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Appendix A 
Set Theqry 

In this Appendix, we will survey some of the elementary results from set 
theory that we use in the text. We give very few proofs and refer the reader 
to set theory texts such as [26], [47], or [57] for further details. 
We will work in ZFC, Zermelo-Fraenkel set theory with the Axiom of 

Choice. The Axiom of Choice asserts that if ( Ai : i E I) is a family of 
nonempty sets, then there is a function J with domain I such that f(i) E Ai 
for all i E I. 

Zorn's Lemma and Well-Orderings 

If Xis a set and < is a binary relation on X, we say that (X, <) is a partial 
order if (X, <) F 't:/x -.(x < x) and (X, <) F 't:/x't:/y't:/z ((x < y A y < z) --+ 
X < z). 
We say that (X, <) is a linear order if in addition 
(X, <) F 't:/x't:/y (x < y V x = y Vy< x). 
If (X, <) is a partial order, then we say that C Ç X is a chain in X if C 

is linearly ordered by <. 

Theorem A.I (Zorn's Lemma) IJ (X, <) is a partial order such that 
for every chain C Ç X there is x E X such that c ~ x J or all c E C, then 
there is y E X such that there is no z E X with z > x. In other words, if 
every chain has an upper bound, then there is a maximal element of X. 
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We give one application of Zorn's Lemma. We say that a linear order 
(A,<) is a well-order if for any nonempty C Ç A, there is a EC such that 
a ~ b for all b E C. The following characterization is also useful. 

Lemma A.2 (A,<) is a well-order if and only if there is no infinite de­ 
scending chain ao > a1 > a2 > ... in A. 

Theorem A.3 (Well-Ordering Principle) If A is any set, then there 
is a well-ordering of A. 

Proof Let X = { (Y, R) : Y Ç A and R is a well-ordering of A}. We 
say that (Y, R) < (Y1, R1) if Y c Y1, R C R1, and if a E Y1 \ Y and 
b E Y; then bRa (i.e. every new element is greater than every old element). 
Suppose that C C X is a chain. Let 

Y = LJ Y and R = LJ R. 
(Y,R)EC (Y,R)EC 

We claim that Ris a well-ordering of Y. We first show that Ris a linear · 
order. Clearly, ,(aRa) for all a E Y. If a1,a2,a3 E Y such that a1Ra2 
and a2Ra3, then we can find (l'i, ~) E C such that ai E 1'i for i = 1, 2, 3. 
Because C is a chain, there is j such that (Yi, Ri) ~ ~ (Y;, Rj) for each 
i = 1, 2, 3. Because (Yi,~) is transitive, a1Rja3 and a1Ra3. 
If a0 > a1 > ... is a decreasing chain in R, we can find (Y, R) E C such 

that a0 E Y. Because of the way we order X, all of the ~i §_ Y. In this case, 
R would not be a well-order, a contradiction. Thus (Y, R) E X. Clearly, 
(Y, R) ~ (Y, R) for all (Y, R) EC. Thus, every chain has an upper bound. 
By Zorn's Lemma, there is (Y, R) E X maximal. We claim that Y = A. 

Suppose that a E A\ Y. Let Y' =AU {a}, and let R' =RU (Y x {a}) 
(i.e., we order Y' by making a the largest element). Then, R' is a well­ 
ordering and we have contradicted the maximality of (Y, R). Thus ,Ris a 
well-ordering of A. 

Zorn's Lemma and the Well-Ordering Principle are equivalent forms of 
the Axiom of Choice. 

Ordinals 

Definition A.4 We say that Xis transitive if, whenever x EX and y Ex, 
then y E X. We say that a set X is an ordinal if X is transitive and 
well-ordered by E. Let On be the class of all ordinals. 

Lemma A.5 i) On is transitive and well-ordered by E. 
ii) If a and f3 are ordinals, then the orderings (a, E) and (/3, E) are 

isomorphic if and only if a = /3. 
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It fo~lows from i) that On is not a set. If On were a set, then On is itself 
an ord1~al_ and On E On. This gives rise to an infinite descending chain 
contradicting the fact that On is well-ordered by E. 
Because E is an ordering of On we often write a < f3 instead of a E /3. 

Note that a= {/3 E On: f3 < a}. 
Every well-ordering is isomorphic to an ordinal. 

Proposition A.6 If (X, <) is a well-ordering, then there is an ordinal 
a such that ( X, <) is isomorphic to ( a, E). We call a the order type of 
(X,<). 

Lemma A. 7 i) 0 is an ordinal and if a E On, and a -:f. 0 then 0 E a. 
Thus, 0 is the least ordinal. 
ii) If a is an ordinal, then sue( a) = a U {a} is an ordinal, and if /3 E On, 

then /3 ~ a or suc(a) ~ /3. 
iii) If C is a set of ordinals, then 8 = LJ°'EC a is an ordinal, and 8 is the 

least upper bound of the ordinals in C. 

Lemma A. 7 gives us a description of the first ordinals. By i), o = 0 is 
the least ordinal. The next ordinals are 1 = {0}, 2 = {0, {0} }, .... In 
general, we let n + l = ~u_c~n). Note that n = {O, 1, ... , n - 1}. Thus, the 
natural numbers are an initial segment of the ordinals. The next ordinal is 
w={0,1,2,3, ... }. 
I~ a E On, we say that a is a successor ordinal if a = suc(/3) for some 

ord_mal /3. If a i- 0 and a is not a successor ordinal then we can say a is 
a limit ordinal. The next proposition is the main tool for proving things 
about ordinals. 

Theorem A.8 (Transfinite Induction) Suppose that C is a subclass of 
the ordinals such that 

i) 0 EC, 
ii) if a EC, then suc(a) EC, and 
iii) if a is a limit ordinal and /3 E C for all f3 < a, then a E C. 

Then C = On. 

We can define addition, multiplication, and exponentiation of ordinals. If 
a, /3 E On, let X be the well-order obtained by putting a copy of /3 after a 
copy of a. More precisely, X = ( {O} x a) U ( {1} x /3) with the lexicographic 
order. Then a+ /3 is the order type of X. Let Y be the well-order obtained 
by taking the lexicographic order on /3 x a. Then a· f3 is the order type of 
/3 x a. We define af3 by transfinite recursion as follows: 

i) aO = 1; 
ii) a sue ((3) = af3 a; 

iii) if /3 is a limit ordinal, then af3 = sup{aî': Î < /3} = LJ aî'. 
Ad~ition and multiplication are not commutative, but wtcfo have the 

followmg properties. 
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Lemma A.9 i) suc(a) =a+ l. 
ii) sue( a + /3) = a + suc(/3). 
iii) a + (/3 + 'Y) = ( a + /3) + 'Y. 
iv) a (/3,y) = ( af3)'Y. 
v) a.(/3 + ,y) = a/3 + a,y. 
vi) IJ /3 = SUP,EC 'Y, then a+ /3 = SUP,EC (¥ + 'Y· 

We can start building the ordinals above w: 
w,w+ 1,w+2, ... , sup{w+n: n < w} = w+w = w2, w2+ 1,w2+2, ... , 

sup{ w2 + n : n < w} = w2 + w = w3, , w3, , w4, ... , w5 ... , sup[ wn : 
n < w} = w x w = w2, w2 + l, ... , w3, , w4, , sup{ wn : n < w} = 

2
ww. 

. . h' w+l w+2 w2 Ww3 Ww Continuing t 1s way: ... , w , ... ,w , ... , w , ... , , ... , , ... , 
n W WW 

WW, ... , WW, ... , WW , ... 

This is the limit of the ordinals we can easily describe. The next ordinal 
is 

{ 
W WW } Eo = sup w, w , w , .... 

We could now continue as before. Indeed, all of the ordinals we have de­ 
scribed so far are still quite small. 

Cardinals 

We need a method of comparing sizes of sets. -Let A be any set. By the Well­ 
Ordering Principle, there is a well-ordering «; of A and, by Proposition A.6, 
there is an ordinal a such that (A,<) is isomorphic to a. We let IAI be the 
least ordinal a such that there is a well-ordering of A isomorphic to a. 

Proposition A.10 The following are equivalent. 
i) IAI = IBI. 
ii) There is a bijection J: A-+ B. 
iii) There are one-to-one functions J : A -+ B and g : B-+ A. 

We say that A is countable if IAI ::s; w. All of the ordi~als a ::s; Eo that w_e 
described above are countable. Let w1 = { a E On : a 1s countable}. It 1s 
easy to see that w1 is transitive and well-ordered b~ E. If w1 is countable, 
then w1 E w1 and we get a contradiction. Thus, w1 1s the first uncountable 
ordinal. Note that lw1 I = W1. . 
We say that an ordinal a is a cardinal if [o] = a. We recursively define 

w"' for a E On as follows: 
w0 =w; 
Wc,+l = { o E On : lol = Wc,}; 
if a is a limit ordinal, then w"' = sup/3<<> w,13. 

Proposition A.11 i) Each w"' is a cardinal and w"' < w,e if a< /3. 
ii) If l'i, is a cardinal, then either l'i, < w or r: = w"' for some a E On. 
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We also use the notation N"' = wc,. When we are thinking of it as an 
ordinal, we use w"' and when we are thinking of it as a cardinal, we use N"'. 
If /'i, is a cardinal, there is a least cardinal greater than /'i,

1 
which we call 

/'i,+. We say that /'i, is a successor cardinal if /'i, = >. + for some >., otherwise (if 
/'i, is nonzero), we say that /'i, is a limit cardinal. Note that infinite successor 
cardinals are limit ordinals. 
For any limit ordinal a ~ w, the cofinality of a is the least cardinal >. 

such that there is a function f : >. -+ a and the image of f is unbounded 
in a. We let cof(o) denote the cofinality of a. 
For example, cof(w) = No because a finite function cannot be unbounded 

in w. On the other hand, cof( Ww) = w because the function n f-t wn has 
unbounded image. 
If /'i, ~ No is a cardinal, we say that /'i, is regular if coî(x) = /'i,; otherwise, 

we say that /'i, is singular. 

Proposition A.12 IJ l'i, ~ N0 is a cardinal, then l'i,+ is regular. 

No is a regular limit cardinal. It may be the only cardinal with both 
properties. We say that /'i, > No is inaccessible if /'i, is a regular limit cardinal. 
Although we cannot prove that inaccessible cardinals exist, it seems likely 
that we also cannot prove that they do not exist. Inaccessible cardinals are 
quite large. 

Proposition A.13 If l'i, > N0 is inaccessible, then l'i, = NI<. 

Proof An induction shows that w"' ~ a for all a. If /'i, = N"' where a< n; 
then /3 f-t w,e is an unbounded map from a into «, a contradiction. 

Cardinal Arithmetic 

We define addition and multiplication of cardinals. If JXJ = /'i, and JYJ = >., 
then /'i, + >. = I( {O} x X) U ( {1} x Y)I and i'i,À = JX x YI. These operations 
are commutative but not very interesting. 

Lemma A.14 Let l'i, and >. be cardinals. If r: and >. are both finite, then 
these operations agree with the usual arithmetic operations. If either l'i, or 
>. is infinite, then 

/'i, + >. = «); = rnaxj«, >.}. 
Corollary A.15 i) If III = r: and I Ail ::s; /'i, for all i EI, then I U Ad ::s; n, 
ii) If l'i, is regular, III < «, and !Ail < r: for all i EI, then I LJ Ail < /'i,. 
iii) Let l'i, be an infinite cardinal. Let X be a set and :F a set of Junctions 

f : xn, -+ X. Suppose that !Fl ::s; /'i, and A Ç X with IAI ::s; n, Let cl(A) 
be the smallest subset of X containing A closed under the functions in F. 
Then lcl(A)I .'.S /'i,. 



320 Appendix A. Set Theory 

Exponentiation is much more interesting. If A and B are sets, then A 8 
is the set of functions from A to Band IAjl81 = IA81. 
Lemma A.16 Let K.,>., andµ be cardinals. 

i} ( K.>. )I' = K,>.µ,. 
ii} If>. 2 No and 2 SK.<>., then 2>- =K.>.=>,>-. 
iii} IJ K. is regular and>. < 1,,1 then K.>. = sup] K-, µ>- : µ < K.}. 

Proof iii) If f : >. --+ 1,,, then, because K. is regular, there is a:: < K. such 
that J : >. --+ a. Thus ,,,>- = Ua<x; a>-. The right-hand side is the union of 1,, 
sets each of size µ>- for some µ < K.. 
We say that an inaccessible cardinal K. is strongly inaccessible if 2>- < K. 

for all >. < K.. 

Corollary A.17 IJ K. is strongly inaccessible and>. < K., then K.>. = K.. 
We know by Cantor that 2"' > K. for all cardinals K.. The next theorem is 

a slight generalization. 

Proposition A.18 (König's Theorem) If K. 2 N0, then K.cof(x;) > K.. 

This gives us Cantor's theorem because 2"' = K."' > K. but also gives us, for 
example, that N~0 > Nw. 

ZFC is too weak to answer basic questions about cardinal exponentiation. 
The most interesting is the Continuum Hypothesis. 
Continuum Hypothesis (CH) 2No = N1. • 

Generalized Continuum Hypothesis (GCH) 2N"' = N"'+l· 
The Continuum Hypothesis is unprovable in ZFC, but GCH is consistent 

with ZFC.1 Assuming the Generalized Continuum Hypothesis, we get a 
complete picture of cardinal exponentiation. 

Proposition A.19 Assume the Generalized Continuum Hypothesis. Let 
K., >. 2 2 with at least one infinite. 

i} If>. S K., then >.'" = K.+. 
ii} Ij ):«; cof(1,,), then K.>.= K.. 
iii} If cof( K-) S >. < K., then K.>. = ,,,+. 

Finite Branching Trees 

Definition A.20 A finite branching tree is a partial order (T, <) such 
that: 

i) there is r ET such that r S x for all x ET; 
ii) if x E T, then {y : y < x} is finite and linearly ordered by <; 

1 Provided ZFC itself is consistent. 
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iii) if x E T, then there is a finite (possibly empty) set {y1, ... , Ym} of 
incomparable elements such that each Yi > x and, if z > x, then z 2 Yi for 
some i. 

A path through Tis a function J: w--+ T such that f(n) < f(n + 1) for 
all n. 

Lemma A.21 (König's Lemma) IJ T is an infinite finite branching 
tree, then there is a path through T. 

Proof Let S(x) = {y : y 2 x} for x E T. We inductively define f(n) 
such that S(f(n)) is infinite for all n. Let r be the minimal element of 
T, then S(r) is infinite. Let f(O) = r. Given f(n), let {y1, , Ym} be the 
immediate successors of f(n). Because S(f(n)) = S(y1)U US(yn), S(yi) 
is infinite for some i. Let J(n + 1) = Yi· 

Forcing Constructions 

Definition A.22 Let (P, <) be a partial order. We say that F ç Pis a 
filter if: 

i) if p E F, q E P, and p < q, then q E F; 
ii) if p, q E F, there is r E F such that r Sp and r Sq. 
We say that D Ç P is dense if for all p E P there is q E D such that 

q Sp. If D is a collection of dense subsets of P, we say that G ç Pis a 
D-generic filter if D n G -I 0 for all DE D. 

Lemma A.23 For any partial order P, if D is a countable collection of 
dense subsets of P, then there is a D-generic filter G. 

Proof Let Do, D1, ... , list D. Choose Po E P. Given Pn, we can find 
Pn+i S Pn with Pn+i E Dn, Let G = {q: q 2 Pn for some n}. 

Lemma A.23 is the best we can do without extra assumptions. Let P be 
the set of all finite sequences of zeros and ones ordered by p < q if p :) q. 
The following sets are dense: 
En = {p E P : n E dom(p)} for n E w; 
Di= {p E P: :ln E dom(p) p(n)-:/ f(n)} for f E 2w. 
If Gis a filter meeting all of the En then g = upEG p. Then g : w --+ 2. If 

G meets Di, then g-:/ f. Thus if 'D= {En, Di: n E w, f E 2w}, then there 
is no D-generic filter. 
We say that p and q E P are compatible if there is r S p, q and say that 

(P, <) satisfies the countable chain condition if whenever A c P and any 
two elements of A are incompatible, then IAI S N0. 



322 Appendix A. Set Theory 

Martin's Axiom If (P, <) is a partial order satisfying the countable chain 
condition, and 1) is a collection of dense subsets of P with IDI < 2~0, then 
there is a D-generic filter on P. 

Of course, if the Continuum Hypothesis is true, then Martin's Axiom is 
a trivial consequence of Lemma A.23. On the other hand, Martin's Axiom 
is consistent with, but not provable from, ZFC +,CH. 

Appendix B 
Real Algebra 

We prove some of the algebraic facts needed in Section 3.3. All of these 
results are due to Artin and Schreier. See [58] XI for more details. All fields 
are assumed to be of characteristic 0. 

Definition B.1 A field K is real if -1 can not be expressed as a sum of 
squares of elements of K. In general, we let L K2 be the sums of squares 
from K. 

If F is orderable, then F is real because squares are nonnegative with 
respect to any ordering. 

Lemma B.2 Suppose that F is real and a E F \ {O}. Then, at most one 
of a and -a is a sum of squares. 

Proof If a and b are both sums of squares, then l = ~b is a sum of 
squares. Thus, if F is real, at least one of a and -a is not in L F2. 

Lemma B.3 If F is real and -a E F \ L F2, then F( Jä) is real. Thus, 
if F is real and a E F, then F( Jä) is real or F( Fa) is real. 

Proof We may assume that Jä (/. F. If F( Jä) is not real, then there are 
b;, c; E F such that 

-1 = L(b; + c;va)2 = L(bf + 2c;b;Ja + cf a). 
Because Jä and 1 are a vector space basis for F( Jä) over F, 


