Topics in Modal Logic (Fall 2025)

Tutorial Exercises 4

Exercise 1 (finite tree model property) Let $\mathbb{S} = (S, \sigma)$ be a T-coalgebra, for some smooth and standard set functor T. We say that a relation $R \subseteq S \times S$ supports σ if we have $\sigma(s) \in T(R(s))$, for all $s \in S$. We say that (S, σ) is a tree coalgebra if it is supported by a relation R for which (S, R) is a tree.¹ Similar definitions apply to coalgebra models; in particular we call the pointed coalgebraic model (S, σ, V, s) a (coalgebraic) tree model if its underlying coalgebra (S, σ) is a tree coalgebra with root s.

- (a) Show that for every pointed coalgebra (S, s) there is a tree coalgebra S^* with root s^* , and a homomorphism $f: S^* \to S$ such that $f(s^*) = s$. Hint: consider the set S_s^* of all finite sequences u over S such that first(u) = s.
- (b) Show that ML_T has the tree model property. That is, show that any satisfiable formula $a \in ML_T$ is satisfiable at the root of a tree model.
- (c) Assuming that T is finitary, show that any satisfiable formula $a \in ML_T$ is satisfiable at the root of a finitely branching tree model.
- (d) Assuming that T is finitary, show that any satisfiable formula $a \in ML_T$ is satisfiable at the root of a finite, finitely branching tree model.

Exercise 2 (witnessing truth) Let (S, s_0) be a pointed T-model, for some smooth and standard set functor T, and let $a_0 \in DML_T$ be some formula. A relation $W \subseteq S \times Sfor(a_0)$ is called a witnessing relation for the pair (s_0, a_0) if it satisfies

- (i) $(s_0, a_0) \in W$;
- (ii) $(s, a) \in W$ implies $\mathbb{S}, s \Vdash a$, if a is atomic;
- (iii) $(s, a \lor b) \in W$ implies $(s, a) \in W$ or $(s, b) \in W$; and
- (iv) $(s, (\bigwedge \pi) \bullet \nabla \alpha) \in W$ implies $\{s\} \times \pi \subseteq W$ and $(\sigma(s), \alpha) \in \overline{T}(W \upharpoonright_{S \times Base(\alpha)})$.

We write $\mathbb{S}, s_0 \Vdash_w a_0$ if there is a witnessing relation for (s_0, a_0) .

Show that $\mathbb{S}, s_0 \Vdash a_0 \text{ iff } \mathbb{S}, s_0 \Vdash_w a_0.$

Exercise 3 (second modal distributive law)

(a) Let Φ be a collection of sets of $\operatorname{ML}_{\nabla}$ -formulas. We let $\overline{P} \in \subseteq P\operatorname{ML}_{\nabla} \times PP\operatorname{ML}_{\nabla}$ denote the *lifted* membership relation, that is: α ($\overline{P} \in$) Φ if for all $a \in \alpha$ there is an $A \in \Phi$ such that $a \in A$, and for all $A \in \Phi$ there is a $a \in \alpha$ such that $a \in A$. In other words: α ($\overline{P} \in$) Φ means that α is a subset of $\bigcup \Phi$ which overlaps with every $A \in \Phi$. Furthermore, we define $(P \bigvee)(\Phi) := \{\bigvee \Phi \mid \Phi \in \Phi\}$.

Prove the *second* modal distributive law; that is, show that

$$\nabla(P \vee)(\Phi) \equiv \bigvee \left\{ \nabla \alpha \mid \alpha \ (\overline{P} \in) \ \Phi \right\} \tag{1}$$

¹See Appendix A for the definition of a tree. Note that a tree (S,R) has a unique root.

(b) Show that the *propositional* distributive law:

$$\bigwedge (P \bigvee)(\Phi) \equiv \bigvee \left\{ \bigwedge \alpha \mid \alpha \mid \overline{P} \in) \Phi \right\} \tag{2}$$

can be seen as a special case of (1).

(c) What can you conclude from the validity of (1) about normal forms for standard modal logic?

Exercise 4 (relation lifting for the bag functor) In this exercise we consider relation lifting for the finitary bag functor B_{ω} . For the sake of lightweight notation we write B instead of B_{ω} . Recall that

$$BS := \{ \mu : S \to \mathbb{N} \mid |\mathsf{supp}(\mu)| < \omega \},\$$

where we define the *support* of a function $\mu: S \to \mathbb{N}$ as $\mathsf{supp}(\mu) := \{s \in S \mid \mu(s) > 0\}$. Elements of B(S) will be called finite *bags*.

We can describe the action of the functor B on a map $f: S \to S'$ as follows:

$$(Bf)(\mu)(s') := \sum_{s \in f^{-1}(s')} \mu(s).$$

Relation lifting for this functor can be described in the same way as for the distribution functor D (cf. Example 5.13 of the lecture notes).

(a) Given a relation $R \subseteq S_0 \times S_1$, show that $\overline{B}(R)$ consists of those pairs $(\mu_0, \mu_1) \in BS_0 \times BS_1$ for which there is a finite bag $\rho : R \to \mathbb{N}$ in B(R) which satisfies the 'magic square condition':

for all
$$s_0 \in S_0$$
. $\mu_0(s_0) = \sum \{ \rho(s_0, y_1) \mid (s_0, y_1) \in R \}$, and for all $s_1 \in S_1$. $\mu_1(s_1) = \sum \{ \rho(y_0, s_1) \mid (y_0, s_1) \in R \}$.

(Hint: this is not difficult; the point is to clarify the role of the maps $B\pi_i: BR \to BS_i$, where the $\pi_i: R \to S_i$ are the projection maps.)

- (b) Prove that B preserves weak pullbacks.
- (c) Show that for any relation $R \subseteq S_0 \times S_1$ and any pair of finite bags $\mu_i \in B(S_i)$, we have that

$$(\mu_0, \mu_1) \in \overline{B}(R)$$
 implies $|\mu_0| = |\mu_1|$,

where the weight $|\alpha|$ of a weight function $\alpha \in B(A)$ is defined as $|\alpha| := \sum_{a \in A} \alpha(a)$.

Exercise 5 (*)(distributive laws and the lifted membership relation) Let $T: \mathsf{Set} \to \mathsf{Set}$ be smooth. Show that $\lambda^T = \{\lambda_X^T\}_{X \in \mathsf{Set}}$ is a distributive law of T over both the covariant and the contravariant power set functor P (cf. Remark 5.25).