Topics in Modal Logic (Fall 2025)

Tutorial Exercises 2

Exercise 1 (terminal sequence and final coalgebras)

An ω -chain in a category \mathbb{C} is a diagram of the form

$$A_0 \stackrel{p_0^1}{\longleftarrow} A_1 \stackrel{p_1^2}{\longleftarrow} A_2 \stackrel{p_2^3}{\longleftarrow} A_3 \stackrel{\dots}{\longleftarrow} \dots$$
 (1)

For the definition of a limit of such a diagram we refer to Appendix B of the lecture notes.

(a) Show that in the category Set every ω -chain has a limit. Hint: given the diagram (1), consider the set of all sequences $(a_n)_{n\in\omega}$ such that for each n we have $a_n\in A_n$ and $p_n^{n+1}(a_{n+1})=a_n$.

Fix a set functor T. It follows from (a) that the ω -chain consisting of the initial part of the terminal sequence has a limit Z_{ω} :

$$Z_0 = 1 \stackrel{p_0^1 = !}{\longleftarrow} Z_1 = T \stackrel{p_1^2 = T!}{\longleftarrow} Z_2 = T^2 1 \stackrel{p_2^2}{\longleftarrow} \dots \qquad Z_{\omega}$$
 (2)

(b) For any T-coalgebra $\mathbb{S}=(S,\sigma)$ we may inductively define a ω -sequence of functions $\mathsf{beh}_n:S\to Z_n$ such that beh_0 is fixed by the finality of Z_0 in Set , and $\mathsf{beh}_{n+1}:=(T\mathsf{beh}_n)\circ\sigma$:

$$Z_{n} \xleftarrow{p_{n}^{n+1}} Z_{n+1} \qquad \cdots \qquad (3)$$

$$\downarrow beh_{n} \qquad \downarrow beh_{n+1} \qquad \downarrow Tbeh_{n}$$

$$S \xrightarrow{q} TS$$

Prove that $\mathbb{S}, s \simeq \mathbb{S}', s'$ implies $\mathsf{beh}_n(s) = \mathsf{beh}_n(s')$ for all n.

(c) Show that for any T-coalgebra $\mathbb{S}=(S,\sigma)$ there is a unique map $\mathsf{beh}_\omega:S\to Z_\omega$ such that $\mathsf{beh}_n=p_n^\omega\circ\mathsf{beh}_\omega$, for all n. Prove that $\mathbb{S},s\simeq\mathbb{S}',s'$ implies $\mathsf{beh}_\omega(s)=\mathsf{beh}_\omega(s')$.

Let T be an endofunctor on some category \mathbb{C} . We say that T is continuous or preserves limits of ω -chains if for any diagram of the form (1) which has a limit $(A,(p_n)_{n\in\omega})$, the cone $(TA,(Tp_n)_{n\in\omega})$ is a limit of the diagram we obtain by applying the functor T to (1):

$$TA_0 \stackrel{Tp_0^1}{\longleftarrow} TA_1 \stackrel{Tp_1^2}{\longleftarrow} TA_2 \stackrel{Tp_2^3}{\longleftarrow} TA_3 \stackrel{\cdots}{\longleftarrow} \cdots \tag{4}$$

(d)* Let T be some continuous set functor. Show that T admits a final coalgebra. Hint: as the carrier of this coalgebra you may take the limit Z_{ω} of the ω -chain consisting of the initial part of the terminal sequence.

Exercise 2 (operations on streams)

Let T be the set functor $T := K_C \times Id$. Analogous to the example of the zip function (given by $zip(\alpha, \beta) = (\alpha(0), \beta(0), \alpha(1), \beta(1), \cdots)$), we can define a binary operation on streams by considering the T-coalgebra $(C^{\omega} \times C^{\omega}, \sigma)$, with

$$\sigma(\alpha, \beta) := (h(\alpha), (t(\beta), t(\alpha))).$$

Let alt: $C^{\omega} \times C^{\omega} \to C^{\omega}$ be the (unique) coalgebra morphism from this coalgebra to the stream coalgebra (C^{ω} , h,t). Which map is defined by alt? Show that your answer is correct.

Exercise 3 (zipping streams)

Prove the identity (15) in Example 2.19; that is, show that

$$zip(e(\alpha), q(\alpha)) = \alpha,$$

for every stream $\alpha \in C^{\omega}$.

Exercise 4 (tight shuffle)

The tight shuffle of two languages $K, L \in P(C^*)$ is defined as

$$K \updownarrow L := \{ a_1 b_1 \cdots a_n b_n \mid a_1 \cdots a_n \in K, b_1 \cdots b_n \in L \}. \tag{5}$$

(Here the a_i, b_j denotes letters, i.e., elements of C.) Give a coinductive definition¹ of this operation, and show that your definition is correct.

(Hint: similar to Example 2.17, you may want to introduce a set of expressions in a formal language which contains more connectives than just ♠.)

Exercise 5 (induction via initiality)

For any endofunctor $T: \mathsf{C} \to \mathsf{C}$, a T-algebra is the categorical dual of a T-coalgebra. That is, a T-algebra consists of a pair (A, α) where A is an object and $\alpha: TA \to A$ is an arrow in C . A T-algebra morphism $f: (A, \alpha) \to (A', \alpha')$ is a C -arrow $f: A \to A'$ such that the following diagram commutes:

A T-algebra $\mathbb A$ is *initial* if for every T-algebra $\mathbb B$ there is a unique T-algebra morphism from $\mathbb A$ to $\mathbb B$. In this exercise we consider the set functor $F:=K_1+Id$, where $\mathbb 1$ is an arbitrary but fixed singleton set $\mathbb 1=\{*\}$. Recall that F maps a set S to the disjoint union $\mathbb 1 \uplus S$.

- (a) Show that the initial F-algebra is given as the structure $\mathbb{N} = (N, \nu)$, where N is the collection of natural numbers, and $\nu = [0, S] : \mathbb{1} + \omega \to \omega$ is the function that maps * to 0 and an arbitrary natural number n to its successor S(n) := n+1. (Recall from Definition B.14 that we use square brackets for the mediating arrows for coproducts.)
- (b) Let $P \subseteq N$ be a subset of the natural numbers which contains 0 and which is closed under taking successors. Show how the inclusion map $\iota: P \hookrightarrow N$ can be made into a T-algebra morphism.
- (c) Use initiality of \mathbb{N} to show that P = N.

¹In particular, you may not use the definition (5).