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Abstract

This thesis is devoted to summarize the algebraic K-theory in the mod-
ern ∞-categorical language. The algebraic K-theory, in short, is the
higher dimensional generalization of the Grothendieck group K0. In
this thesis, we discuss two mainlines of the algebraic K-theory, and
their comparison. The author claims no originality. A general refer-
ence for classic algebraic K-theory is [16]. More modern developments
are found in [2], [7] and [8]. Further references are mentioned in the
text.
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Chapter 1

Introduction to K-Theory

The K0-group originates from classifications of finite dimensional vector
bundles over a topological space (such as an n-sphere), or classifications
of finitely generated projective modules over a ring. Let’s consider the case
of finitely generated projective modules. Let R be a ring. There are two
constructions of the Grothendieck group K0(R):

1. Isomorphism classes of finitely generated projective R-modules, along
with the direct sum operation, form an abelian monoid. Take the
group completion of this monoid, we obtain a group K0(R).

2. Another construction follows from the concept of short exact sequences.
We consider the free abelian group generated by isomorphism classes
of finitely generated projective R-modules, modulo the relation given
by short exact sequences: for each short exact sequence 0 → M′ →
M → M′′ → 0 of finitely generated projective R-modules, we impose
a relation [M] = [M′] + [M′′].

Since each short exact sequence splits, we deduce that two constructions give
the same K0-group. However, these constructions rely on different struc-
tures on the category of finitely generated projective R-modules, namely the
structure of the direct sum operation, and the structure of exact sequences.
In this thesis, we will expose their generalizations to the K-theory space.

The structure of the direct sum operation generalizes to the concept of sym-
metric monoidal ∞-categories, which occupies Chapter 4, and the struc-
ture of exact sequences generalizes to the concept of ∞-categories with cofi-
brations, which occupies Chapter 2, or exact ∞-categories, which occupies
Chapter 3.

To motivate the concept of the K-theory space, we only note that we have
blindly omit the information about the deformation by taking isomorphism
classes. That would be a great loss even if eventually we only want to study
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1. Introduction to K-Theory

K0-groups. A parallel phenomenon leads to the great success of homologi-
cal algebra, which was motivated by extending one-sided exact sequences.
However, the K-theory space seems much more difficult than homological
algebra, partially due to the homotopic nature of this topic. Nevertheless,
we will sketch important constructions in the thesis, and furnish enough ref-
erences. Two approaches, as in the case of K0-groups, will lead to the same
space under some mild conditions, which is the goal of Chapter 5. More
classical constructions are summarized in Chapter 6.

Let’s take a look at the K-theory space briefly. In short, as a result of all
these K-theory space constructions, we will obtain an E∞-group (equiva-
lently, a spectral object in Kan, the ∞-category of Kan complexes, although
we won’t prove that the result is a spectrum for the K-theory originated
from the structure of exact sequences). For an ∞-category with the struc-
ture of direct sum operation, the description seems clearer: we just impose
that the “multiplication” operation of the E∞-group mimics the direct sum
operation. It’s conceptually easier to understand that this is essentially just
a group completion: to make the direct sum operation invertible. For an
∞-category with the structure of exact sequences (this will eventually be an
∞-category with cofibrations in Chapter 2), this seems a bit tougher to ex-
plain. Roughly speaking, we want to impose the “multiplication” of M′ and
M′′ to be M whenever there is a short exact sequence M′ → M → M′′, just
like the case of K0. This will lead to the S•-construction. Our main theorem
of comparison, Theorem 5.2, will claim that these two constructions will
be homotopically coincide under a very mild condition. We need to make
precise the concept of exact sequences, which is the goal of Chapter 2.

Let’s sketch the historical development of higher K-theory. It was Quillen
that first successfully defined (see [12, 13]) the higher K-groups of finitely
generated projective R-modules from the +-construction: Later, he defined
his famous Q-construction in [11]. The group completion construction ap-
peared in [15], and Waldhausen came up with his S•-construction in [17].
Finally, Barwick rebuilt S•-construction and Q-construction in the language
of ∞-categories, see [2, 1]. The relationship between these structures are
summarized below:

• Exact K-theory

1. For ∞-categories with cofibrations C: Barwick’s S•-construction
Ω|S•C| (Chapter 2).

2. Special case of the case 1 for Waldhausen categories C: Wald-
hausen’s S•-construction Ω|S•C|;

3. For exact ∞-categories C: Barwick’s Q-construction (Chapter 3)
ΩQC, the result of which coincide with Barwick’s S•-construction;
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4. Special case of the case 3 for exact categories C: Quillen’s Q-
construction ΩQC.

• Additive K-theory

1. For symmetric monoidal categories: group completion construc-
tion (Chapter 4);

2. Special case of the case 1 for a ring R: Quillen’s +-construction
K0(R)× BGL(R)+.

For modules over a ring, all these constructions coincide.

The author claims no originality for any propositions or arguments. The
K-Theory in modern language is sketched in Lurie’s lecture notes [7] and
scrupulously explained in Barwick’s work [2, 1]. Classical works record
the names of Quillen, Waldhausen and Segal, and a lot of other people.
The topic is suggested and the thesis is supervised by Professor Matthew
Morrow.
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Chapter 2

∞-categories with Cofibrations

As seen in the introduction, Chapter 1, we want to precipitate the concept
of an ∞-category with the structure of exact sequences. Roughly speaking,
given a short exact sequence (in any sense) M′ → M → M′′, we should
view M′′ as a quotient M/M′. It would be reasonable for us to only record
these morphisms M′ → M, which will be called cofibrations in the thesis.
To recover the corresponding exact sequence from a cofibration M′ → M,
we take the pushout of the cofibration M′ → M along a collapsing mor-
phism M′ → ∗, obtaining a triangle (see Definition B.26) served as an exact
sequence which is usually called a cofiber sequence in the literature be-
ing distinguished from the dual concept of fiber sequences, both of which
are considered “exact” in classical commutative algebra (because in classi-
cal commutative algebra, most underlying categories are stable or abelian,
cofiber sequences and fiber sequences usually coincide), see Remark 3.10 for
a bit further discussions. A reference for this chapter is [7, Lecture 18].

Definition 2.1 ([7, Lecture 18, Definition 5],[2, Definition 2.7]) An ∞-category
with cofibrations is a pointed ∞-category C with a collection of morphisms, called
cofibrations, such that

1. All equivalences are cofibrations and the collection of cofibrations is closed
under composition (which means that, for any 2-simplex t ∈ C2, if two faces
d0t, d2t ∈ C1 are cofibrations, then so is the “composition” d1t ∈ C1);

2. All maps ∗ → X are cofibrations;

3. For a cofibration f : X → X′ and an arbitrary morphism X → Y, there exists
a pushout square

X
f−−−→ X′y y

Y
g−−−→ Y′
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2. ∞-categories with Cofibrations

and that g is a cofibration (therefore, by previous axioms, every co-base change
of a cofibration exists and is a cofibration).

Example 2.2 Given a (unital) ring R, Denote byM(R) the nerve of the additive
category of finitely generated R-modules. M(R) is an ∞-category with cofibrations,
where the cofibrations are given by injections.

Proof Axiom 1 (note that the composition is unique here) and axiom 2 in
Definition 2.1 are satisfied by construction. To show the axiom 3, we first
note that arbitrary pushouts exist in M(R). Furthermore, given a pushout
square

X
f−−−→ X′′y y

Y
g−−−→ Y′

of R-modules, if f is injective, so is g. This is due to the fact that pushouts
of monomorphisms are also monomorphisms in an abelian category. �

By a similar argument we can show that

Example 2.3 Denote by P(R) ⊆ M(R) the full subcategory spanned by finitely
generated projective R-modules. Then P(R) is an ∞-category with cofibrations,
where the cofibrations are given by injections with a projective cokernel.

Remark 2.4 Examples 2.2 and 2.3 are special cases of exact categories. We will
define exact ∞-categories in Chapter 3. On the other hand, note that all cofibrations
in the example 2.3 are in fact split injections, which stimulates Proposition 2.5 and
Example 2.6.

Proposition 2.5 In an ∞-category with cofibrations C, every natural map of the
form g : Y → X ∨Y is a cofibration.

Proof

Step 1: There exists a pushout square

∗ f−−−→ Xy y
Y

g−−−→ X ∨Y

in C;

Step 2: The top morphism f : ∗ → X is a cofibration (Axiom 2 of Definition
2.1);

Step 3: Therefore g is a cofibration (Axiom 3 of Definition 2.1). �
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Example 2.6 Every pointed ∞-category which admits arbitrary finite coproducts
could be made into an ∞-category with cofibrations by taking all maps equivalent
to a split map Y → X ∨ Y as cofibrations. This is the “minimal” collection of
cofibrations by Proposition 2.5.

Proof We check axioms in Definition 2.1:

Axiom 1: It follows from the homotopy-coherent associativity of coprod-
ucts: (X ∨Y) ∨ Z ' X ∨ (Y ∨ Z) in C;

Axiom 2: Note that ∗ → X ∨ ∗ ' X;

Axiom 3: Given a pushout diagram

Y −−−→ Zy yg

X ∨Y −−−→ W

We need to show that g is equivalent to a split map. We consider
a larger diagram

∗ −−−→ Y −−−→ Zy y yg

X −−−→ X ∨Y −−−→ X ∨ Z

Both the square on the left and the outer square are pushout
squares, therefore the square on the right is also a pushout square,
which implies that g is equivalent to the split map Z → X ∨ Z. �

Example 2.7 As a counterpart of Example 2.6, every finitely cocomplete pointed
∞-category could be made into an ∞-category with cofibrations where all morphisms
are cofibrations. This is the “maximal” collection of cofibrations.

Definition 2.8 Suppose C is an ∞-category with cofibrations. We define K0(C) as
the abelian group defined by

• Generators: objects X ∈ C;

• Relations: [X′] + [X′′] = [X] whenever there is a cofibration X′ → X with

a cofiber sequence X′
f−→ X

g−→ X′′, which means that there is a pushout
diagram

X′
f−−−→ Xy yg

∗ −−−→ X′′

Example 2.9 Take C in examples 2.2 and 2.3, we recover the ordinary concept of
Grothendieck groups.
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2. ∞-categories with Cofibrations

Remark 2.10 We note that the group K0(C) is “automatically” abelian. To be more
precise, the group determined by the same collection of generators and relations is
abelian, therefore coincides with K0(C), by virtue of the cofiber sequences X′ →
X′ ∨ X′′ → X′′ and X′′ → X′ ∨ X′′ → X′.

By the canonical cofiber sequence ∗ → ∗ → ∗, we have

Proposition 2.11 [∗] = 0 in K0(C).

Remark 2.12 In order to understand higher K-theory, let’s consider a pointed Kan
complex (K, ∗). The loop space L = ΩK admits a “multiplication” defined by
concatenating two paths. This “multiplication” is neither naturally defined (which
depends on a choice of parametrizing), nor invertible, nor associative. At a first
glance, one can recover the well-definedness, invertibility and associativity by taking
homotopy classes of loops, namely π0(L) = π1(K). However, this leads to a great
loss of information: fundamental groups are far from characterizing the space. Later
developments of homotopy theory lead us to consider homotopy coherency. This
“multiplication” is in fact homotopy coherently associative and invertible. Basically
speaking, we need to record homotopies underlying abc ' (ab)c ' a(bc), these
homotopies are compatible for different parenthesizing of abcd ' (a(b(cd))) '
(a((bc)d)) ' . . . .

Our goal is to define a K-theory space K(C) = ΩL for an ∞-category with
cofibrations C, such that π0K(C) = π1(L) = K0(C). Instead of imposing
[X′] + [X/X′] = [X], we furnish a 2-cell, imposing [X′] + [X/X′] ' [X],
where each object X ∈ C determines a loop [X] ∈ ΩL. For a filtered object
X1 → X2 → X3, where X1 → X2 and X2 → X3 are cofibrations, we have
four cofiber sequences: X1 → X2 → X2/X1, X1 → X3 → X3/X1, X2 →
X3 → X3/X2 and X2/X1 → X3/X1 → X3/X2 (one can recall the octahedral
axiom for triangulated categories). We furnish a 3-cell to combine these
informations.

In general, in order to avoid technical difficulties, we follow Barwick’s ap-
proach [2]:

Definition 2.13 A filtered object of length m is a functor ∆m → C such that the
image of each edge is a cofibration. The ∞-category Fm(C) is defined as the full
subcategory of Fun(∆m, C) spanned by filtered objects of length m.

Remark 2.14 We discuss briefly about straightening and unstraightening process.
A formal treatment and precise definitions could be found in [9, Chapter 3, Section
3.2]. Given an ∞-category S , there is a correspondance between two worlds: on one
hand, one has the collection of coCartesian fibrations over S ; on the other hand, one
has the collection of classifying functors S → Cat∞. Given a coCartesian fibration
F : C → S , one can obtain a classifying functor G : S → Cat∞, such that for each
s ∈ S , G(s) is categorically equivalent to F−1(s). This is called the straightening
process. Given a classfying functor G : S → Cat∞, one can associate a coCartesian
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fibration F : C → S such that F−1(s) is categorically equivalent to G(s). This is
called the unstraightening process.

The definition of coCartesian fibrations is quite technical:

Definition 2.15 Let p : C → D be a functor between ∞-categories. A morphism
f : c1 → c2 in C is p-coCartesian, or a p-coCartesian lift of p( f ) if the following
map is an acyclic Kan fibration:

C f / → Cc1/ ×Dp(c1)/
Dp( f )/

Definition 2.16 A functor p : C → D between ∞-categories is a coCartesian fi-
bration if the following two properties are satisfied:

• The functor p is an inner fibration (see Definition B.1);

• For every object c1 ∈ C and every morphism α : p(c1) = d1 → d2 in D, there
is a p-coCartesian lift f : c1 → c2 of α.

By unstraightening, we can obtain an ∞-category F (C) and a cocartesian
fibration F (C) → N(∆op) classified by the functor [m] 7→ Fm(C). The
choice of F (C) is essentially unique. We follow Barwick’s [2, Construction
5.3]:

Denote by M the ordinary category of pairs ([m] ∈ ∆op, i ∈ [m]) where a
morphism ([n], j)→ ([m], i) is given by a morphism ϕ : [m]→ [n] in ∆ such
that j ≤ ϕ(i). We have a natural functor M→ ∆op given by ([m], i) 7→ [m].

We can construct the coCartesian fibration F (C)→ N(∆op) by the universal
property:

Proposition 2.17 For any simplicial set K with a simplicial map K → N(∆op), we
have a natural bijection between HomSet∆/ N(∆op)

(K, F (C)) and the set of simplicial
maps K ×N(∆op) N(M) → C such that for each edge (e, f ) in K ×N(∆op) N(M), if
the image of f in N(∆op) is an equivalence, then the image of (e, f ) is a cofibration.

We see that the fiber of F (C)→ N(∆op) over [m] is Fm(C) (not just up to a
weak equivalence) by taking K → N(∆op) to be the constant functor at [m].
Hence we can understand an object in F (C) as a pair ([m] ∈ ∆op, X ∈ Fm).

Definition 2.18 A filtered object X : ∆m → C is called totally filtered if X(0) = ∗.
Denote by Sm(C) ⊆ Fm(C) the full subcategory spanned by totally filtered objects.
S (C) ⊆ F (C) is the full subcategory spanned by pairs ([m], X) where X is totally
filtered.

Come back to Waldhausen’s S•-construction. Now we have a functor S (C)→
N(∆op). By straightening, we obtain a functor N(∆op) → Cat∞. Composing
with the core functor (−)' : Cat∞ → Kan, we have a functor S(C) : N(∆op)→
Kan.
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2. ∞-categories with Cofibrations

In practice, one has a more explicit construction, originally due to Wald-
hausen [17], see also [7, Lecture 18]:

Definition 2.19 Let P be a partially ordered set, and let P(2) = {(i, j) ∈ P× P|i ≤
j}. Let C be an ∞-category with cofibrations. A P-gapped object of C is a functor
X : N(P(2))→ C such that

• For every i ∈ P, X(i, i) = ∗;

• For i ≤ j ≤ k, the natural map X(i, j)→ X(i, k) is a cofibration;

• For i ≤ j ≤ k in P, the subdiagram

X(i, j) −−−→ X(i, k)y y
X(j, j) = ∗ −−−→ X(j, k)

is a pushout square. Denote by GapP(C) the full subcategory of Fun(N(P(2)), C)
spanned by P-gapped objects.

Example 2.20 [5](2) is the category corresponds to the following diagram:

∗ −−−→ • −−−→ • −−−→ • −−−→ • −−−→ •y y y y y
∗ −−−→ • −−−→ • −−−→ • −−−→ •y y y y

∗ −−−→ • −−−→ • −−−→ •y y y
∗ −−−→ • −−−→ •y y

∗ −−−→ •y
∗

(2.1)

On Barwick’s paper [2], after Definition 5.1, he claims that

Proposition 2.21 The simplicial object Gap[•](C) of ∞-categories serves as a straight-
ening of S .

Therefore we can simply assume that Sn(C) = Gap[n](C)'. Unfortunately, I
don’t have a proof for this fact, or a reference for a proof. In the later parts,
we only tacitly assume this.
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Definition 2.22 The K-Theory space K(C) of C is the loop space of the geometric
realization of S(C), namely Ω|S•(C)| = Ω hocolimm∈∆op Sm(C).

We first claim that K(C) satisfies our prescription:

Proposition 2.23

π0(K(C)) = K0(C).

Proof We compute by Waldhausen’s construction: π0(K(C)) = π1|Gap[•](C)'| =
π1

(⊔
m Gap[m](C)' × ∆m/ ∼). The fundamental group is determined by

the skeleton at m ≤ 2, and note that Gap[0](C)' is a singleton, Gap[1](C)' '
C' gives generators, where each object

∗ −−−→ Xy
∗

in Gap[1](C)' “one-to-one” (∞-categorically, namely, the space of which is
weakly equivalent to) corresponds to X ∈ C, and each object

∗ −−−→ X′ −−−→ Xy y
∗ −−−→ X′′y

∗

(2.2)

in Gap[2](C)' “one-to-one” corresponds to a cofiber sequence X′ → X →
X′′, therefore such a 2-cell gives a relation like [X] = [X′] + [X′′]. The nuance
between groups and abelian groups is resolved by Remark 2.10. �
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Chapter 3

Exact ∞-categories

Roughly speaking, an exact ∞-category is a “stable” ∞-category with cofi-
brations and fibrations: a square of a special kind is a pushout square if and
only if it is a pullback square. Especially, for Waldhausen’s S•-construction,
each square is bicartesian. This enables us to simplify the S•-construction,
the result of which is a generalization of Quillen’s Q-construction. A refer-
ence for this chapter is [1].

Definition 3.1 ([3, Definition 2.1]) An ∞-category C is preadditive if it is pointed,
admits finite products and finite coproducts, and the canonical map C1tC2 → C1×
C2 is an equivalence for any C1, C2 ∈ C. In this case, we denote C1⊕C2 := C1tC2.

Remark 3.2 In a preadditive ∞-category C, we usually denote the zero object by 0,
instead of ∗.

For a preadditive ∞-category C, and A ∈ C, there is a fold map ∇ : A⊕ A '
A t A

(1A,1A)·−−−−→ A and a shear map A⊕ A
p1×∇−−−→ A⊕ A.

Definition 3.3 ([3, Definition 2.6]) A preadditive ∞-category C is additive if and
only if for any A ∈ C, the shear map A⊕ A→ A⊕ A is an equivalence.

Proposition 3.4 ([3, Proposition 2.3, 2.8]) An ∞-category C is (pre)additive if
and only if the homotopy category h C is (pre)additive.

Example 3.5 ([3, Example 2.7]) By Proposition 3.4, an ordinary category C is
additive if and only if N(C) is additive. Moreover, if an ∞-category C is additive,
then ∞-categories equivalent to C are also additive, and for any simplicial set K, the
functor category Fun(K, C) is additive.

It follows from Proposition 3.4 that

Proposition 3.6 ([8, Lemma 1.1.2.10]) Any stable ∞-category is additive.
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3. Exact ∞-categories

Definition 3.7 ([1, Definition 1.3]) An exact ∞-category is an additive ∞-category
C along with two collections of morphisms, called cofibrations and fibrations, respec-
tively, such that

• The ∞-category C along with cofibrations constitutes an ∞-category with
cofibrations;

• The ∞-category Cop along with (opposites of) fibrations constitutes an ∞-
category with cofibrations;

• For all diagrams

X
f−−−→ Y

g
y yg′

Z
f ′−−−→ W

(3.1)

such that f , f ′ are cofibrations and g, g′ are fibrations, it is a pushout square
if and only if it is a pullback diagram. In this case, we call the diagram is
ambigressive.

Remark 3.8 In the diagram 3.1, if it is a pushout square, f is a cofibration, and
g is a fibration, then f ′ is a cofibration and g′ is a fibration, and therefore it is
ambigressive. Dually, if it is a pullback diagram, f ′ is a cofibration, and g′ is a
fibration, then f is a cofibration and g is a fibration, and therefore it is ambigressive.

Definition 3.9 Given an exact ∞-category C. An exact sequence is a diagram (or

a triangle) X′ i−→ X
p−→ X′′ being a part of a pushout (or in fact equivalently,

pullback) diagram

X′ i−−−→ Xy yp

∗ −−−→ X′′

where i is a cofibration and p is a fibration (therefore by the definition of an exact
∞-category, it is ambigressive.). In this case, p (or more imprecisely, X′′) is called
the cofiber of i and i is called the fiber of p.

Remark 3.10 We see that in this case, an exact sequence is both a fiber sequence

and a cofiber sequence. Further more, if M′ i−→ M
p−→ M′′ is a cofiber sequence and

i is cofibration, then M′ i−→ M
p−→ M′′ is an exact sequence, as a consequence of

Remark 3.8. Dually, if M′ i−→ M
p−→ M′′ is a fiber sequence and p is a fibration,

then M′ i−→ M
p−→ M′′ is an exact sequence.

It follows from [6, Appendix A] that

Proposition 3.11 For an exact category (C, E), N(C) along with inflations as cofi-
brations and deflations as fibrations, constitutes an exact ∞-category. On the other
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hand, if C is an ordinary category such that N(C) could be made into an exact ∞-
category, then C has a structure of an exact category (C, E) with E being all exact
sequences (see Definition 3.9) in C.

For sake of completeness, we introduce Quillen’s original definition of exact
categories:

Definition 3.12 (Quillen, see [11, p. 16]) An exact category (C, E) (or by abuse
of notation, C), is given by

1. An additive category C;

2. A collection E of (short) exact sequences 0 → M′ → M → M′′ → 0 (i.e.
M′ → M is a kernel of M → M′′, and M → M′′ is a cokernel of M′ → M)
in C. All such M′ → M are called inflations, and all such M → M′′ are
called deflations.

such that

• Canonical exact sequences (0→ M′ → M′ ⊕M′′ → M′′ → 0) ∈ E ;

• The class of deflations is closed under composition and pullback along arbi-
trary maps; Dually, the class of inflations is closed under composition and
pushout along arbitrary maps;

• For any map M → M′′ in C which admits a kernel, and a map N → M
such that the composition N → M → M′′ is a deflation, then M → M′′ is
also a deflation; dually, for any map M′ → M which admits a cokernel, and a
map M → N such that the composition M′ → M → N is an inflation, then
M′ → M is also an inflation.

Remark 3.13 Quillen originally called inflations admissible monmorphisms, and
deflations admissible epimorphisms. We adopt the terminology in [6, Appendix A].

Remark 3.14 In the [6, Appendix A], one can see that the last axiom of the original
definition of exact categories, Definition 3.12 is redundant.

Example 3.15 Any stable ∞-category is an exact ∞-category, where every mor-
phism is a cofibration and a fibration.

Definition 3.16 A full subcategory D of an additive category C is called an addi-
tive subcategory if it is closed under equivalences and direct summands.

Example 3.17 Given an exact ∞-category C and a full additive subcategoryD ⊆ C
closed under extension. Then D could be made into an exact ∞-category:

• Every morphism in D is a cofibration if it is a cofibration in C and it admits
a fiber (as an object) in D;

• Every morphism in D is a fibration if it is a fibration in C and it admits a
cofiber (as an object) in D.
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3. Exact ∞-categories

Fix an exact ∞-category C. Now let’s define the Q-construction of C. One
is suggested to glimpse the definition of edgewise subdivision, Definition
A.21.

Definition 3.18 The Q-construction Q(C) is defined as a simplicial set: ∆op →
Set, Q(C)n is the collection of functors ε∗(∆n)op → C from the opposite of the
edgewise subdivision of ∆n to the ∞-category C, such that the image of each square
(see diagram A.1 visually for the concept of a square) is ambigressive.

Proposition 3.19 Q(C) is an ∞-category.

Proof ε∗(Λn
k )

op ↪→ ε∗(∆n)op is an inner anodyne (a combinatorial fact),
therefore has the left lifting property with respect to C → ∗ since C is an
∞-category. �

We need to show that

Theorem 3.20 K(C) ' ΩQ(C) as Kan complexes.

To prove this, we construct an auxiliary simplicial Kan complex Q•(C):

Definition 3.21 The Kan complex Qn(C), is defined by the full subcategory of the
core of a mapping space, Hom(ε∗(∆n)op, C)', spanned by functors in Q(C)n. In
other words, Q(C)n is the set of vertices in Qn(C).

We first note that

Proposition 3.22 ([1, Proposition 3.4]) The simplicial Kan complex Q•(C) forms
a complete Segal space.

where the definition of complete Segal spaces is found in [14, Section 4, 6].

It follows from two Quillen equivalences between complete Segal spaces [5,
Section 4] that the geometric realization |Q•(C)| ' Q(C). Therefore we are
left to show that

Lemma 3.23

K(C) ' Ω|Q•(C)|

Proof It follows from the following observations:

1. K(C) ' Ω|Gap[•](C)'| as Kan complexes by Waldhausen’s construc-
tion;

2. |Gap[•](C)'| ' |(Gap[2n+1](C)')n| by Proposition A.23;

3. The subdiagram ε∗(∆n)op → N([2n + 1](2)) (see Example 3.24 for n =
2) induces a functor Fun(N([2n + 1]2), C)→ Fun(ε∗(∆n)op, C);
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4. When restricting the functor above to functors defined in Gap-construction,
the images are ambigressive; This induces a simplicial map Gap[2n+1](C)' →
Qn(C) between Kan complexes by taking the core;

5. The simplicial map above is a weak equivalence of Kan complexes, by
virtue of existence and essential uniqueness of limits. �

Example 3.24 Here is an example for the subdiagram ε∗(∆n)op → N([2n + 1](2))
for n = 2, see also Diagram A.1 and 2.1.

0 −−−→ ? −−−→ ? −−−→ 02 −−−→ 01 −−−→ 00y y y y y
0 −−−→ ? −−−→ 12 −−−→ 11 −−−→ ?y y y y

0 −−−→ 22 −−−→ ? −−−→ ?y y y
0 −−−→ ? −−−→ ?y y

0 −−−→ ?y
0
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Chapter 4

E∞-monoids and Symmetric Monoidal
∞-categories

The motivation of E∞-monoids, roughly speaking, is the same as the one
described in Remark 2.12. Especially, it’s a generalization of the concept
of monoids, where “multiplication” is homotopy-coherently well-defined,
homotopy-coherently commutative and homotopy-coherently associative. Sym-
metric monoidal ∞-categories furnish a rich resource of examples of E∞-
monoids in Kan, the ∞-category of Kan complexes. Roughly speaking, a
symmetric monoidal ∞-category is an ∞-category endowed with a multipli-
cation ⊗ which is homotopy-coherently commutative, homotopy-coherently
associative and an identity. A reference for this chapter is [3]. Further dis-
cussions could be found in Lurie’s [8].

Given an ∞-category C with finite products,

Definition 4.1 An E∞-monoid M in C is a functor M : N(F in∗) → C such
that for each n ≥ 0, the morphisms M(〈n〉) → M(〈1〉) induced by the inert
maps (ρi : 〈n〉 → 〈1〉)1≤i≤n, where ρi : 〈n〉 → 〈1〉, i 7→ 1, and for each j 6= i,
ρ(j) = ∗, exhibits M(〈n〉) as an n-fold power of M(〈1〉) in C. We will sometimes
abuse notation and use the same M for the underlying object M(〈1〉). Denote by
MonE∞(C) the full subcategory of Fun(N(F in∗), C) spanned by E∞-monoids.

We have a natural “multiplication” m : M×M → M defined by M×M ∼−→
M(〈2〉)→ M where the later morphism is induced by 〈2〉 → 〈1〉, ∗ 7→ ∗, 1 7→
1, 2 7→ 1.

Remark 4.2 The concept of E∞-monoid is a counterpart of the concept of monoid
in homotopy theory. The adjective “E∞-” characterizes homotopy coherent com-
mutativity and homotopy coherent associativity. General concepts such as operads,
O-algebras and O-monoids are introduced by Jacob Lurie, [8].
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4. E∞-monoids and Symmetric Monoidal ∞-categories

Proposition 4.3 ([3, Proposition 1.1]) Let M be an E∞-monoid in C. Then the
followings are equivalent:

1. M admits an inverse map i : M→ M, i.e., the composition

M ∆−→ M×M id×i−−→ M×M m−→ M

is homotopic to the identity;

2. The commutative monoid object underlying M in h C is a group object;

3. The shear map s : M×M
p1×m−−−→ M×M is an equivalence.

In this case, we call M an E∞-group and denote by GrpE∞
(C) ⊆ MonE∞(C) the

full subcategory of E∞-groups.

Given that C is presentable, it follows [3, Corollary 4.4] from adjoint functor
theorem that

Proposition 4.4 The inclusion functor GrpE∞
(C) ↪→ MonE∞(C) admits a left

adjoint (−)gp : MonE∞(C)→ GrpE∞
(C), the group completion functor.

We also need an explicit description of the group completion, see [15, Section
2]:

Definition 4.5 Given an E∞-monoid X : N(F in∗) → C. The geometric real-
ization of X, denoted by |X|, is the geometric realization of the simplicial ob-
ject N(ϕ) ◦ X : N(∆op) → C, where the functor ϕ : ∆op → F in∗ is defined by
ϕ([n]) = 〈n〉, and for an increasing map α : [k] → [n] in ∆, ϕ(α) : 〈n〉 → 〈k〉, if
there is an i such that α(i− 1) < j ≤ α(i), then ϕ(α)(j) = i, else ϕ(α)(j) = ∗.

Proposition 4.6 Given an E∞-monoid X : N(F in∗)→ C, we form BX : N(F in∗)→
C by BX(〈n〉) = |X(〈n〉 × −)|. Especially, the underlying space BX(〈1〉) of BX
is just the geometric realization of X. The underlying space of the group comple-
tion is equivalent to ΩBX(〈1〉). Furthermore, (BnX)n≥1(〈1〉) form a delooping of
BX(〈1〉).

We are interested in the special case C = Kan, which we implicitly as-
sume in the later work, of which a bunch of examples come from symmetric
monoidal ∞-categories:

Definition 4.7 ([8, Definition 2.0.0.7]) A symmetric monoidal ∞-category is a
coCartesian fibration of simplicial sets p : C⊗ → N(F in∗) such that for each n ≥ 0,
the inert maps (ρi : 〈n〉 → 〈1〉)1≤i≤n exhibits C⊗〈n〉 as an n-times power (C⊗〈1〉)

n.

The concept of p-coCartesian lift has a counterpart for ordinary categories:

Definition 4.8 Let p : C → D be a functor between categories and f : c1 → c2 be a
morphism in C with image p( f ) = α : d1 → d2. The morphism f is p-coCartesian
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or a p-coCartesian lift of α if it has the following property: For every h : c1 → c3 in
C with image γ = p(h) : d1 → d2 and every β : d2 → d3 such that γ = β ◦ α there
is a unique g : c2 → c3 in C such that β = p(g) and h = g ◦ f .

Definition 4.9 A functor p : C → D is a Grothendieck opfibration if for all c1 ∈ C
and for all morphisms α in D with domain p(c1), there is a p-coCartesian lift
f : c1 → c2 of α.

Example 4.10 ([8, Construction 2.0.0.1]) Given a symmetric monoidal category
C, we can construct a symmetric monoidal ∞-category N(C⊗) → N(F in∗) by
taking the nerve to a Grothendieck opfibration of ordinary categories C⊗ → F in∗,
which is defined by

• Objects: Ob(C⊗) = ⊔
n≥0 Cn. We will denote an object by [C1, . . . , Cn];

• Morphisms: A morphism between [C1, . . . , Cn] and [C′1, . . . , C′m] is given by a
map α ∈ F in∗(〈n〉, 〈m〉) and a collection of morphisms ( f j ∈ C(

⊗
α(i)=j Ci, C′j))1≤j≤m;

• Compositions are naturally defined.

Example 4.11 As a special case of Example 4.10, any commutative monoid, viewed
as a discrete category, could be viewed as a symmetric monoidal category, hence we
can associate an E∞-monoid. See also Remark 4.2. Explicitly, given a commutative
monoid M, we can associate an E∞-monoid N(F in∗)→ Cat∞ by taking the nerve
of the functor XM : F in∗ → Cat, where XM(〈n〉) is the discrete category Mn,
and for α ∈ F in∗(〈m〉, 〈n〉), we set XM(α)(x1, . . . , xm) = (y1, . . . , yn) where
yj = ∏α(i)=j xi.

One notes the similarity between the definition of a symmetric monoidal
∞-category and an E∞-monoid. In fact, composing the straightening (see
Remark 2.14) N(F in∗) → Cat∞ of a symmetric monoidal ∞-category C⊗ →
N(F in∗) with the core functor Cat∞ → Kan, one obtains an associated E∞-
monoid in Kan.

Another important example of symmetric monoidal ∞-category comes from
operations on an ∞-category: Let C be an ∞-category with finite coproducts.
Roughly speaking, the coproduct operation t : C × C → C is commutative
and associative up to a coherent equivalence. To be more precise, one needs
to construct a symmetric monoidal ∞-category Ct whose underlying space
(the subcategory over 〈1〉 ∈ N(F in∗)) is C and whose “multiplication” coin-
cides with t in C. This is called a coCartesian symmetric monoidal structure.
We describe the construction, and for technical details, we refer to [8, Section
2.4.3].

Definition 4.12 ([8, Construction 2.4.3.1]) We define a category Γ∗ as follows:

• The objects of Γ∗ are pairs (〈n〉, i) where ∗ 6= i ∈ 〈n〉◦;
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4. E∞-monoids and Symmetric Monoidal ∞-categories

• A morphism in Γ∗ from (〈m〉, i) to (〈n〉, j) is a map α ∈ F in∗(〈m〉, 〈n〉)
such that α(i) = j.

Definition 4.13 We define the simplicial set Ct equipped with a map Ct →
N(F in∗) by the following universal property: for every simplicial map K →
N(F in∗), we have a bijection

HomN(F in∗)(K, Ct) ∼= HomSet∆(K×N(F in∗) N(Γ∗), C)

Take K → N(F in∗) to be constant functors, we obtain that the fiber of Ct →
N(F in∗) over 〈n〉 could be identified with Cn, similar to the construction of
Example 4.10.

Proposition 4.14 ([8, Remark 2.4.3.4]) As defined above, Ct → N(F in∗) is a
symmetric monoidal ∞-category.

As a result of these preparations of symmetric monoidal ∞-categories and
E∞-monoids, we now define the additive K-theory space for an ∞-category
with finite coproducts C. We note that, the E∞-monoid in Kan associated to
the coCartesian symmetric monoidal structure on C has an underlying space
C', hence by abuse of notation, we also denote by C' the E∞-monoid.

Definition 4.15 The additive K-theory space of C, Kadd(C), is defined as the un-
derlying space of the group completion (C')gp. By abuse of notation, we also denote
by Kadd(C) the group completion itself.
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Chapter 5

A Comparison Theorem and a
Cofinality Theorem

This chapter is devoted to the proof of a cofinality theorem for additive K-
Theory, and the main comparison theorem of the exact K-theory and the
additive K-theory.

Proposition 5.1 (Cofinality for Additive K-Theory, [7, Lecture 18, Prop 4])
Let C be an additive ∞-category and let C0 be a full subcategory such that every ob-
ject of C is a direct summand of an object of C0. Then the diagram

Kadd(C0) −−−→ Kadd(C)y y
π0(Kadd(C0)) −−−→ π0(Kadd(C))

is a pullback square in Kan, where π0-groups are endowed with discrete topologies.

Proof We first give an alternative description of π0(Kadd(C)) (and a similar
one for C0). In fact, it is just the free (abelian) group generated by elements
in C, modulo the relations [X′ ⊕ X′′] = [X′] + [X′′] for X′, X′′ ∈ C. This
implies that, X, X′ have the same image in π0(Kadd(C0)) if and only if there
exists Y ∈ C0 such that X⊕ Y ' X′ ⊕ Y. Since for Z ∈ C, there exists Z′ ∈ C
such that Z⊕ Z′ ∈ C0, the previous condition is equivalent to the existance
of Z ∈ C such that X ⊕ Z ' X′ ⊕ Z, which is equivalent to say that X, X′

have the same image in π0(Kadd(C)). As a consequence, the bottom arrow
is injective.

Since all spaces in question are simple, it suffices to show that the square is
a pullback square after passage to singular (or simplicial) chain complexes
with coefficient Z.

Let A0 = C∗(Kadd(C0)), A = C∗(Kadd(C)), and B0 = C∗(C'0 ), B = C∗(C'), all
of which admit an E∞-algebra structure. We note that there is a C'0 -action
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5. A Comparison Theorem and a Cofinality Theorem

on B0 by multiplication by elements of the form [X] ∈ H0(B0) for X ∈ C0,
and a C'-action on B. By properties of group completion, A0, A are obtained
by inverting the actions on B0, B, respectively. However, since every object
of C is a direct summand of an object in C0, we only need to invert C'0 -action
on B, via the inclusion C'0 ⊆ C', which implies that A ' B(A0, B0, B). We
note that B contains B0 as a direct summand, we deduce the proposition. �

Theorem 5.2 (Comparison, [7, Lecture 18, Thm 10]) Let C be an additive ∞-
category. Regard C as an ∞-category with cofibrations as in Example 2.6 (allowing
only split cofibrations). Then there is a canonical homotopy equivalence Kadd(C)→
K(C).

Proof Our plan is the following: first, we construct a functor Ct ×N(F in∗)
N(∆op) → S (C) over N(∆op), which induces a functor between simpli-
cial objects Y• → S•(C), where Y•, being a simplicial object in Kan, is the
composition of the straightening-then-taking-core of Ct → N(F in∗) with
N(∆op) → N(F in∗). Then we need to show that, this leads to an equiv-
alence between geometric realizations (see Definition 2.22 and Proposition
4.6). This will lead to the result.

Roughly speaking, the functor Ct ×N(F in∗) N(∆op) → S (C) is defined by
(C1, . . . , Cn) 7→ (0 → C1 → C1 ⊕ C2 → C1 ⊕ C2 ⊕ C3 → · · · → C1 ⊕ C2 ⊕
· · · ⊕ Cn). We need to prescribe the evaluation of the functor on higher di-
mensional cells naturally. Instead of directly defining the functor, we obtain
the functor from a functor Ct ×N(F in∗) N(∆op) → F (C) defined by Yoneda
lemma. In light of Definition 4.13 and Proposition 2.17, we need to pre-
scribe a map HomSet∆(K×N(F in∗) N(Γ∗), C)→ HomSet∆(K×N(∆op) N(M), C)
natural in K → N(∆op). This is determined by the expression for objects
above.

Next, we need to study the geometric realizations. First, we note that both
E∞-monoids |Y•| (defined as the homotopy colimit of the simplicial object
in E∞-monoids: we identify each space |Y•| with an E∞-monoid, see B-
construction in Proposition 4.6, which is equivalent to the one obtained
from the coCartesian symmetric monoidal structure) and |S•(C)| (each space
is also an underlying space of an E∞-monoid by considering the coCarte-
sian symmetric monoidal structure) are group-like because they are con-
nected, hence are E∞-groups, which implies that they can be identified
with their group completions respectively. The group completion functor,
being a left adjoint, commutes with homotopy colimits, especially, com-
mutes with geometric realizations. Therefore |Y•| ' |Y•|gp ' |Ygp

• | and
|S•(C)| ' |S•(C)|gp ' |S•(C)gp|. Thus it will suffice to show Lemma 5.3. �

Lemma 5.3 For n ≥ 0, the map Yn → Sn(C), which is equivalent to the core
of the fiber of the functor Ct ×N(F in∗) N(∆op) → S (C) over [n] ∈ ∆op, i.e.
(Cn)' → Sn(C)', induces a homotopy equivalence after group completion.
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Definition 5.4 Given a morphism f : M → N between two E∞-monoids. We
view M acting on N: (m, n) 7→ m + n. We define the one-sided bar construction
B(N, M, ∗) to be the homotopy colimit of the functor N(∆op) → Kan, [n] 7→
N ×M〈n−1〉 ' N ×Mn−1

〈1〉 .

We first admit following lemmas:

Lemma 5.5 Given a morphism f : M → N between two E∞-monoids. The homo-
topy cofiber of f coincides with the one-sided bar construction B(N, M, ∗).

Lemma 5.6 Given a functor F : C → D which is compatible with an M-action
where M is an ∞-monoid and M acts trivially onD. F realizes as a bar construction
C → B(C, M, ∗) if and only if for each object x ∈ D, the bar construction of the
fiber of C over x, B(C ×D D/x, M, ∗) is contractible. In other words, where a map
realizes as a bar construction could be checked pointwisely.

δn : [n − 1] → [n], x 7→ x induces e : Sn(C)' → Sn−1(C)'. Fix X = (0 →
X1 → · · · → Xn−1) ∈ Sn−1(C)'.

Lemma 5.7 The fiber of Sn−1(C)' over X is homotopically equivalent to D',
where D is the full subcategory of CXn−1/ spanned by split cofibrations Xn−1 → X”.

Proof (Lemma 5.3) We start with an examination of the following diagram:

C' η−−−→ Sn−1(C)' × C'
f−−−→ Sn(C)'y yπ

ye

∗ −−−→ Sn−1(C)'
id−−−→ Sn−1(C)'

where η : C' → Sn−1(C)'×C' is the inclusion X 7→ (∗, X), π : Sn−1(C)'×
C' → Sn−1(C)' is the projection (X, Y) 7→ X. f is defined by ((0 →
X1 → · · · → Xn−1), Y) 7→ (0 → X1 → · · · → Xn−1 → Xn−1 ⊕ Y). Our
goal is to show that f becomes an equivalence after group completion, from
which the proposition follows inductively on n. In other words, we need
to show that the square on the right becomes a pullback square after group
completion, or a pushout square after group completion, due to the fact that
GrpE∞

(Kan) is stable. Clearly, the square on the left becomes a pushout
square after group completion, therefore it suffices to show that the outer
square becomes a pushout square after group completion. In fact, the outer
square is a pushout square before group completion, i.e. e realizes as a
homotopy cofiber of C' → Sn(C)'. By preceding lemmas, we are left to
show Lemma 5.8 �

Lemma 5.8 Fix X ∈ C, and let D denote the full subcategory of CX/ spanned by
the split cofibrations X → X′. Then the homotopy cofiber of f : C' → D', C 7→
(X → X⊕ C) is contractible.
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5. A Comparison Theorem and a Cofinality Theorem

Proof Since each cofibration in C splits, the homotopy cofiber of f is con-
nected, therefore group-like. Therefore we only need to show that, f be-
comes an equivalence after group completion.

Let q : D', (X → X′) 7→ X′/X. It is obvious that q ◦ f is homotopically
equivalent to id before group completion. To complete the proof, we need
to show that f ◦ q : D' → D', (X → X′) 7→ (X → X ⊕ (X′/X)) is homo-
topically equivalent to id after group completion. To show this, we first note
that, the “multiplication” (or addition) in D' is given by (X → X′) + (X →
X′′) = X → X′ tX X′′. We “multiply” a simple copy of the identity map
id to f ◦ q and id. In other words, it suffices to show that we can identify
X → X′ tX X′ and X → X′ ⊕ (X′/X) functorially in X → X′. This is given
by a natural map X′ tX X′ → X′ ⊕ (X′/X). �
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Chapter 6

Relations with Classical Constructions

Historically, the first successful higher K-group is obtained from Quillen’s
+-construction:

Definition 6.1 Let (X, x) be a pointed path-connected space and N E π1(X, x) is
a perfect normal subgroup. The plus construction gives us a pointed path-connected
space (X+, x+) along with a continuous map f : (X, x) → (X+, x+) determined
by the following properties:

1. The induced morphism π1( f ) : π1(X, x)→ π1(X+, x+) is a surjection, with
a kernel isomorphic to N;

2. For any local coefficient system L on X+, f∗ : Hn(X, f ∗L) → Hn(X+, L) is
an isomorphism for any n ≥ 0;

3. If g : (X, x) → (Y, y) is a continuous map such that N ⊆ ker(π1(g)), then
there exists a continuous map h : (X+, x+)→ (Y, y) such that h ◦ f ' g.

Quillen showed [16, Theorem 2.1] the existence and the uniqueness (up to
homotopy) of (X+, x+).

Let R be a unital ring. Denote by GL(R) = colimn GLn(R) the general
linear group over R, where inclusion GLn(R) → GLn+1(R) is given by
A 7→

[
A 0
0 1

]
. Set E(R) = colimn En(R), where En(R) ⊆ GLn(R) is the

subgroup of elementary matrices. E(R) is perfect [16, Proposition 1.5]:
E(R) = [E(R), E(R)] = [GL(R), GL(R)]. Denote by BG the classifying space
(a simplicial set) of a group G. Quillen defined the K-theory space of R to
be K0(R) × BGL(R)+, the perfect subgroup in question is E(R). We note
that the ∞-category with cofibrations P(R) defined in Example 2.3 coin-
cides with the cofibrations prescribed in Example 2.6, therefore it follows
from Theorem 5.2 that K(P(R)) ' Kadd(P(R)). Now we will show that

Proposition 6.2

Kadd(P(R)) ' K0(R)× BGL(R)+
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6. Relations with Classical Constructions

We need the following lemma:

Lemma 6.3 For a simplicial monoid M with identity ∗ ∈ M, the bar construction
B(M, M, ∗) is contractible.

Proof

Step 1: We start with the special case that M is just a monoid. Denote E(M)
the category defined by

• Objects: Ob(E(M)) = M;

• Morphisms: Hom(x, y) = { z ∈ M | zx = y };
• Compositions: given u ∈ Hom(y, z) such that uy = z and v ∈

Hom(x, y) such that vx = y, then uvx = z. We define u ◦ v =
uv.

By definition, B(M, M, ∗) = N(E(M)). We note that the identity ∗ ∈
E(M) is the initial object in E(M), hence N(E(M)) is contractible.

Step 2: In general, we need to show that ∗ → B(M, M, ∗) is a weak equiv-
alence of simplicial sets. We note that for each n ∈ N, Mn is a
monoid, hence by the previous step, we can retract B(Mn, Mn, ∗) to
the point of the identity in Mn. However, since the identity is just the
image of ∗ ∈ M0 under degenerate maps, therefore we deduce that
∗ → B(M, M, ∗) is a weak equivalence of simplicial sets by Theorem
A.20. �

Proof (Proposition 6.2) We only need to show that Kadd(P(R))0 ' BGL(R)+,
where Kadd(P(R))0 is the connected component of 0. Denote by F (R) ⊆
P(R) the full subcategory spanned by finitely generated free R-modules. It
follows from Proposition 5.1 that Kadd(P(R))0 ' Kadd(F (R))0. We are left
to show that

Kadd(F (R))0 ' BGL(R)+ (6.1)

Let’s consider F (R)'. Direct sum with R induces a functor R⊕− : F (R)' →
F (R)', subsequently forms a direct system F (R)' R⊕−→ F (R)' R⊕−→ . . . .
Denote by X the (ordinary) colimit in Set∆, which could be identified with
Z× BGL(R). F (R)' acts on the left of F (R)', hence on X. It follows from
the group completion theorem 6.4 that X is homologically isomorphic to the
homotopy fiber of B(X,F (R)', ∗) → B(∗,F (R)', ∗). We note that the one-
sided bar construction B(X,F (R)', ∗) is contractible because it is a filtered
colimit of contractible spaces B(F (R)',F (R)', ∗), thus X is homologically
isomorphic to Kadd(F (R)).

Since both spaces in 6.1 are simple (BGL(R)+ is an H-space, see [16, Propo-
sition 2.9]) and homologically isomorphic, hence equivalent. �
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Theorem 6.4 (Group completion, [10, Ch 4, Thm 5.15]) Suppose that X is a
simplicial set with a right action of a simplicial monoid M. The action of each
vertex of M induces isomorphisms on the homology. Then the diagram

X −−−→ B(X, M, ∗)y y
∗ −−−→ B(∗, M, ∗)

is homology cartesian in the sense that the induced morphism from X to the homo-
topy fiber of B(X, M, ∗)→ B(∗, M, ∗) induces isomorphisms on homology.

Next we describe Quillen’s original Q-construction [11, p. 100]:

Definition 6.5 Let C be an exact category (see Definition 3.12). We form a new
category QC, having the same objects as C, with morphisms defined in the following

way: Let M, M′ ∈ C and consider all diagrams M
p
� N

j
↪−→ M′, where p is a

deflation and j is an inflation. Given a morphism M′ → M′′ represented by the

diagram M′
p′
� N′

j
↪−→
′

M′′, the composition of M′ → M′′ and M → M′ is
represented by M � N ×M′ N′ ↪→ M′′, where the morphisms are read from the
following diagram:

N ×M′ N′ −−−→ N′ −−−→ M′′y y
N −−−→ M′y
M

We claim that Barwick’s Q-construction, Definition 3.18, coincides with Quillen’s
Q-construction 6.5 when C comes from an ordinary exact category:

Proposition 6.6 Given an ordinary exact category (C, E). It follows from Propo-
sition 3.11 that N(C) is an exact ∞-category. Moreover, we have Q(N(C)) is
categorically equivalent to N(QC).

Proof

Step 1: We’d show that, the space of right morphisms HomR
Q(N(C))(X, Y),

as a Kan complex, is weak equivalent to the nerve of the groupoid

G(X, Y) of which an object is X
p
� Z

j
↪−→ Y, where p is a deflation

and j is an inflation, the component in the definition of Quilen’s
Q-construction QC, and morphisms are just isomorphisms between
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6. Relations with Classical Constructions

these components. Unwinding the definitions, an n-simplex of HomR
Q(N(C))(X, Y)

looks like (for n = 3):

Z1 −−−→ Z2 −−−→ Z3 −−−→ Z4 −−−→ Yy y y y
X =−−−→ X =−−−→ X =−−−→ X

=

y =

y =

y
X =−−−→ X =−−−→ X

=

y =

y
X =−−−→ X

=

y
X

Since each square is ambigressive, the arrows except the rightmost
one (in the example above, they are Z1

∼−→ Z2
∼−→ Z3

∼−→ Z4) in the first
row are all isomorphisms, therefore the space of right morphisms is
isomorphic to the nerve of the groupoid G(X, Y). For n = 3, the
diagram above corresponds to a 3-cell in G(X, Y), whose vertices
are X� Z1 → Y, X� Z2 → Y, X� Z3 → Y, and faces are induced
by the isomorphisms on the top line.

Step 2: It follows from the fact that j is a monomorphism that there is
at most one (iso)morphism between two objects in G(X, Y), there-
fore each connected component of N(G(X, Y)) is contractible, from
which we deduce that Q(N(C)) is categorically equivalent to N(QC),
by [9, Proposition 2.3.4.18], a characterization of an n-category via
mapping spaces. �
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Appendix A

Simplicial Sets

A general reference for simplicial sets is [10].

Definition A.1 The category ∆ is the category of finite ordinal numbers with
order-preserving maps. To be more precise, let [n] = {0, 1, . . . , n} be the totally
ordered set with n + 1 elements, then Ob(∆) = {[n] | n ∈ N}, and a morphism
from [m] to [n] is a non-decreasing map [m]→ [n].

There is a natural “model” of ∆ in T op, namely a functor ‖·‖ : ∆→ T op, [n] 7→
‖∆n‖, where ‖∆n‖ is the standard n-simplex in T op: {(x0, . . . , xn) ∈ Rn | x0 +
· · · + xn = 1}. Given a morphism α : [m] → [n] in ∆, the corresponding
‖[m]‖ → ‖[n]‖ is defined by the linear extension of (ej 7→ eα(j))0≤j≤m.

Example A.2 Let X be a topological space. The singular set S(X) is a simplicial set
defined by S(X)([n]) = HomT op(‖∆n‖, X). This will define a functor S : T op→
Set∆.

Example A.3 Let C be a category. Since every partially ordered set could be seen
as a small category, we associate a simplicial set N(C) to C, called the nerve of the
category C, defined by N(C)([n]) = Fun([n], C). Especially, we can associate any
group G a category with only one object canonically. We denote by BG the nerve of
the category in question, and usually call it the classifying space of G.

Definition A.4 A simplicial set is a functor X : ∆op → Set, where Set is the
category of sets.

Example A.5 Denote by ∆n : ∆op → Set, [m] → Hom∆([m], [n]) the repre-
sentable functor. We call ∆n the n-simplex.

Definition A.6 A simplicial map between two simplicial sets is a natural trans-
formation between two functors. Denote by Set∆ = Fun(∆op,Set) the category of
simplicial sets where morphisms are simplicial maps.

As a presheaf category, we have
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A. Simplicial Sets

Proposition A.7 The category Set∆ of simplicial sets is complete and cocomplete,
especially admits products, coproducts, pushouts and pullbacks. The limits and
colimits are computed pointwisely.

Definition A.8 An n-simplex of a simplicial set X : ∆op → Set is an element
xn ∈ X([n]), one-to-one corresponding to a simplicial map ∆n → X by Yoneda
lemma. xn is called degenerate if there is an n − 1-face yn−1 ∈ X([n + 1]) and
α ∈ ∆([n], [n− 1]) such that X(αop)(yn−1) = xn. xn is called non-degenerate if it
is not degenerate.

Example A.9 Fix n ∈ N. There are n + 1 injections [n− 1] → [n]: δj(i) = i if
i < j, and δj(i) = i + 1 if i ≥ j, for 0 ≤ j ≤ n. These induces n + 1 simplicial
maps δj : ∆n−1 → ∆n (called j-th face of ∆n). For k ∈ N, δj([k]) is injective. Fix
0 ≤ k ≤ n, we form the union of n faces, namely Λn

k ([m]) =
⋃

j 6=k δj(∆n−1([m])),
and the boundary ∂∆n([m]) =

⋃
j δj(∆n−1([m])). Λn

k and ∂∆n as subfunctors
of ∆n, form simplicial sets, called the k-th horn of ∆n, and the boundary of ∆n,
respectively. Especially, if k = 0 or k = n, then we say that Λn

k is an outer horn,
otherwise we say that Λn

k is an inner horn.

Definition A.10 A simplicial set is called finite if it contains only a finite number
of non-degenerate simplexes.

The functor ‖·‖ : ∆→ T op extends along the Yoneda embedding ∆→ Set∆
(in fact, a Kan extension), by the following coend expression:

Definition A.11 Given a simplicial set X, we define the geometric realization of
X,

‖X‖ =
∫ [n]∈∆

X([n])× ‖∆n‖

It follows from abstract nonsense that

Proposition A.12 The geometric realization functor ‖·‖ : Set∆ → T op is a left
adjoint to the singular set functor S : T op→ Set∆.

The category Set∆ also admits exponentials:

Definition A.13 Let X, Y be simplicial sets. The mapping space Map(X, Y) is the
simplicial set defined by Map(X, Y)([n]) = HomSet∆(X × ∆n, Y) with natural
choices for Map(X, Y)(αop) for morphisms α in ∆.

There is a canonical simplicial model structure on Set∆:

Theorem A.14 ([10, Section I.11]) The category Set∆ admits model structure,
where cofibrations are pointwise injections and weak equivalences are weak equiva-
lences after geometric realization. With this model structure, Set∆ form a simplicial
model category. The geometric realization functor ‖·‖ along with the singular set
functor S form a Quillen equivalence ‖·‖ a S.
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The fibrations for this model structure are called Kan fibrations, character-
ized by the following property:

Proposition A.15 A simplicial map is a Kan fibration if and only if it has right
lifting property with respect to all horn inclusions Λn

k ↪→ ∆n.

Especially, fibrant simplicial sets for this model structure are called Kan
complexes.

Definition A.16 Let C be a category. A functor ∆op → C is called a simplicial
object in C. Morphisms between simplicial objects are just natural morphisms,
as in the case of simplicial sets. Especially, the simplicial objects in Set∆ are called
bisimplicial sets. The category of bisimplicial sets Set∆2 is equivalent to Fun(∆op×
∆op,Set).

Definition A.17 The diagonal functor ∆ : ∆op → ∆op × ∆op induces a functor
d : Set∆2 → Set∆. The image of a bisimplicial set X is the diagonal simplicial set
of X, denoted by |X|. By definition, |X|([n]) = X([n], [n]).

As the notation indicates, the diagonal simplicial set could be viewed as a
kind of geometric realization:

Proposition A.18 ([10, Exercise II.1.4])

|X| =
∫ [n]∈∆

X([n], •)× ∆n

Definition A.19 A morphism between bisimplicial sets is called a weak equivalence
if it induces a weak equivalence between diagonal simplicial sets.

Notationally, we usually use the subscript for simplicial sets and bisimplicial
sets, say Xn for X([n]), etc. As a consequence of Proposition A.18,

Theorem A.20 ([10, Chapter IV, Proposition 1.7, p. 199]) Given two bisimpli-
cial sets X•,•, Y•,• and a bisimplicial map f•,• : X•,• → Y•,•. If for every [m] ∈ ∆op,
the map fm,• is a weak equivalence, then the induced map | f | between diagonals of
X, Y is also a weak equivalence.

Let’s define the edgewise subdivision:

Denote by ε : ∆→ ∆ the functor given by [n]→ [n]op ? [n] ∼= [2n + 1], where
? is the concatenate of two finite totally ordered sets, [n]op is the opposite
category of [n], which is equivalent to [n], but this notation indicates that
ε(α) is the concatenate of n− α(n− •) and α.

Definition A.21 (edgewise subdivision) Given a simplicial object X : ∆op →
C, we define the edgewise subdivision ε∗X of X to be X ◦ εop, namely the composition

∆op εop

−→ ∆op X−→ C.
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A. Simplicial Sets

Example A.22 ε∗∆2 is the nerve of the category determined by the following dia-
gram:

22y
11 −−−→ 12y y

00 −−−→ 01 −−−→ 02

(A.1)

Usually edgewise subdivision doesn’t “change” the object homotopically:

Proposition A.23 ([1, Section 2]) If X is a simplicial set, then ‖X‖ is homeomor-
phic to ‖ε∗X‖. If X is a bisimplicial set, viewed as a simplicial object in Set∆, then
the geometric realizations of |X| and |ε∗X| are homeomorphic.
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Appendix B

∞-categories

We review some basic concepts of ∞-categories, which is the basic language
of this thesis, and a paradigm of homotopy coherency, see Remark 2.12.
The axioms of categories find their homotopy counterparts. There are many
ways to do this, called different models of ∞-categories. We follow Joyal and
Lurie’s approach. A bibliographical reference for ∞-categories is Lurie’s [9].
A good introduction is Groth’s notes [4].

Definition B.1 A simplicial map X → S is called an inner fibration if it has right
lifting property with respect to all inner horn maps Λn

k ↪→ ∆n for 0 < k < n.

Definition B.2 A simplicial set X is called an ∞-category if the constant map
X → ∗ is an inner fibration.

In other words, a simplicial set X is an ∞-category if and only if it has
extension property for inner horn inclusions Λn

k ↪→ ∆n.

Example B.3 Given an ordinary category C. Then the nerve N(C) is an ∞-
category.

In an ∞-category, vertices are called objects, denoted as x ∈ C; edges are
called morphisms, denoted as f : x → y.

Example B.4 There is a canonical choice of an edge for any objects: the constant
map (or called the degeneracy map) ∆1 → ∆0 induces a map from objects x ∈ C to
morphisms idx (or 1x). If C comes from the nerve of an ordinary category, this idx
just corresponds to the identity of the ordinary category.

Definition B.5 Let K be a simplicial set and C be an ∞-category. A functor
F : K → C is just a simplicial map. A natural transformation is a simplicial map
∆1×K → C. More generally, the space of functors Fun(K, C) is the mapping space
MapSet∆

(K, C).

Next, we define the homotopy category associated to an ∞-category:
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B. ∞-categories

Definition B.6 Let C be an ∞-category and x, y ∈ C. Two morphisms f , g : x → y
are homotopic, denoted as f ' g, if there is a 2-simplex σ : ∆2 → C such that
(σ ◦ δi)i=0,1,2 just correspond to (g, f , idx) via Yoneda lemma, where the notation
is taken from Example A.9.

Proposition B.7 The homotopy relation ' of morphisms from x to y in C is an
equivalence relation. The homotopy class of a morphism f : x → y is denoted by
[ f ].

The homotopy category is defined by these homotopy classes:

Definition B.8 Let C be an ∞-category. The homotopy category h C is defined by:

• Objects: objects of C;

• Morphisms: Homh C(x, y) is the homotopy classes of morphisms x → y;

• Compositions: Let f : x → y and g : y → z be two morphisms. We form
an inner horn H : Λ2

1 → C such that one face H ◦ δ0 corresponds to g via
Yoneda lemma, and another face H ◦ δ2 corresponds to f . We extend H to
H̃ : ∆2 → C and H̃ ◦ δ1 corresponds to a morphism h : x → z. Then we
impose [h] = [g] ◦ [ f ] (see Example A.9 for notations).

This allows us to define the concept of a subcategory, which is not found in
Groth’s notes [4].

Definition B.9 A full subcategory D of an ∞-category C is a simplicial subset of
C spanned by a subset of vertices. In other words, a simplex of C lies in D if and
only if all vertices of the simplex lies in D.

Definition B.10 ([9, Section 1.2.11]) A subcategory D of an ∞-category C is a
simplicial subset of C spanned by a subcategory of h C, which means that there is a
subcategory E ⊆ h C, such that a simplex of C lies in D if and only if all vertices of
the simplex lies in D, and for every edge f of the simplex, [ f ] ∈ E .

Definition B.11 The core C' of an ∞-category C, is the subcategory spanned by
all objects and all equivalences. In other words, it is determined by the core of the
homotopy category, (h C)'. It is the maximal sub Kan complex of C.

We need the concept of mapping spaces between two objects in an ∞-
category.

Definition B.12 A simplicial category, or a simplicially enriched category, is a
category enriched in the category of simplicial sets. To be more precise, a simplicial
category C is given by the data of a set of objects Ob(C), a map MapC : Ob(C)×
Ob(C)→ Set∆ and a composition given by a collection of simplicial maps (◦ : MapC(y, z)×
MapC(x, y)→ MapC(x, z))x,y,z∈Ob(C) satisfying
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• The diagram

MapC(z, w)×MapC(y, z)×MapC(x, y)
(◦,id)−−−→ MapC(y, w)×MapC(x, y)

(id,◦)
y y◦

MapC(z, w)×MapC(x, z) ◦−−−→ MapC(x, w)

commutes for all x, y, z, w ∈ Ob(C);

• For each x ∈ Ob(C), there exists a vertex idx ∈ MapC(x, x)0 (hence unique
by a simple argument) such that idx ◦ and ◦ idx are identities.

A functor F : C → D between two simplicial categories is given by the data of
a map F : Ob(C) → Ob(D) and a collection of simplical maps (MapC(x, y) →
MapD(Fx, Fy))x,y∈Ob(C) each of which is compatible with the composition and pre-
serves identities. An object x of C is usually denoted by x ∈ C instead of the clumsy
notation x ∈ Ob(C). The category of simplicial categories, whose morphisms are
functors is denoted by sCat.

Now we want to associate to an ∞-category a simplicial category such that
simplicial sets Map(x, y) (or a fibrant replacement, because we usually call
Kan complexes “spaces”) just act as mapping spaces. More generally, we can
do the same thing for general simplicial sets. To do this, we first associate a
simplicial category to standard simplexes ∆n, see [9, Definition 1.5.1.1] for a
reference:

Definition B.13 The simplicial category C[∆n] is defined by

• Ob(C[∆n]) = [n];

• For 0 ≤ i, j ≤ n, MapC[∆n](i, j) is empty if i > j, and N(Pi,j) otherwise,
where Pi,j is the poset of subsets I ⊆ {i, i + 1, . . . , j} such that i, j ∈ I,
ordered by inclusion.

C actually defines a functor ∆→ Set∆, where for each α ∈ ∆([m], [n]), we associate
a natural functor C[∆m]→ C[∆n].

We extend the definition of C to any simplicial sets

Definition B.14 Let X be a simplicial set. The associated simplicial category C[X],
is defined by the coend expression

C[X] =
∫ [n]∈∆

X([n])× C[∆n]

where the notation X([n]) × C[∆n] just denotes the “disjoint union” of X([n])’s
copies of C[∆n].

In practice, we need to compute mapping spaces. The preceding definition is
not only a bit complicated, but also doesn’t directly lead to Kan complexes.
Instead, we define the space of right morphisms:
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B. ∞-categories

Definition B.15 ([9, Section 1.2.2]) Let C be an ∞-category and x, y ∈ C. The
space of right morphisms from x to y is a simplicial set HomR

C (x, y), defined as
follows: the set of n-simplexes is defined to be the set of all n + 1-simplexes of C
such that the n-face spanned by first n + 1 vertices is just the constant at x, and the
last vertex is just y. Face and degeneracy maps are naturally defined.

Proposition B.16 ([9, Proposition 1.2.2.3]) Let C be an ∞-category and x, y ∈
C. The space of right morphisms from x to y is a Kan complex, weak equivalent to
MapC(x, y).

Let’s then define the join construction, the overcategory/undercategory and
limits/colimits.

Definition B.17 ([4, Proposition 2.23]) Let C be an ∞-category. The object x ∈
C is called final if for every simplicial sphere α : ∂∆n → C such that α(n) = x can
be extended into an entire n-complex ∆n → C. Similarly, x ∈ C is called initial if
for every simplicial sphere α : ∂∆n → C such that α(0) = x can be extended into
an entire n-complex ∆n → C. A zero object of C is an object being both initial and
final. We will say that C is pointed if it contains a zero object, usually denoted by
∗ ∈ C.

Definition B.18 ([4, Definition 2.11]) Let K and L be simplicial sets. The join
K ? L of K and L is the simplicial set defined by

(K ? L)n = Kn ∪ Ln ∪
⋃

i+j+1=n

Ki × Lj

the structure maps are defined naturally.

Geometrically, the ‖K ? L‖ is the union of unit intervals lxy connecting x, y
where x run through points in ‖K‖ and l runs through points in ‖L‖. Espe-
cially, if K is a single point, then K ? L is called the left cone on L; if L is a
single point, then K ? L is called the right cone on K.

Definition B.19 ([9, Prop 1.2.9.2, 1.2.9.3]) Let p : K → C be a map of simplicial
sets and C be an ∞-category. The ∞-category of objects of C over p, C/p, is defined
by the universal property:

HomSet∆(Y, C/p) ∼= Hom(Set∆)K/
(Y ? K, C)

functorial in Y ∈ Set∆, where K → Y ? K is naturally defined. Similarly, the
∞-category of objects of C under p, Cp/, is defined by replacing Y ? K by K ? Y in
the preceding universal property.

Definition B.20 Let C be an ∞-category, and p : K → C a functor. A colimit for
p is an initial object of Cp/, and a limit for p is a final object of C/p.
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Definition B.21 The product of a collection (Xi)i∈I of objects in an ∞-category C
is defined to be a limit of the functor I → C where I is viewed as a discrete simplicial
set, usually denoted as ∏i∈I Xi. If I is the finite set {1, 2, . . . , n}, we also denote
the product by X1 × X2 × · · · × Xn. Dually, the coproduct of (Xi)i∈I is a colimit
of the functor in question, usually denoted as

⊔
i∈I Xi, and if I = {1, 2, . . . , n}, we

denote the product by X1 t X2 t · · · t Xn. If C is pointed, we usually denote the
coproduct by

∨
i∈I Xi and X1 ∨ X2 ∨ · · · ∨ Xn respectively.

In order to distinguish from the limits/colimits in ordinary categories, we
usually call them homotopy limits/colimits.

Definition B.22 An ∞-category C is called complete if it admits all limits, and
cocomplete if it admits all colimits, finitely complete if it admits all finite limits
(namely, the limits exist for any functor K → C where K is a finite simplicial set),
and finitely cocomplete if it admits all finite colimits.

Example B.23 Let C be an ordinary category. In N(C), the homotopy limits/col-
imits coincide with the usual limits/colimits in C.

We define the concept of a simplicial object in an ∞-category:

Definition B.24 Let C be an ∞-category. A simplicial object in C, is a functor
N(∆op)→ C.

Definition B.25 The geometric realization of a simplicial object X : N(∆op)→ C,
is simply the homotopy colimit of X.

Definition B.26 ([8, Definition 1.1.1.4]) Let C be a pointed ∞-category. A tri-
angle in C is a diagram ∆1 × ∆1 → C depicted as

X
f−−−→ Yy yg

∗ −−−→ Z

We will generally indicate a triangle by specifying only the pair of maps X
f−→

Y
g−→ Z with the data of the diagram being implicitly assumed. We will say that a

triangle in C is a fiber sequence if it is a pullback square, and a cofiber sequence if it
is a pushout square.

Definition B.27 ([8, Definition 1.1.1.6]) Let C be a pointed ∞-category contain-
ing a morphism g : X → Y. A fiber of g is a fiber sequence W → X

g−→ Y, and a
cofiber of g is a cofiber sequence X

g−→ Y → Z. By abuse of terminology, we also
call W to be the fiber of g, and Z to be the cofiber of g, denoted by W = fib(g) and
Z = cofib(g).

Given these, we can define stable ∞-categories:
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B. ∞-categories

Definition B.28 ([8, Definition 1.1.1.9]) An ∞-category C is stable if it satifies
the following conditions:

1. It is pointed, i.e. there exists a zero object ∗ ∈ C;

2. Every morphism in C admits a fiber and a cofiber;

3. A triangle in C is a fiber sequence if and only if it is a cofiber sequence.

Proposition B.29 ([8, Lemma 1.1.2.10]) Let C be a stable ∞-category, then the
homotopy category h C is additive.

Proposition B.30 ([8, Proposition 1.1.3.4]) Let C be a pointed ∞-category. Then
C is stable if and only if the following conditions are satisfied:

1. The ∞-category C is finitely complete and finitely cocomplete;

2. A square ∆1 × ∆1 → C is a pushout if and only if it is a pullback.
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