ⊆ ≡Σ.

Note that while the ‘outer’ rectangle of the above diagram commutes by definition, the
‘inner’ one need not commute: it will generally not be possible to define a coalgebra map on
S for which the quotient map q is a coalgebra morphism. Fortunately, for our purposes we
don’t need such a coalgebra morphism.

Definition 6.18 Let Σ be a finite, subformula closed set of formulas in MLΛ(Q), and let
S = (S, σ, V) be a T -model. A Σ-filtration of S is any T -model S = (S, σ, V) such that
(1) S = S/≡Σ is the class of ≡Σ-cells,
(2) σ = Tq ◦ σ ◦ c for some choice function c : S → S, and
(3) V (q) = {s | s ∈ V (q)} for q ∈ Σ ∩ Q. �

Observe that filtrations are not unique, they depend in particular on the choice of the
choice function c.

We can now prove the following Filtration Lemma.

Theorem 6.19 (Filtration Lemma) Let Λ be a modal signature for a set functor T , and
let Σ ⊆ MLΛ be a finite subformula-closed set of formulas. Furthermore, let S = (S, σ, V) be
a T -model, and let S = (S, σ, V) be a Σ-filtration of S. Then for all formulas ϕ ∈ Σ we have

S, s
 ϕ iff S, s
 ϕ, for all states s ∈ S. (59)

6-10

Proof. First note that since s ≡ c(s) for all s ∈ S, the statement (59) is equivalent to

[[ϕ]]S = (P̆ c)[[ϕ]]S, (60)

for all formulas ϕ ∈ Σ. It therefore suffices to prove (60), and we will do so by a straightforward
formula induction.

Second, note as well that the statement (59) is also equivalent to

[[ϕ]]S = (P̆ q)[[ϕ]]S, (61)

in fact for all formulas. This means that we may use (61) as the inductive hypothesis in our
inductive proof.

Turning to the actual inductive proof of (60), we only consider the inductive step where
ϕ = ♥λ(ψ0, . . . , ψn−1), and for notational simplicity we confine ourselves to the case where λ
is unary, i.e, ϕ = ♥λψ for some formula ψ to which the inductive hypothesis applies. Now
consider the following diagram:

PS

P̆ q
��

λS // PTS

P̆ T q
��

P̆ σ // PS

PS
λS
// PTS

P̆ σ

// PS

P̆ c

VV (62)

[[♥λψ]]S = (P̆ σ)λS([[ψ]]S) (semantics of ♥λ)

= (P̆ c)(P̆ σ)(P̆ T q)λS([[ψ]]S) (definition σ)

= (P̆ c)(P̆ σ)λS(P̆ q)([[ψ]]S) (naturality of λ)

= (P̆ c)(P̆ σ)λS([[ψ]]S) (induction hypothesis (61))

= (P̆ c)[[♥λψ]]S (semantics of ♥λ)

In other words, we have established (60) for ϕ = ♥λψ, as required. qed

Corollary 6.20 (Strong Finite Model Property) Let ϕ be a formula in MLΛ, where Λ
is a modal signature for a set functor T . If ϕ is satisfiable in some T -model, then it is
satisfiable in a finite T -model (S, σ, V) such that |S| ≤ 2|ϕ|.

Proof. Fix an MLΛ-formula ϕ, and let Σ := Sfor(ϕ). It follows by the filtration lemma that
ϕ, if satisfiable in some pointed T -model (S, s), also holds at the state s, in any filtration S of
S. This proves the theorem, since it easily follows from the definion of the relation ≡Σ that
|S| ≤ |PΣ| = 2|ϕ|. qed

6.5 Predicate liftings as coalgebra type changers

This short section presents a slightly different perspective in which predicate liftings pro-
vide natural ways to transform T -coalgebras to neighbourhood frames. We first consider a
simplified version, in which T -coalgebras are transformed to Kripke frames.

6-11

Example 6.21 Define a natural relation for T to be a natural transformation µ : T →̇ P .
Given such a natural relation µ : T →̇ P , we can transform a T -coalgebra S = (S, σ)

into a Kripke frame Sµ := (S, µS ◦ σ). By naturality of µ, any T -homomorphism f : S → S′
is also a bounded morphism f : Sµ → (S′)µ. To check this, one may easily verify that
Pf ◦ (µS ◦ σ) = (µS′ ◦ σ′) ◦ f by chasing the diagram below:

S

f
��

σ // TS

Tf
��

µS // PS

Pf
��

S′
σ′ // TS′

µS′ // PS′

Connecting this to logic, with any natural relation µ we may associate a modality 〈µ〉 for
T -coalgebras, with the following interpretation:

S, s
 〈µ〉ϕ iff [[ϕ]]S ∩ µSσ(s) 6= ∅.

As an example, recall from Fact 5.16(2) that for smooth and standard functors T , we have a
natural transformation BaseT : Tω →̇ Pω. Hence, we may take the Base operation as a way to
transform Tω-coalgebras into Pω-coalgebras, that is, image-finite Kripke frames. Naturality
ensures that every morphism between T -coalgebras is also a bounded morphism between the
underlying Kripke frames.

As we will see now, predicate liftings can be seen as generalisations of this phenomenon,
where we move from Kripke frames to the more general setting of neighbourhood frames. For
this general setting we introduce the transpose of a predicate lifting, cf. Definition A.4. This
notion is based on the correspondence between maps A→ PB and maps B → PA — we have
seen this correspondence already in the coalgebraic presentation of a valuation V : Q → PS
as a colouring V [: S → PQ.

Definition 6.22 Given a map α : A → PB we define its transposed map α[: B → PA by
putting α[(b) := {a ∈ A | b ∈ α(a)}.

Extending this definition, given an n-ary predicate lifting for the set functor T , we define
its transpose λ[as the set-indexed family of maps

λ[S : TS → P (Pn(S))

given by λ[S(σ) := (λS)[(σ). �

By the naturality of predicate liftings we obtain the following proposition, which shows
that predicate liftings indeed generalise the natural relations of Example 6.21.

Proposition 6.23 If λ : Pn →̇ PT then λ[is a natural transformation

λ[: T →̇ P̆ ◦ P̆n.

It follows from this proposition that any predicate lifting λ induces a transformation of
T -coalgebras to n-ary neighbourhood frames. We confine attention to the unary case.

6-12

Definition 6.24 Let λ : P̆ →̇ P̆ T be a unary predicate lifting for the set functor T . Given
a T -coalgebra S = (S, σ), we let Sλ denote the neighbourhood frame Sλ := (S, λ[◦ σ); given
a function f : S → S′ we define fλ := f . �

The following proposition is easy to verify.

Proposition 6.25 Let λ : P̆ →̇ P̆ T be a unary predicate lifting for the set functor T . Then
the construction (·)λ is a functor from the category of T -coalgebras to the category of neigh-
bourhood frames (N -coalgebras).

The following proposition, which is easy to verify, provides a slightly different perspective
on the concept of separation.

Proposition 6.26 Let Λ be a modal signature for a set functor T . Then Λ is separating iff,
for every set S, the collection (λ[S)λ∈Λ of transposed functions is jointly injective (i.e., for any
pair of distinct objects τ0, τ1 ∈ TS there is a λ ∈ Λ such that λ[S(τ0) 6= λ[S(τ1)).

6.6 Predicate liftings and the Yoneda lemma

In the final subsection of this chapter we take a slightly different perspective on the modalities
that are given by predicate liftings, seeing them as describing certain admissible patterns. This
perspective will also reveal how many predicate liftings of each different arity there are.

The key observation here is that there is a natural bijection between PS (subsets of S)
and 2S (characteristic functions on S).

Definition 6.27 Given a subset X ⊆ S, we define the characteristic function of X as the
map χSX : S → 2 given by

χSX(s) :=

{
1 if s ∈ X
0 if s 6∈ X.

In case S is understood, we may drop the superscript ‘S’. Conversely, given a map χ : S → 2,
we shall call χ−1(1) ∈ PS the subset determined by χ. �

Remark 6.28 This correspondence reaches far enough for us to think of the contravariant
power set functor as the functor 2− that associates with a set S the collection 2S of functions
from S to 2 = {0, 1}, and with an arrow f : S′ → S the ‘precomposition map’ that assigns to
an arbitrary characteristic function χ : S → 2 the function χ ◦ f : S′ → 2.

From this point of view, a unary predicate lifting is a way of transforming arrows S → 2
into arrows TS → 2. In particular, any arrow γ : T2→ 2 (that is, any characteristic function
χΓ corresponding to a subset Γ ⊆ T2), induces a unary predicate lifting: Given an arrow
χ : S → 2, simply consider the arrow γ ◦ Tχ, as in the diagram below:

S
χ // 2

TS
Tχ //

γ◦Tχ

&&
T2

γ // 2

6-13

Formulated in terms of subsets rather than characteristic functions, we arrive at the following
definition.

Definition 6.29 Given an object Γ ⊆ T2, let Γ̂ be the following set-indexed family of oper-
ations. For a set S, we define

Γ̂S : PS → PTS,

by putting, for any X ⊆ S:

Γ̂S(X) := {σ ∈ TS | (TχSX)(σ) ∈ Γ},

where χSX : S → 2 is the characteristics map associated with X. Where Γ̂ is a predicate
lifting, we shall denote its associated modality as ♥Γ rather than as ♥

Γ̂
. �

Remark 6.30 Taking a glance at the modalities that are induced by subsets of the set T2, we
consider the interpretation of the formula ♥Γϕ in the T -model S = (S, σ, V). If we represent
the set [[ϕ]] with its characteristic function χS[[ϕ]], applying the functor T to this arrow we
obtain

TS
TχS

[[ϕ]] // T2 .

Now think of the elements of T2 as ‘T -patterns’, then the above arrow associates a T -pattern
with each object τ ∈ TS. We can say that the formula ♥Γϕ holds at s if the pattern(
TχS[[ϕ]]

)
(σ(s)) associated with σ(s) ∈ TS is admissible, i.e., belongs to the set Γ, or, equiva-

lently, that
(
χT2

Γ ◦ TχS[[ϕ]]

)
(σ(s)) = 1.

Example 6.31 As an example, consider the binary tree functor Id × Id . The set T2
consists of four patterns: T2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. As an example, take the set
Γ = {(0, 0), (1, 1)}; it is not hard to see that it induces the predicate lifting Γ̂ : P̆ →̇ P̆◦(Id×Id)
given by

Γ̂S(X) := X ×X ∪ (S \X)× (S \X).

The associated modality ♥Γ has the following semantics:

S, s
 ♥Γϕ iff the two successors of s either both satisfy or both falsify ϕ.

Proposition 6.32 For any Γ ⊆ T2, the collection Γ̂ of maps constitutes a predicate lifting
Γ̂ : P̆ →̇ P̆ T .

Proof. Given a map f : S′ → S, we need to check that the following diagram commutes:

S′

f
��

PS′
Γ̂S′ // PTS′

S PS

P̆ f

OO

Γ̂S

// PTS

P̆ Tf

OO

6-14

This follows by the following chain of identities, for an arbitrary subset X ⊆ S:

(Γ̂S′ ◦ P̆ f)(X) = Γ̂S′(P̆ f(X)) (obvious)

= {σ′ ∈ TS′ | (TχS′
P̆ f(X)

)(σ′) ∈ Γ} (definition Γ̂S′)

= {σ′ ∈ TS′ | (T (χSX ◦ f))(σ′) ∈ Γ} (*)

= {σ′ ∈ TS′ | (TχSX)((Tf)(σ′)) ∈ Γ} (functoriality of T)

= {σ′ ∈ TS′ | (Tf)(σ′) ∈ Γ̂S(X)} (definition Γ̂S)

= (P̆ Tf)(Γ̂S(X)) (definition P̆ Tf)

= (P̆ Tf ◦ Γ̂S)(X) (obvious)

Here the identity (*) is immediate by the observation that

χSX ◦ f = χS
′

P̆ f(X)

as is revealed by a straightforward verification, for an arbitrary element s′ ∈ S′: χSX ◦f(s′) = 1

iff f(s′) ∈ X iff s′ ∈ f−1(X) = (P̆ f)(X) iff χS
′

P̆ f(X)
(s′) = 1. qed

Interestingly, we may prove that all unary predicate liftings are of this form, and this
result generalises to predicate liftings of arbitrary arity. This is the main content of the
following theorem, which is in fact the instantiation of the well-known Yoneda Lemma to the
setting of predicate liftings.

Theorem 6.33 For any set functor T there is a natural bijection between the set of n-ary
predicate liftings for T and the power set of T (Pn).

The key observations underlying the proof of this theorem are the natural correspondences

(PS)n ∼ (2S)n ∼ (2n)S ∼ (Pn)S

between n-tuples of subsets of S, n-tuples of characteristic functions, maps from S to 2n, and
maps from S to Pn.

Proof. We confine the proof of this result to providing an n-ary predicate lifting for each
subset of TPn, and vice versa.

So let Γ ⊆ T (Pn) be a set of admissible n-ary T -patterns. The associated predicate
lifting Γ̂ : P →̇ PT is obtained by a straightforward generalisation of Definition 6.29. For the
details, take an arbitrary tuple X = (X0, . . . , Xn−1) ∈ (PS)n of subsets of S, and represent
this tuple as the map χX := (χ0, . . . , χn−1) of associated characteristic functions, then we
have χX : S → 2n, and so TχX : TS → T (2n). Now put

Γ̂S(X0, . . . , Xn−1) := {τ ∈ TS | (TχX)(τ) ∈ Γ}.

We leave it for the reader to verify that this collection of maps indeed provides a natural
transformation Γ̂ : P̆n → P̆ T .

6-15

For the opposite direction, let λ : P̆n →̇ P̆ T be an n-ary predicate lifting. Our aim is to
find a subset Θλ ⊆ T (2n) such that λ = Θ̂λ.

The easiest way to proceed is by thinking of λS as a way to transform arrows S → 2n into
arrows TS → 2, that is, λS : (2n)S → 2TS . To find the object Θλ, we take a special set S, viz.,
the set 2n itself, and, as input for λ, a special arrow, viz., the identity arrow id2n : 2n → 2n.
Then we let Θλ ⊆ T (2n) be the subset of T (2n) that is determined by the image of this arrow
id2n under λ.

If we think of λ as a set-indexed family of maps λS : (PS)n → PTS, we may define

Θλ := λ(U),

where U is the distinguished element of the set Pn(Pn) corresponding to the identity map
id2n , that is, U = (U0, . . . ,Un−1) with

Ui := {U ⊆ n | i ∈ U}.

As mentioned, we leave it for the reader to verify that the maps just defined are each
other’s inverse, i.e., that λ = Θ̂λ for all predicate liftings λ, and that Γ = Θ

Γ̂
for all Γ ∈ PTn,

some n ∈ ω. qed

6-16

A Appendix: Basic mathematical definitions

In this second appendix we fix notation and terminology for some basic mathematical con-
cepts. First we consider sets, functions and relations.

A binary relation between two sets X and Y is nothing but a set R ⊆ X×Y of pairs from
X and Y , respectively.

Definition A.1 Let f : X → Y be a function. We let Grf := {(x, y) ∈ X × Y | y = fx}
denote the graph of f , and define f [X] := {fx | x ∈ X}. �

Definition A.2 Given a relation R ⊆ X×Y , we denote the domain Dom(R) ⊆ X and range
Ran(R) ⊆ Y of R by the followings sets:

Dom(R) := {x ∈ X | (x, y) ∈ R for some y ∈ Y }
Ran(R) := {y ∈ Y | (x, y) ∈ R for some x ∈ X},

respectively, and we denote by πR0 : R→ X and πR1 : R→ Y the projection maps associated
with R. Given subsets X ′ ⊆ X, Y ′ ⊆ Y , the restriction of R to X ′ and Y ′ is given as

R�X′×Y ′ := R ∩ (X ′ × Y ′).

The converse of R is defined as the relation R˘⊆ Y ×X given by

R˘ := {(y, x) ∈ Y ×X | (x, y) ∈ R}.

The composition of two relations R ⊆ X×Y and R′ ⊆ Y ×Z is denoted by R ;R′ and defined
as

R ;R′ := {(x, z) ∈ X × Z | (x, y) ∈ R and (y, z) ∈ R′, for some y ∈ Y }.

Finally, we let
∆X := {(x, x) ∈ X ×X | x ∈ X}

denote the diagonal relation on a set X. �

Proposition A.3 The transformations below constitute a bijection between the set P (X×Y)
of binary relations between X and Y and the collection (PY)X of maps from X to the power
set of Y :
• given R ⊆ X × Y consider FR : X → PY given by FR(x) := {y ∈ Y | (x, y) ∈ R};
• given F : X → PY , define RF ⊆ X × Y as RF := {(x, y) ∈ X × Y | y ∈ F (x)}.

Related to this, and to the operation of taking the converse of a binary relation, is the
following.

Definition A.4 Given a map F : X → PY , we define the map F [: Y → PX by putting,

F [(y) := {x ∈ X | y ∈ F (x)},

and we call F [the transpose of F . �

A-1

Note that the relations associated with, respectively, a map F : X → P , and its transpose
F [: Y → P are in fact each other’s converse. Observe as well that we have F = (F [)[, for
every map F : X → PY .

Example A.5 In case Q is a set of proposition letters or variables and S is some set of states,
we tend to think of a map from Q to PS as a valuation, and of its transpose F [: S → PQ as
its associated colouring or marking.

Definition A.6 A relational structure or graph is a pair S = (S,R) such that R is a binary
relation on S, that is, a set R ⊆ S×S of S-pairs. In the line of Proposition A.3 we will often
think of such a relation R as a map R : S → PS given by

R(s) := {t ∈ S | (s, t) ∈ R}.

Elements of the set R(s) will be called R-successors of s. �

Definition A.7 Fix a relational structure S = (S,R). A path in S is a sequence π = (ti)0≤i<κ,
where κ is either finite or equal to ω, and we have ti+1 ∈ R(ti) for all i such that 0 ≤ i < κ.
The length of π = (ti)0≤i<κ is defined as |π| := κ, and we call π proper if κ > 0, finite
if 0 ≤ κ < ω, and infinite if κ = ω. We define first(π) := t0, and, provided π is finite,
last(π) := tκ−1. If π is finite we say it is a path from first(π) to last(π). �

Definition A.8 A tree is a structure T = (T,C, r) such that C is a binary relation on T ;
and r is the root of the tree, that is, r is an element of T , such that for every node t ∈ T
there is exactly one path from r to t.

Elements of trees are usually referred to as nodes. A leaf of T is a node t ∈ T such that
C(t) = ∅; nodes that are not leaves are called inner nodes. If we have t ∈ C(s) we say that
t is a child of s, and, vice versa, that s is the (unique) parent of t; distinct children of a node
are called siblings.

A tree is finitely branching if C(t) is finite, for all nodes t; and well founded if it has no
infinite paths. �

It is not hard to prove that the root of a tree is completely determined by its relational
structure; that is, we have r = r′ if both (T,C, r) and (T,C, r′) are trees. For this reason we
sometimes represent a tree (T,C, r) simply as the pair (T,C).

A-2

B Appendix: The Category Set and its Functors

The theory of coalgebra is categorical in nature. In this appendix we summarize the back-
ground knowledge on category theory that is required for understanding the notes; we place
a special emphasis on the category Set of sets and functions, since this is the base category
of most of the coalgebras that we consider.

For a proper introduction to category theory, the reader is referred to standard text-
books such as Mac Lane’s Categories for the Working Mathematician, or Awodey’s Category
Theory13 on which we based parts of this appendix.

B.1 Categories, functors and natural transformations

Definition B.1 A category C consists of a class Ob(C) of objects, and for each pair of objects
A,B, a family C(A,B) of arrows. If f belongs to the latter set, we write f : A→ B, and call
A the domain and B the codomain of the arrow. The collection of arrows is endowed with
some algebraic structure: for every object A of C there is an identity arrow idA : A→ A, and
every pair f : A→ B, g : B → C can be uniquely composed to an arrow g ◦f : A→ C. These
operations are supposed to satisfy the associative law for composition, while the appropriate
identity arrows are left- and right neutral elements. �

An arrow f : A→ B is an iso if it has an inverse, that is, an arrow g : B → A such that
f ◦ g = idB and g ◦ f = idA.

Example B.2 (a) We let Set denote the category with sets as objects and functions as
arrows, with identity arrows and the composition of two arrows defined in the familiar way.

(b) The category Rel has the same objects as Set, but for the set of arrows Rel(S′, S) we
take the collections of all binary relations between S′ and S, with the identity arrows and the
composition of two arrows defined in the obvious way.

(c) The opposite category Cop of a given category C has the same objects as C, while
Cop(A,B) = C(B,A) for all objects A,B from C, and the operations on arrows are defined in
the obvious way.

Definition B.3 A functor F : C → D from a category C to a category D consists of an
operation mapping objects and arrows of C to objects and arrows of D, respectively, in such
a way that Ff : FA → FB if f : A → B, F (idA) = idFA and F (g ◦ f) = (Fg) ◦ (Ff) for
all objects and arrows involved. A functor F : C → Dop is sometimes called a contravariant
functor from C to D. An endofunctor on C is a functor F : C→ C. �

Definition B.4 Let F,G : C → D be two functors. A natural transformation α : F →̇ G
consists of a family of maps αA : FA → GA, indexed by the collection of objects of C, such
that Gf ◦ αA = αB ◦ Ff , for every arrow f : A→ B in C. In a diagram:

A

f
��

FA

Ff
��

αA // GA

Gf
��

B FB αB
// GB

(76)

13S. Awodey, Category Theory (2nd edition), Oxford University Press, 2010.

B-1

�

B.2 Set functors

Definition B.5 A set functor is a (covariant) endofunctor T on the category Set. �

Below we give some examples of set functors and of operations on set functors.

Example B.6 (a) Given a set C, we let KC denote the constant functor which maps every
set S to the set C, and every map f : S → S′ to the identity map on C. The functor KC is
often simply denoted as C.

(b) The identity functor Id is the set functor that maps every object to itself, and similarly
maps every arrow to itself.

(c) The powerset functor P maps any set S to its power set PS, and any function f : S →
S′ to the direct image map Pf : PS → PS′ given by Pf : A 7→ {fx | x ∈ X}. The finitary
power set functor Pω is defined similarly, with the difference that PωS only takes the finite
subsets of S.

(d) The contravariant powerset functor P̆ also maps a set S to its power set P̆S = PS,
but it maps a function f : S → S′ to the inverse image map P̆ f : PS′ → PS given by
P̆ f : X ′ 7→ {x ∈ S | fx ∈ X ′}.

(e) Define the covariant set functor N : Set→ Set as the composition of the contravariant
power set with itself, N := P̆ ◦ P̆ . Restricting this example somewhat, we may obtain various
interesting functors. For instance, take the functor M given by MS := {U ∈ NS | U is
upward closed with respect to ⊆ } and, for f : S → S′, M f = (N f)�MS (it requires a short
argument to prove that this defines a functor indeed). N and M are called the neighbourhood
and the monotone neighbourhood functor, respectively.

(f) The distribution functor D assigns to a set S the collection D(S) of (discrete) proba-
bility distributions over S, i.e., the set of all maps µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. On

arrows, D acts as follows: given a map f : S → S′ and a probability distribution µ ∈ D(S),
we define the map (Df)µ on S′ by putting

(Df)(µ)(s′) :=
∑

s∈f−1(s′)

µ(s).

We leave it for the reader to verify that D is indeed a set functor. The main points to check
are (i) that (Df)(µ) is indeed a probability distribution on S′, for any µ ∈ D(S), and that
(ii) D(g ◦ f) = (Dg) ◦ (Df).

The finitary distribution functor Dω is defined as the restriction of D to probability
distributions that have finite support, that is, Dω(S) := {µ ∈ DS | |S \ µ−1(0)| < ω}. On
functions, Dω is defined as D .

(g) The bag functor B is defined analogously. Let N∞ be the set N ∪ {∞} of natural
numbers extended with the ‘number’ ∞. We extend the standard addition operation on N
to N∞ by putting n +∞ = ∞ + n = ∞ +∞ = ∞ and defining the sum of infinitely many
non-zero numbers to be ∞ as well.

B-2

Then we define BS := (N∞)S as the set of weight functions µ : S → N∪{∞}. On arrows,
B acts similarly as D : given a map f : S → S′ and a weight function µ on S, we define
(Bf)(µ) as the weight function on S′ defined by putting

(Bf)(µ)(s′) :=
∑

s∈f−1(s′)

µ(s).

Similarly to the finitary distribution functor, the finitary bag functor Bω is the restriction
of B to bags with finite support, i.e., BωS := {µ : S → N | Σs∈Sµ(s) < ω}.

(h) The binary tree functor is the functor Id2 := Id × Id .

There are various ways to obtain new functors from old.

Example B.7 Let F , F0 and F1 be set functors.

(a) The composition of F0 and F1, denoted as F1 ◦ F0, is defined in the obvious way, e.g.
on objects we put (F1 ◦ F0)(S) := F1(F0(S)).

(b) The product F0×F1 of F0 and F1 is given (on objects) by (F0×F1)S := F0S×F1S, while
for f : S → S′, the map (F0×F1)f is given as ((F0×F1)f)(σ0, σ1) := ((F0f)(σ0), (F1f)(σ1)).

(c) The co-product F0 +F1 of F0 and F1 is defined in a similarly straightforward way (note
that on Set we may think of co-product as disjoint union).

(d) Given a set D, we let the D-exponent functor FD be defined as follows. Given a set S,
we put FD(S) := (F (S))D, that is, the set of maps from D to FS. Given an arrow f : S → S′

and a function h : D → FS, we simply define the arrow FDf as the function (Ff) ◦ h.

Of specific interest in the context of coalgebra and modal logic is the following operation
on set functors, which generalises the relation between Kripke frames and Kripke models
to the level of arbitrary coalgebras over Set. Think of Q as an arbitrary but fixed set of
proposition letters.

Definition B.8 Given a set functor T and a set Q of proposition letters, we define TQ as the
functor TQ := KPQ × T . We may refer to TQ as the T -model functor associated with Q. �

Definition B.9 The collection of Kripke polynomial set functors or KPF is defined by the
following ‘grammar’:

K ::= KC | Id | K0 ×K1 | K0 + K1 | KD | P ◦K , (77)

where C and D are sets. The polynomial set functors are the ones obtained by the same
grammar without the powerset functor, and the finitary KPFs are obtained by the version of
(77) where P is replaced with Pω. �

Apart from the operations described in Example B.7, in the context of coalgebras there is
(at least) one other way of interest to obtain new set functors from old, namely, to take the
finitary version of a functor. For this we need to introduce some notation and terminology
concerning inclusions.

B-3

Definition B.10 Given two sets A,B with A ⊆ B, we let ιAB : A→ B denote the associated
inclusion map, i.e., ιAB : a 7→ a; we will also write f : A ↪→ B to denote that f = ιAB (and so,
in particular, this means that A ⊆ B). We say that a set functor T preserves inclusions if,
for every pair of sets A,B with A ⊆ B, we have that TA ⊆ TB and TιAB = ιTATB. �

I Examples: power set vs mon nbh

In case T : Set→ Set preserves inclusions we define the notion of support as follows.

Definition B.11 Let T be an inclusion preserving set functor, and suppose that α ∈ TA.
We say that a subset B ⊆ A supports α if α ∈ TB. �

Definition B.12 Given a set functor T , we define the following operation Tω on an arbitrary
set S and an arbitrary function f : S → S′:

Tω(S) := {(TιXS)(ξ) | ξ ∈ TX for some X ⊆ω S},
Tω(f) := (Tf)�TωS .

We will call Tω the finitary version of T . �

Given the definition of Tω on functions, we may write Tf instead of Tωf without causing
confusion. Observe that we obtain TωS ⊆ TS, and that, in case T preserves inclusions, the
definition of TωS simplifies to TωS =

⋃
{TX | X ⊆ω S}. Whether this is the case or not, we

always have that Tω is a functor (which justifies that we call it the finitary version of T).

Proposition B.13 (1) If T is a set functor, then so is Tω.
(2) If T preserves inclusions, then so does Tω.

Proof. We only prove part (1) of the proposition, where the key property to establish is that
for any map f : S → S′, the arrow Tf is well-typed; that is, σ ∈ TωS implies (Tf)σ ∈ TωS′.
To see why this is the case, take an arbitrary object σ ∈ TωS, and let X ⊆ω S and ξ ∈ TX
be such that σ = (Tι)(ξ), where we write ι = ιXS to simplify notation.

Now consider the following two diagrams, where we let ι′ denote the inclusion arrow
ι′ : f [X] ↪→ S′:

X

f�X
��

� � ι // S

f
��

f [X] �
�

ι′
// S′

TX

T (f�X)
��

// Tι // TS

Tf
��

Tf [X] //
Tι′

// TS′

Since the left diagram commutes, so does the right one. From this it follows that (Tωf)(σ) =
(Tf)(σ) = (Tf)(Tι)(ξ) = (Tι′)(Tf�X)(ξ) and since f [X] is a finite subset of S′, with inclusion
map ι′, this suffices to show that (Tf)(σ) ∈ TωS′ indeed. qed

B-4

B.3 Limits and colimits in Set

Definition B.14 The product of two objects A0 and A1 in a category C is an object A0×A1,
together with two projection arrows πi : A0 × A1 → Ai, such that for any pair of arrows
fi : X → Ai there is a unique arrow : X → A0 → A1 such that the following diagram
commutes:

A0 A0 ×A1
π0oo π1 // A1

X
f0

dd

u

OO

f1

:: (78)

We will often denote the arrow u as 〈f0, f1〉.
Dually, the co-product of two objects A0 and A1 in a category C is an object A0 + A1,

together with two insertion arrows κi : Ai → A0 × A1, such that for any pair of arrows
fi : Ai → X there is a unique arrow v : A0 → A1 → X such that the following diagram
commutes:

A0
κ0 //

f0 $$

A0 +A1

v
��

A1
κ1oo

f1zz
X

(79)

The mediating arrow v will usually be denoted as [f0, f1]. �

Example B.15 In the category Set, we take for the product of two sets S0 and S1 their
cartesian product S0 × S1 := {(s0, s1) | si ∈ Si}, with the obvious projection maps πi :
(s0, s1) 7→ si. For a concrete representation of the co-product of S0 and S1 we take the sum
or disjoint union S0 + S1 := ({0} × S0) ∪ ({1} × S1), with the insertion maps κi : s→ (i, s).

Definition B.16 The binary product and co-product of Definition B.14 are easily generalised
to (co-)products over an arbitrary index set I; we omit the details, but introduce the notation∏
i∈I Ai and

∐
i∈I Ai for the product and co-product of the family {Ai | i ∈ I}. Products and

co-products of the empty family are called final respectively initial objects of the category.
�

Definition B.17 Given two ‘parallel’ arrows fi : A → B in a category C, we define an
equalizer of f0 and f1 as an arrow g : X → A that satisfies the equality f0 ◦ g = f1 ◦ g, and
the following condition. For every arrow g′ : X ′ → A such that f0 ◦ g′ = f1 ◦ g′, there is a
unique arrow u : X ′ → X such that g′ = g ◦ u, cf. the diagram on the left:

X
g // A

f0 //

f1

// B

X ′

u

OO

g′

>> A
f0 //

f1

// B
h //

h′

Y

v
��
Y ′

Dually, a co-equalizer of f0 and f1 is an arrow h : B → Y satisfying h ◦ f0 = h ◦ f1 and the
universal property as indicated in the diagram to the right. �

B-5

Example B.18 In the category Set, as the equalizer of two functions fi : S → S′, we can take
the set eq(f0, f1) := {s ∈ S | f0s = f1s}, together with the inclusion map ι : eq(f0, f1) ↪→ S.

As the co-equalizer of f0, f1 : S → S′, consider the quotient S′ under the equivalence
relation Ef0,f1 generated by the set {(f0s, f1s) | s ∈ S}, together with the quotient map
q : S′ → S′/Ef0,f1 mapping any s′ ∈ S′ to its own equivalence class under Ef0,f1 .

Definition B.19 Given two arrows fi : Ai → B in a category C, a pullback of f0 and f1 is
an object P , together with two arrows pi : P → Ai which satisfy f0 ◦ p0 = f1 ◦ p1, together
with the following condition. Given any ‘competitor’ P ′, with arrows p′i : P ′ → Ai such that
f0 ◦ p′0 = f1 ◦ p′1, there is a unique arrow u : P ′ → P such that p′i = pi ◦ u, in a diagram:

A0
f0 // B

P

p0

OO

p1 // A1

f1

OO

P ′

p′0

II

u

>>

p′1

44

Dually we define the notion of a pushout of two arrows fi : B → Ai. �

Example B.20 In the category Set we can define, given two functions fi : Si → S, the set
pb(f0, f1) := {(s0, s1) ∈ S0 × S1 | f0(s0) = f1(s1)}, and show that this set, together with the
projection maps πi : pb(f0, f1)→ Si, is the pullback of f0 and f1.

For the pushout, consider arrows fi : A → Bi, for i = 0, 1. Let E be the equivalence
relation on the disjoint union B0 +B1 which is generated from the set of pairs {(f0a0, f1a1) |
a ∈ A}. Let C be the quotient of B0 + B1 under E, that is, C is the set of E-cells, and
let ei : Bi → C, for i = 0, 1, be the quotient map, restricted to Bi. That is, ei(bi) is the
equivalence class of bi ∈ Bi under the equivalence relation E. It is not hard to see that C,
together with the functions e0 and e1, is the pushout of f0 and f1. One may also show that
ei is injective (surjective) if fi is so.

The concepts of product, equalizer and pullback are not independent.

Fact B.21 The following are equivalent, for any category C:
(1) C has finite products and equalizers;
(2) C has pullbacks and a final object.

More in general we can define the notion of a limit or colimit of a diagram.

Definition B.22 Let J and C be categories, and assume that J is small, that is, its collection
of objects forms a set (rather than a proper class). A diagram of type J in C is a functor
D : J→ C. We refer to J as the index set of D, and write Di rather than D(i), where i is an
arbitrary object or index in J. �

B-6

Example B.23 Here are four examples of diagrams (where we do not draw identity arrows):

A0 A1 | A
f0 //

f1

// B | A0
f0 // B

A1

f1

OO | B0

A

f0

OO

f1

// B1

Definition B.24 A cone to a diagram D : J→ C consists of an object C in C, together with
an arrow cj : C → Di for each object i in J, such that for each arrow e : i → j in J, the
following diagram commutes:

C

ci
��

cj

Di

D(e)
// Dj

(80)

A morphism of cones γ : (C, ci)i∈J → (C ′, c′i)i∈J is an arrow γ : C → C ′ in C such that
ci = c′i ◦ γ for each index i:

C
γ //

ci

C ′

c′i
��
Di

The notion of a cone dualizes to that of a co-cone in the obvious way. We let Cone(D) and
CoCone(D) denote the emerging categories of cones and co-cones, respectively. �

Definition B.25 Let D : J → C be a diagram. A limit for D is a terminal object in the
category Cone(D), and a colimit for D is an initial object in the category CoCone(D). A
(co-)limit is called finite if the index category J is finite. �

Spelled out, the limit of a diagram D : J → C is a cone to D, that is, an object C in C,
together with a family pi : C → Di of arrows in C satisfying the cone condition (80), and such
that for any D-cone (C ′, c′i)i∈J there is a unique cone morphism u : (C ′, c′i)i∈J → (C, ci)i∈J.

Example B.26 Limits for the first three diagrams in Example B.23 may easily be identified
with respectively products, equalizers and pullbacks of the objects and morphisms displayed.
Co-products, co-equalizers and pushouts can be seen as the co-limits of, respectively, the first,
second, and fourth diagram.

Limits and colimits do not always exist; if limits (for a certain type of diagram) always
exist in a category C, we say that C has limits (of that type).

Fact B.27 For any category C the following are equivalent.
(1) C has all (finite) limits;
(2) C has all equalizers and (finite) products.

Fact B.28 The category Set has all limits and colimits.

B-7

B.4 Properties of set functors

In this section we discuss some properties of set functors that are of interest in the setting of
coalgebra. First we recall some definitions.

Definition B.29 Let T be a set functor.
(1) T restricts to finite sets if TS is finite whenever S is finite.
(2) T is smooth if its preserves weak pullbacks. �

Proposition B.30 Let T be a set functor. Then T preserves surjections and non-empty
injections. That is, if f : A→ B is surjective then so is Tf : TA→ TB; and if f : A→ B is
injective then so is Tf : TA→ TB, provided A is non-empty.

Proof. First let f : A→ B be surjective, and take any map g : B → A such that f ◦ g = idB.
It follows by functorialiy that Tf ◦ Tg = idTB which immediately implies the surjectivity of
Tf .

Similarly, if A 6= ∅ and f : A → B is injective then we may consider a map h : B → A
such that h ◦ f = idA. Again by functoriality we find Th ◦ Tf = idTA which implies the
injectivity of Tf . qed

Remark B.31 The above proof breaks down for empty injections, and indeed one may come
up with functors that do not preserve the injectivity of the empty map. For instance, as a
variation of the constant functor KC , consider a non-injective map h : D → C. We let Kh

be the set functor given as follows. On objects we have Kh(∅) := D, while Kh(A) := C if
A 6= ∅; and for an arrow f : A→ B we define Kh(f) to be idD if A = B = ∅, idC if A 6= ∅,
and h if A = ∅ 6= B. In other words, for any non-empty set X we find Kh(!X) = h. This
problem is avoided by requiring the functor to be standard.

It is often convenient to assume that TA ⊆ TB if A ⊆ B; the following property requires
a bit more.

Definition B.32 Where A and B are sets such that A ⊆ B, we let ιAB : A → B denote
the corresponding inclusion map. We say that a set functor T is standard if it preserves
inclusions, that is, if A ⊆ B then TA ⊆ TB and TιAB = ιTATB. �

One benefit of this property is that working with standard functors may reduce cognitve
(and notational) clutter. Note as well that, in the case where A = ∅, we find that T∅ ⊆ TB,
and T maps the unique function !B : ∅ → B to the inclusion ιT∅TB. In other words, standard
functors preserve the injectivity of all maps. The main advantage of standard functors is that
they have various other nice properties. For instance, they preserve non-empty intersections.

Proposition B.33 Let T be a standard set functor. Then T preserves non-empty intersec-
tions, i.e., for any pair of sets A,B with A ∩B 6= ∅, we have

T (A ∩B) = TA ∩ TB. (81)

If, in addition, T is smooth, then (81) holds for every pair of sets A,B.

B-8

I add proof sketch or reference [Trnková 1969]

Restricting attention to standard functors is relatively harmless in the setting of coalge-
bras, because of the following fact which states that set functors are ‘almost’ standard.

Proposition B.34 Let T be some set functor. Then there is a standard set functor T ′,
and, for every set S, a bijection mapping T -coalgebra arrows σ : S → TS to T ′-coalgebra
arrows σ′ : S → T ′S. This family of bijections induces an isomorphism between the categories
Coalg(T) and Coalg(T ′).

Proof. Following the proof of [A&T,III.4.5] we may find a standard functor T ′ such that the
restrictions of T and T ′ to non-empty sets are naturally isomorphic. Let η denote this natural
isomorphism; that is, we have a natural family of bijections ηS : TS → T ′S, for non-empty
sets S. We extend η to Coalg(T) as follows. Given a T -coalgebra S = (S, σ), we define the
map ση : S → T ′S by putting

ση :=

{
!T ′∅ if S = ∅
ηS ◦ σ otherwise,

and defining Sη := (S, ση). It is straightforward to verify that this constitutes the required
isomorphism between Coalg(T) and Coalg(T ′). qed

Example B.35 The bag functor B of Example B.6 is not standard, but we may ‘standardize’
it by representing any map µ : X → N∞ via its ‘positive graph’ {(x, µx) | µx > 0}. A similar
approach works for the finitary bag functor Bω, and for the distribution functors D and Dω.

B.5 Relation lifting

Recall that the concept of relation lifting was introduced in Definition 3.6.

I Recall definition here

In the propositions below we list various properties of relation lifting — proof details can
be found in [KKV]. We start with some properties of T that hold for any functor T .

Fact B.36 Let T be a set functor. Then the relation lifting T has the following properties:

1. T extends T : T (Grf) = Gr(Tf) for all functions f : A0 → A1,

2. T preserves diagonals: T∆A = ∆TA for any set A;

3. T preserves converse: TR˘ = (TR)̆ for all relations R ⊆ A0 ×A1;

4. T is monotone: R ⊆ Q implies TR ⊆ TQ for all relations R,Q ⊆ A0 ×A1;

5. T is semi-functorial: T (R ;Q) ⊆ TR ; TQ, for all relations R ⊆ A0 ×A1, Q ⊆ A1 ×A2.

B-9

In case the functor T is smooth, Proposition B.36(5) can be strengthented to full functori-
ality. In fact, we have the following equivalence, which explains the importance of smoothness
in the theory of coalgebras.

Fact B.37 For any set functor T the following are equivalent:
(1) T is smooth;
(2) T (R ;Q) = TR ; TQ, for all relations R ⊆ A0 ×A1, Q ⊆ A1 ×A2.
(3) T is an endofunctor on the category Rel of sets and binary relations.

In case T is standard, some more properties are preserved.

Remark B.38 I First, however, we argue why for standard functors the definition

of TR does not depend on the ambient sets of R.

Fact B.39 Let T be a smooth and standard set functor. Then the relation lifting T has the
following properties:

1. T preserves domain: Dom(TR) = T (DomR), for all relations R ⊆ A0 ×A1;

2. T preserves range: Ran(TR) = T (RanR), for all relations R ⊆ A0 ×A1;

3. T preserves composition: T (R;Q) = TR;TQ, for all relations R ⊆ A0×A1, Q ⊆ A1×A2;

4. T preserves restrictions:

T (R�B0×B1) = (TR)�TB0×TB1

for all relations R ⊆ A0 ×A1, and all sets B0 ⊆ A0 and B1 ⊆ A1;

5. Tω aligns with T : TωR = TR ∩ (TωA0 × TωA1), for all relations R ⊆ A0 ×A1.

B-10

