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Abstract. Derived de Rham cohomology turns out to be important in p-adic
geometry, following Bhatt's discovery [Bha12] of conjugate filtration in char
p, de-Hodge-completing results in [Bei12]. In [Kal18], Kaledin introduced an
analogous de-completion of the periodic cyclic homology, called the polynomial
periodic cyclic homology, equipped with a conjugate filtration in char p, and
expected to be related to derived de Rham cohomology.

In this article, using genuine equivariant homotopy structure on Hochschild
homology as in [ABG+18, BHM22], we give an equivariant description of
Kaledin's polynomial periodic cyclic homology. This leads toMorita invariance
without any Noetherianness assumption as in [Kal18], and the comparison to
derived de Rham cohomology becomes transparent. Moreover, this description
adapts directly to �topological� analogues, which gives rise to a de-Nygaard-
completion of the topological periodic cyclic homology over a perfectoid base.
We compare it to topological Hochschild homology over Fp, and produce a
conjugate filtration in char p from our description.

1. Introduction

Grothendieck's algebraic de Rham cohomology, introduced in [Gro66], turns out
to be an important tool to study the cohomology of smooth schemes. However, it
does not behave well beyond the smooth case. Illusie, following ideas of Quillen,
introduced derived de Rham cohomology , along with its Hodge-completion, in [Ill72,
Ch. VIII].

Hodge-completion makes derived de Rham cohomology easier to control, since
the associated graded pieces are given by shifts of (derived) exterior powers of the
cotangent complex. In particular, it coincides with algebraic de Rham cohomology
for smooth schemes.

On the other hand, (non-Hodge-completed) derived de Rham cohomology was
intractable until Bhatt's discovery in [Bha12] of conjugate filtration on it in char
p, whose associated graded pieces are equivalent to shifts of Frobenius twists of
algebraic differential forms. He also observed the triviality of derived de Rham
cohomology after rationalization. Using this new tool, he identified derived de
Rham cohomology with crystalline cohomology for lci maps between Z/pr-schemes.
Later on, this non-Hodge-complete version becomes useful in p-adic geometry. For
example, Fontaine's period rings Acris and Cst are equipped with non-complete
Hodge-filtration, and Bhatt applied this non-Hodge-complete version to prove some
Beilinson's conjectures in [Bei12].

Periodic cyclic homology is a noncommutative counterpart of Hodge-completed
derived de Rham cohomology, defined for general DG-categories. For morphisms of
Q-schemes, the relation is particularly simple: periodic cyclic homology is a product
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of shifts of derived de Rham cohomology, as recently shown by Konrad Bals in
full generality in [Bal24]. This relation was firstly discovered by Loday�Quillen for
smooth morphisms of Q-schemes, cf. [Lod98, §5.1.12], and studied in [TV11]. For
schemes beyond char 0, it was studied in [Maj96]. Breakthroughs were made in
[BMS19, Ant19], which proved that, there is a complete filtration on periodic cyclic
homology, whose associated graded pieces are shifts of Hodge-completed derived de
Rham cohomology.

In view of usefulness of non-Hodge-completed derived de Rham cohomology
in p-adic geometry, it is natural to ask whether there is a �non-Hodge-comple-
tion� of periodic cyclic homology for DG-categories, which carries a filtration with
associated graded pieces being shifts of non-Hodge-completed derived de Rham
cohomology? In [Kal18], following Kontsevich's suggestion [Kon08, 2.32], Kaledin
defined polynomial periodic cyclic homology , equipped with a conjugate filtration
in char p (when p=2, it is later constructed in [Kal17]), whose associated graded
pieces are equivalent to shifts of Frobenius twisted Hochschild homology. Using this,
he showed that the conjugate-completion of polynomial periodic cyclic homology,
called co-periodic cyclic homology , is a derived Morita invariant when the base is
Noetherian. Moreover, he expected that polynomial periodic cyclic homology is
closely related to derived de Rham cohomology.

As explained in [Kal18], Kaledin's defines polynomial periodic cyclic homology
and deals with it by explicit manipulations of chain complexes, which makes the
arguments technical and difficult, and the homotopy-theoretic functoriality of this
construction becomes opaque. The main goal of this article is to give a �more
invariant treatment� as he wished in the introduction, which overcomes these diffi-
culties.

The key to our description is the genuine equivariant homotopy structure on the
usual Z-linear Hochschild homology. More precisely, let C be a DG-category. Then
the Hochschild homology of C, being a Borel T-equivariant Z-module spectrum,
has the formula

HH(C/Z)=THH(C)
THH(Z)
L Z:

This admits an obvious cyclonic (à la [BG16]) structure: the T-equivariant ring
Z is the underlying object of the constant Tambara functor Z, and the universal
property of THH in [ABG+18] gives rise to a map THH(Z)!Z of T-E1-rings.
This gives rise to an enhancement

HH(C/Z)=THH(C)
THH(Z)
L Z

as a Z-module in cyclonic spectra. This was generalized to a genuine version of
factorization homology in [BHM22]. However, up to our knowledge, such a genuine
equivariant homotopy structure on Z-linear Hochschild homology does not seem to
be studied in the literature. By definition, such an enhancement is a derived Morita
invariant.

Remark 1.1. This genuine equivariant homotopy structure has other applications.
In a companion paper [Mao24], we use a �thickening� of it to define prismatic
Hochschild homology. In our forthcoming paper [Mao], we use a similar genuine
equivariant structure to streamline Kaledin's Hochschild�Witt homology, a non-
commutative counterpart of de Rham�Witt complex.
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It turns out that such a structure contains enough information to recover poly-
nomial periodic cyclic homology. Recall that, in terms of explicit chain complexes,
the usual Tate construction involves a product totalization in one direction, and
Kaledin's polynomial periodic cyclic homology is taking the direct sum totalization
instead, so that it has good colimit-preserving properties. Inspired by this, we
introduce the following definitions:

Definition 1.2. (Definitions 2.1 and 3.3) The (Z-)de-completed T-Tate con-
struction (¡)�ZT is the filtered-colimit-preserving approximation of the composite
functor

ModZ(Spg
<T)¡! SpBT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)tT

Sp:

The polynomial periodic cyclic homology HPpoly(C/Z) of a DG-category C is defined
to be HH(C /Z)�ZT, applying the de-completed T-Tate construction to Hochschild
homology HH(C/Z).

The same construction works for any t-bounded animated ring as base in place
of Z, as done in the main text.

Remark 1.3. The de-completed Tate construction depends on the choice of base.
However, in some cases, it does not quite depend on that. We will prove relevant
results in Section 4.

From this description, it is immediate that polynomial periodic cyclic homology
is rationally zero (Remark 2.9), since the functor ModZ(Spg

<T)! SpBT becomes
an equivalence after rationalization. With slightly more efforts, we show that

Proposition 1.4. (Proposition 4.4) Let C be a smooth and bounded DG-cate-
gory1.1. Then the assembly map HPpoly(C/Z)!HP(C/Z) is an equivalence after
profinite completion.

Note that, for every quasicompact quasiseparated schemeX, its derived category
D(X) is bounded, by [BvdB03, Cor 3.1.8]. When X is in addition smooth, then its
derived category D(X) is also smooth. We refer to [Orl16] for general discussions.
This proposition, along with colimit-preservation of de-completed Tate construc-
tion, implies that, on animated rings, the polynomial periodic cyclic homology is
left Kan extended from polynomial rings, and thus it coincides with various adhoc
constructions in the literature1.2, such as in [BMS19, AMMN22]. Consequently, we
address Kaledin's expectation in the following.

Proposition 1.5. (Construction 4.7) Let R be a commutative ring. Then there
exists a functorial filtration FilHKR

� on the profinite completion HPpoly(R/Z)^ of
polynomial periodic cyclic homology with associated graded pieces equivalent to shifts
of derived de Rham cohomology dRR/Z after profinite completion.

Our description also suggests a �topological� analogue.

Definition 1.6. (Definition 4.8) Let S be a perfectoid ring, and C a DG-cate-
gory over S. Then topological polynomial periodic cyclic homology TPpoly/S(C) is
defined to be THH(C)�THH(S)T, defined by applying THH(S)-de-completed T-Tate
construction to topological Hochschild homology THH(C).

1.1. Smooth DG-categories are necessarily modules categories over smoothE1-rings, by [Lur18,
Prop 11.3.2.4]. A DG-category is bounded if, for every pair (x; y) of compact objects, the mapping
Z-module spectrum Hom(x; y)2D(Z) has bounded Tor-amplitude (or equivalently, t-bounded,
since Z is of finite flat dimension).

1.2. Also compare with [Man24, §1], and Devalapurkar�Hahn�Raksit�Yuan as mentioned in
[Man24, Rem 1.6].
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Note that this is an arena where explicit chain complex manipulations cannot
arrive. Previous results for polynomial periodic cyclic homology adapts to its topo-
logical analogue as well:

Proposition 1.7. (Corollary 4.11) Let S be a perfectoid ring, and R a p-
completely smooth and bounded DG-category over S. Then the assembly map
TPpoly/S(R)! TP(R) is an equivalence after (p; ker(�))-completion, where � :
Ainf(S)�S is Fontaine's map.

Proposition 1.8. (Construction 4.12) Let S be a perfectoid ring, and R a
commutative S-algebra. Then there exists a functorial filtration FilM� on the p-com-
pleted topological polynomial periodic cyclic homology TPpoly/S(R)p^ with associated
graded pieces equivalent to shifts of Frobenius twisted prismatic cohomology 'A��R/A
after p-completion, where A :=Ainf(S).

It seems slightly surprising that cyclotomic THH (with THH(S)-module struc-
ture) is already enough to de-Nygaard-complete topological periodic cyclic homology,
but this phenomenon is demystified by Efimov's rigidity of localizing motives
(Remark 4.16).

As for noncommutative geometry on its own, we give two proof for the following
comparison, due to Kaledin in [Kal20, Cor 11.15], but our proof is much simpler.

Proposition 1.9. (Corollary 5.10) Let C be a DG-category over Fp. Then the
polynomial periodic cyclic homology HPpoly(C/Fp) is equivalent to THH(C)[�¡1] as
ZtT-module spectra.

We also produce a conjugate filtration on polynomial periodic cyclic homology
in char p in Section 6, and prove that

Proposition 1.10. (Corollary 6.21) Let k be a commutative Fp-algebra, and C
a DG-category over k. Then the conjugate filtration on HPpoly(C/k) is complete in
the following two cases:

1. C=D(R) for some (¡1)-connective E1-k-algebra R (which includes all asso-
ciative k-algebras R);

2. C=D(X) for a quasicompact quasiseparated k-scheme X.

Remark 1.11. In comparison Efimov's refined negative cyclic homology and its
continuation in Scholze's ongoing work1.3 on refined TC¡, as mentioned above, in
Remark 4.16, we explain that topological Hochschild homology as a cyclotomic
spectrum already sees �all� p-adic formal information. However, their versions cap-
ture rigid analytic information. For example, for smooth Fp-schemes, their versions
see rigid cohomology. It might be worth understanding whether equivariant homo-
topy theory could say something for their versions as well.

Notation 1.12. Let G be a finite group. We denote by SpgG the symmetric monoidal
1-category of genuine G-spectra, by MackGcoh(k) the abelian category of k-linear
cohomological G-Mackey functors (we omit k when k=Z), and by Spg

<T (resp.
SpgpT) the symmetric monoidal 1-category of cyclonic (resp. p-cyclonic) spectra
as in [ BG16].

1.3. An abstract, along with recordings, of the talk can be found at https://www.mpim-
bonn.mpg.de/node/13359.
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2. A de-completion of Tate construction

Let k be a commutative ring, and G a finite group or T. Recall that the G-
Tate construction (¡)tG :D(k)BG!D(k) does not preserve filtered colimits. In
this section, we try to �de-complete� it when the input is further equipped with a
genuine equivariant structure. When G=Cp, we will show that it can be expressed
in terms of the geometric fixed points. We will also establish a de-completed version
of the Tate orbit lemma.

Definition 2.1. Let G be a finite group (resp. T), and A an E1-algebra in the
symmetric monoidal 1-category SpgG (resp. Spg

<T) of G-spectra (resp. cyclonic
spectra). Then

� The (A-)de-completed homotopy G-fixed points (¡)�AG :RModA(SpgG)!
Sp (resp. RModA(Spg

<T)! Sp) is the filtered-colimit-preserving approxi-
mation of the homotopy G-fixed points (¡)hG :RModA(SpgG)! Sp (resp.
RModA(Spg

<T)! Sp), equipped with an assembly map (¡)�AG! (¡)hG.
We omit �A-� when the context is clear.

� The (A-)de-completed G-Tate construction (¡)�AG : RModA(SpgG)! Sp
(resp. RModA(Spg

<T)! Sp) is the filtered-colimit-preserving approxi-
mation of the G-Tate construction (¡)tG : RModA(SpgG)! Sp (resp.
RModA(Spg

<T)! Sp), equipped with an assembly map (¡)�AG! (¡)tG
which canonically fits into a commutative diagram

(¡)�AG ¡! (¡)hG

 
¡

 
¡

(¡)�AG ¡! (¡)tG
: (2.1)

Remark 2.2. Let G be a finite cyclic group (resp. T), and A a commutative algebra
in E :=SpgG (resp. E :=Spg

<T). Then the diagram (2.1) is Cartesian in the1-cate-
gory FunEx(E ;Sp): the fiber of the canonical natural transformation (¡)hG! (¡)tG
is (¡)hG2FunEx(E ;Sp), which preserves filtered colimits as well, and consequently,
the diagram (2.1) induces an equivalence on fibers of vertical arrows.

Remark 2.3. Let G be a finite group (resp. T), and A!B a map of E1-algebras
in the symmetric monoidal 1-category E :=SpgG (resp. E :=Spg

<T) of G-spectra
(resp. cyclonic spectra). Then the assembly maps on compact objects of RModB(E)
induces �relative� assembly maps (¡)�AG! (¡)�BG and (¡)�AG! (¡)�BG, which
fits into a commutative diagram

(¡)�AG ¡! (¡)�BG

 
¡

 
¡

(¡)�AG ¡! (¡)�BG

which is Cartesian by Remark 2.2.
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Remark 2.4. Let G be a finite group (resp. T), and A an E1-algebra in the sym-
metric monoidal 1-category E := SpgG (resp. E := Spg

<T) of G-spectra (resp.
cyclonic spectra). Let A! Ah denote the Borel completion of A. Then it fol-
lows immediately from the definitions that the de-completed homotopy G-fixed
points (¡)�AG factors as

RModA(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
ALAh RModAh(E)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
�AhG Sp

and similarly for the de-completed G-Tate construction. Roughly speaking, it does
not hurt to replace all genuine equivariant bases by their Borel completions. How-
ever, sometimes it seems to be convenient to consider genuine equivariant bases.

Remark 2.5. Let G be a finite group, and A an E1-algebra in SpgG. Then the lax
symmetric monoidal structure on the homotopy fixed points (¡)hG (resp. the Tate
construction (¡)tG) gives rise2.1 to a lax symmetric monoidal structure on the de-
completed homotopy fixed points (¡)�AG (resp. the de-completed Tate construction
(¡)�AG). The assembly maps are equipped with a lax symmetric monoidal structure
as well. In particular, the objects M �AG (resp. M�AG) carries a canonical AhG-
(resp. AtG-)module structure, which is functorial in M 2ModA(SpgG).

Remark 2.6. In desirable situations, the A-de-completed homotopy G-fixed points
(resp. G-Tate construction) does not quite depend on A. We discuss some indepen-
dences of this form in Section 4.

Remark 2.7. Let G be a finite group, and A an E1-algebra in SpgG. Recall
that the symmetric monoidal 1-category SpgG is rigid, thus the forgetful functor
ModA(SpgG)!ModA(SpBG) factors through the rigidification (ModA(SpBG))rig of
the target, and the A-de-completed G-Tate construction (¡)�AG coincides with
the composite

ModA(SpgG)¡! (ModA(SpBG))rig!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)tG;rig
Sp;

which can be checked by restricting to compact objects of ModA(SpgG). The same
holds for de-completed homotopy G-fixed points.

Remark 2.8. Let A be an E1-algebra in D(Z)
Spg
<T. Recall that, for every A-

module M in Spg
<T and every positive integer n2N>0, the canonical maps

M tT/n ¡M tT
AtT AtCn¡!M tCn

are equivalences, [NS18, Lem IV.4.12]. It follows that, the canonical maps

M�AT/n ¡M�AT
AtT AtCn¡!M�ACn

are equivalences as well. Consequently, up to profinite completion, the A-de-com-
pleted T-Tate construction M�AT can be recovered from de-completed Cn-Tate
constructions, where n runs through all positive integers. This gives rise to a lax
symmetric monoidal structure on the profinitely completed de-completed T-Tate
constructure (M�AT)^.

Remark 2.9. Let k be a commutative ring. Then the constant Green functor k can
be viewed as an object of D(Z)
Spg

<T. Then for every n2N>0, we have

(k
�T
1 [T/Cn]+)hT
Z

LQ' 0' (k
�T
1 [T/Cn]+)tT
Z

LQ:

2.1. Here the same argument does not work for G=T.
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Consequently, the rationalized de-completed T-Tate construction (¡)�kT vanishes.
Combining with Remark 2.8, we see that the de-completed T-Tate construction
(¡)�kT can be completely recovered from de-completed Cn-Tate constructions,
where n runs through all positive integers.

The Tate orbit lemma admits a de-completion. We first observe that, since Cp is
a simple group2.2, the de-complete Cp-Tate construction has a fairly simple formula:

Lemma 2.10. Let A be an E1-algebra in the symmetric monoidal category SpgCp

of Cp-spectra. Then the A-de-completed Cp-Tate construction (¡)�ACp coincides
with the composite functor

RModA(SpgCp)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp
D(A�Cp)¡!D(AtCp)

where the second functor is the base change along the map A�Cp!AtCp of E1-rings.
Moreover, when A is an E1-algebra in SpgCp, this identification is (lax) symmetric
monoidal.

Proof. It suffices to restrict to compact objects of RModA(SpgCp). For compact
objects, there are many ways to see this. For example, the functor (¡)tCp vanishes
on induced Cp-spectra, thus it canonically factors through D(A�Cp) in PrL (here we
use the fact that Cp is a simple group), cf. [AMR21, §5], and then to see that the
result functor D(A�Cp)!D(AtCp) in PrL coincides with the base change, it suf-
fices to check on the generator, which is straightforward. The symmetric monoidal
structure follows from a similar argument. �

Corollary 2.11. Let A be an E1-algebra in the symmetric monoidal category
SpgCp of Cp-spectra. Then the A-de-completed Cp-Tate construction (¡)�ACp :
RModA(SpgCp)!D(AtCp) is strongly continuous2.3.

Corollary 2.12. Let A be an E1-algebra in the symmetric monoidal category
SpgCp of Cp-spectra. Then the A-de-completed Cp-Tate construction (¡)�ACp is
symmetric monoidal.

Lemma 2.13. Let A be a bounded below E1-algebra in cyclonic spectra. Then the
p-completed A-de-completed T-Tate construction2.4

((¡)�AT)p^ :RModA(Spg
<T)¡!D(AtT)p^;

factors as2.5

RModA(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ACp

RModAtCp(Sp
gp(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
A
tCp

(T/Cp)

D(AtT)p^

in PrStL .

2.2. In this article, we only consider cyclic group actions, but the argument works for any
simple group.

2.3. A functor F :C!D in PrStL is strongly continuous if its right adjoint FR :D!C preserves
filtered colimits. When C is compactly generated, it is equivalent to F preserving compact objects.

2.4. Note that the forgetful functor Spg
<T! SpgpT induces an equivalence on p-complete

objects, thus we could work p-typically throughout.

2.5. Thanks to Remark 2.4, it does not matter what cyclonic structure on AtCp that we put.
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Proof. Since every functor preserves filtered colimits, it suffices to check on compact
objects in RModA(Spg

<T), and this follows from Corollary 2.11 and the Tate orbit
lemma (since A is bounded below, so is A
�T

1 [T/Cm]+ for every m2N>0). �

The same argument works for finite cyclic groups (for which we can further keep
track of the lax symmetric monoidal structure on the de-completed Tate construc-
tion).

Lemma 2.14. Let r2N>0, and A a bounded below E1-(resp. E1-)algebra in Cpr-
spectra. Then the A-de-completed Cpr-Tate construction

(¡)�AT :ModA(SpCpr)¡!D(AtCpr);

as a presentable (resp. lax symmetric monoidal) functor, factors as

ModA(SpgCpr)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ACp
ModAtCp(Sp

gp(Cpr/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
�
A
tCp

¡
Cpr/Cp

�
D(AtCpr):

Remark 2.15. Let k be a commutative ring. By Remarks 2.8 and 2.9 and Lemma 2.14,
we can also keep track of the lax symmetric monoidal structure on the p-com-
pleted de-completed T-Tate construction ((¡)�kT)p^, showing that, as an exact
lax symmetric monoidal functor, it factors through the composite exact symmetric
monoidal functor

Modk(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

Modk�Cp(Sp
g<(T/Cp))¡!ModktCp(Sp

g<(T/Cp));

where the remaining functor ModktCp(Sp
g<(T/Cp))!D(A) is the limit of de-com-

pleted homotopy Cpr-fixed points along r 2N (which at least a priori does not
necessarily preserve filtered colimits).

3. Polynomial periodic and negative cyclic homology

We briefly review Kaledin's polynomial periodic cyclic homology of cyclic objects,
and then describe it in terms of the de-completed T-Tate construction, informally
explaining why it coincides with Kaledin's original construction.

Let k be a commutative ring, and X� :�op!Modk a cyclic objects in k-modules.
Recall that, for every [n]�2�op, the k-module Xn :=X�([n]�) carries an k-linear Cn
action, which gives rise to a 2-periodic complex

� � �                                           1¡�n Xn                       Nn Xn                                           1¡�n Xn                       Nn � � �
weight ¡1 0 1

of k-modules, where �n :Xn!Xn is the generator of Cn, andNn :=1+�n+ ���+�nn¡1

is the Cn-norm. This complex represents the shifted Tate construction Xn
tCn[¡1].

These complexes compile into a double complex

��� ��� ���

 
¡

 
¡

 
¡

� � �                                 1¡�
X1               

N
X1                                 

1¡�
X1               

N � � �

 
¡

 
¡

 
¡

� � �                                 1¡�
X0               

N
X0                                 

1¡�
X0               

N � � �
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where we surpress the subscripts of N and �, and vertical differentials are appro-
priately 2-periodically given. Then

� The periodic cyclic homology HP(X�/k) of the cyclic object X�, is the
object in the derived category D(k) of k-modules represented by the product
totalization of this double complex.

� The polynomial periodic cyclic homology HPpoly(X�/k) of the cyclic object
X� is the object in the derived category D(k) of k-modules represented by
the direct sum totalization of this double complex.

We now give an alternative, more conceptual description of this double complex
and the polynomial periodic cyclic homology. Recall that, the geometric realization
jX�j�2D(k)BT can be rewritten as a geometric realization

colim
[n]2�op

IndCn
T (Xn)2D(k)BT:

If we apply the T-Tate construction to it, and incorrectly interchange (¡)tT with
colim[n], we get

colim
[n]2�op

(IndCn
T (Xn))tT2D(k)

where (IndCn
T (Xn))tT'Xn

tCn[¡1] [HN20, Prop 3], thus we see that this computes
the polynomial periodic cyclic homology. Note that every G-module M gives rise
to a cohomological G-Mackey functor M : [G/H ] 7!MH, we can endow Cn-module
Xn a cohomological Cn-Mackey functor structure, and thus realize the geometric
realization jX�j� as an object of Modk(SpT), and apply the de-completed T-Tate
construction (¡)�kT to it, obtaining polynomial periodic cyclic homology.

Remark 3.1. This procedure can be made more rigorous by considering cohomolog-
ical Mackey functors over Connes' cyclic category �op. Since we do not depend on
Kaledin's original construction, we skip such a development. However, a toy version
of this is explained in Appendix A.

Question 1. This comparison does not compare the lax symmetric monoidal struc-
ture of Kaledin's polynomial periodic cyclic homology and ours. How do we compare
the ring structure on the two?

Now we give our formal definitions, and explain why it corresponds to the con-
struction above for associative flat k-algebras.

Construction 3.2. Let k be a t-bounded3.1 animated ring. The universal property
of THH as in [ABG+18] gives rise to a map THH(k)! k of T-E1-rings. Thus
for every THH(k)-module M in cyclonic spectra, we get an object M 
THH(k)

L k 2
Modk(Spg

<T). In particular, let C be a dualizable presentable stable k-linear 1-
category, we have a canonical genuine equivariant enhancement of the k-linear
Hochschild homology of C, denoted by HH(C/k)2Modk(Spg

<T).

Definition 3.3. Let k be a t-bounded animated ring, and C a dualizable pre-
sentable stable k-linear 1-category. Then the polynomial periodic cyclic homology
HPpoly(C /k) (resp. the polynomial negative cyclic homology HC¡;poly(C /k)) is
defined to be the k-de-completed T-Tate construction HH(C /k)�kT (resp. the k-
de-completed homotopy T-fixed points HH(C/k)�kT).

3.1. This means that it is bounded with respect to the canonical t-structure. We add the prefix
�t-� to avoid confusion with boundedness of p-power torsion (which we do not use in this article
anyways).
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Let k be a commutative ring, and R an associative flat k-algebra. Recall that,
as in [ABG+18, §6], the Hochschild homology HH(R/k) relative to the constant
Tambara functor k is informally given by the geometric realization of relative norms
[n] 7! R
k

LCn. In [Mao], we formally identify these norms with the naive tensor
powers equipped with the obvious cyclic action. Thus the previous discussion basi-
cally identifies the polynomial periodic cyclic homology HPpoly(R/k) with Kaledin's
original one.

4. de Rham and prismatic comparison

In this section, we will first establish a comparison result (Proposition 4.4), which
says that, for smooth commutative algebras, polynomial periodic cyclic homology
is the same as periodic cyclic homology. As a consequence, polynomial periodic
cyclic homology of commutative algebras acquires a filtration whose associated
graded pieces are equivalent to shifts of (non-Hodge-completed) derived de Rham
cohomology. We then define a �topological� analogue, and for smooth algebras over
perfectoid rings, it acquires a motivic filtration whose associated graded pieces are
equivalent to shifts of (non-Nygaard-completed) prismatic cohomology.

We first give some sufficient conditions for assembly maps being equivalences.

Lemma 4.1. Let A is a commutative algebra in cyclonic spectra (resp. G-spectra
for a finite group G) whose underlying Borel equivariant spectrum, denoted by Ah,
is t-bounded. Then the assembly map (¡)�AG! (¡)tG (resp. (¡)�AG! (¡)hG)
is an equivalence on the idempotent-complete stable subcategory of ModA(Spg

<T)
(resp. ModA(SpgG)) generated by A-modules of the form

L
i2IA
 [T/Hi] (resp.L

i2IA
 [G/Hi]) for an indexed family (Hi)i2I of finite cyclic groups Hi (resp.
finite groups Hi�G).

Proof. We write the argument for the finite group case. The cyclonic case is similar.

� By construction, the assembly map is an equivalence on A
 [G/H] for finite
groups H �G.

� The family fAh
 [G/H]2SpBG j (H �G is a finite subgroup)g is uniformly
t-bounded, thus the canonical mapM

i

(A
 [G/Hi])hG¡!
�M

i

A
 [G/Hi]
�
hG

is an equivalence for an indexed family (Hi�G)i of finite subgroups of G.
It follows that the assembly map is an equivalence on

L
iA
 [G/Hi].

� The result follows from the fact that the functors (¡)�AG, (¡)�G, (¡)tG and
(¡)hG are exact. �

When G is a finite cyclic group, the situation is particularly simple.

Corollary 4.2. Let G be a finite cyclic group. Then the assembly map (¡)�ZG!
(¡)�ZG (resp. (¡)�ZG! (¡)�ZG) is an equivalence on t-bounded objects in
ModZ(SpgG).

Proof. Since the abelian category MackGcoh has finite projective dimension when
G is finite cyclic [BSW17, Cor 7.2], every t-bounded object is represented by a
finite complex of projective objects. Thus the assembly map (¡)�G! (¡)tG is an
equivalence on these objects by Lemma 4.1. �
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Corollary 4.3. Let G be a finite cyclic group, and A a commutative algebra
in DbMackGcoh �ModZ(SpgG). Then the assembly map (¡)�ZG! (¡)�AG (resp.
(¡)�ZG! (¡)�AG) is an equivalence. Consequently, the A-de-completed G-Tate
construction (¡)�AG (resp. the A-de-completed homotopy G-fixed points (¡)�AG)
coincides with the composite functor

ModA(SpgG)¡!ModZ(SpgG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�ZG or (¡)�ZG
D(Z):

Proof. Note that the 1-category ModA(SpgG) is generated by objects of the form
M 
Z

LA for finite permutation G-modulesM , which is t-bounded sinceM is Z-flat,
and the result follows from Corollary 4.2. �

We are ready to establish the comparison between the polynomial periodic (resp.
negative) cyclic homology and the periodic (resp. negative) cyclic homology on
smooth algebras:

Proposition 4.4. Let k be a t-bounded animated ring, and R an E1-k-algebra.
Then the commutative diagram

HC¡;poly(R/k) ¡! HC¡(R/k)

 
¡

 
¡

HPpoly(R/k) ¡! HP(R/k)

as an instance of ( 2.1) is Cartesian. If R is p-completely smooth as an E1-k-
algebra, and have bounded Tor-amplitude in D(k)p^, then the horizontal assembly
maps are equivalences after p-completion.

We first give a proof in the special case of R being a p-completely smooth ani-
mated k-algebra (i.e. with commutativity), since the general case needs knowledge
on polygonic spectra in [KMN23], and the commutative case is sufficient for this
section.

Proof of Proposition 4.4 with commutativity. By Remark 2.2, this commutative dia-
gram is Cartesian, thus for p-completely smooth animated k-algebras R, it suffices
to check that the map HPpoly(R/k)!HP(R/k) is an equivalence after modulo p,
which is equivalent to base change along k! k
Z

LFp, thus we may assume that k
is a t-bounded animated Fp-algebra. We can further check it after modulo p again.
By Remark 2.8, it reduces to check that the assembly map

HH(R/k)�kCp¡!HH(R/k)tCp

is an equivalence. By Corollaries 4.2 and 4.3, it suffices to check that the cyclonic
spectrum HH(R/k)2Modk(Spg

<T) is t-bounded (thus so after forgetting to SpgCp).
We check in two steps.

Polynomial case. When R = P 
Fp
L k where P is a (finite) polynomial Fp-

algebra. Then we have HH(R/k)=HH(P /Fp)
Fp
L k, and by t-boundedness

of k, it suffices to show that HH(P /Fp) is t-bounded. This follows from
[Hes96, 2.2.4 & 2.2.5].

General case. By passing to a Zariski cover, we may assume that there exists
an étale map S!R where S is a (finite) polynomial k-algebra. Then by
[HLL20, Add 3.2] (along with [Bor11, Thm B], which is used in their proof),
the map THH(S)!THH(R) is flat (even étale) in CAlg(Spg

<T), thus so is
the map HH(S/k)!HH(R/k), and the result follows. �
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Now we give the proof for Proposition 4.4 in full generality. As in the the first
proof of Proposition 4.4, it reduces to check that the assembly map

HH(R/k)�kCp¡!HH(R/k)tCp

is an equivalence when k is a t-bounded animated Fp-algebra, and R is p-completely
smooth as an E1-k-algebra with bounded Tor-amplitude in D(k). We prove a gen-
eralized version with coefficients.

Let R be anE1-ring spectrum, andM anR-R-bimodule in Sp. Then by [KMN23,
§6], the topological Hochschild homology THH(R;M) carries a canonical p-poly-
gonic structure, given by the sequence (THH(R;M
RLpr)2SpBCpr)r2N, along with
polygonic Frobenius maps

THH(R;M
RLpr)¡!THH(R;M
RLpr+1)tCp

in SpBCpr. Moreover, when all THH(R;M
RLpr) in question are bounded below
(this is the case when M is a perfect R-R-bimodule in Sp), we get a sequence
(THH(R;M
RLpr)2 SpgCpr)r2N with equivalences

THH(R;M
RLpr+1)�Cp!!!!!!!!!!!!!!' THH(R;M
RLpr)

of genuine Cpr-spectra. This construction extends to the case without bounded-
below-ness, by a forthcoming work by Harpaz�Nikolaus�Saunier. All of these con-
structions are functorial in (R;M).

There is also a forgetful functor from cyclotomic spectra to polygonic spectra,
and THH(R;R) as a polygonic spectrum is the same as the underlying polygonic
spectrum of the cyclotomic spectrum THH(R).

Construction 4.5. Let k be an animated ring, R an E1-k-algebra, and M an R-R-
bimodule in D(k). Then for every r2N, we get a genuine equivariant enhancement
HH((R;M)/k) of Hochschild homology HH((R;M
RLpr)/k) with coefficients given
by

HH((R;M
RLpr)/k) :=THH(R;M
RLpr)
THH(k)
L k:

Lemma 4.6. Let k be a t-bounded animated ring, R an E1-k-algebra with bounded
Tor-amplitude in D(k), and M a perfect R-R-bimodule in D(k). Then the assembly
map

HH((R;M
RLp)/k)�kCp¡!HH((R;M
RLp)/k)tCp

is an equivalence.

Proof. The proof of [NS18, Prop III.1.1] (or [Lur11, Prop 2.2.3]) implies that the
functor HH((R; (¡)
RLp)/k)tCp is exact. By Lemma 2.10, the symmetric monoidal
structure on (¡)�Cp, and the equivalence THH(R;M
RLp)�Cp!!!!!!!!!!!!!!' M , we see that
the functor HH((R; (¡)
RLp)/k)�Cp is exact as well. Thus, to see that the assembly
map in question is an equivalence, it suffices to show that it is an equivalence when
M =R
kLR, the free R-R-bimodule in D(k) of rank 1. In this case, we have an
equivalence

THH(R; (R
kLR)
R
Lpr)'THH(k;R
k

Lpr)
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in ModTHH(k)(SpgCp
r), and after base change along THH(k)! k, it becomes the

relative Cpr-norm R
kCpr. Under this identification, the assembly map in question
becomes the assembly map¡

R
k
LCpr

�
�kCpr¡!

¡
R
k

LCpr
�
tCpr:

Note that the derived cohomological Cpr-Mackey functor R
k
LCpr is bounded, by the

Tor-amplitude boundedness of R in D(k), and the t-boundedness of k. The result
follows from Corollaries 4.2 and 4.3. �
Proof of Proposition 4.4 in general. It follows from Lemma 4.6 by settingM=R. �
Question 2. Is there any categorical generalization of Lemma 4.6, namely, replacing
R by dualizable presentable stable k-linear 1-category C which is smooth with
bounded Tor-amplitude4.1, and replacing M by an colimit-preserving k-linear end-
ofunctor C!C?

Now we construct an HKR filtration on the polynomial periodic (resp. nega-
tive) cyclic homology whose associated graded pieces are shifts of (non-Hodge-
completed) derived de Rham cohomology (resp. its Hodge-filtered pieces), Hodge-
de-completing [BMS19, Thm 1.17] and [Ant19].

Construction 4.7. (HKR filtration) Let k be a t-bounded animated ring. Then
by [Rak20] (which generalizes [Ant19]), for every smooth k-algebra R, there is an
exhaustive filtration FilHKR

� , functorial in R, on the canonical p-completed map

HC¡(R/k)p^¡!HP(R/k)p^

whose i-th associated graded piece grHKR
i is given by the canonical map

FilHi dRR/k[2 i]p^!dRR/k[2 i]p^:

By Proposition 4.4 and sifted-colimit-preservation of the functors CAlgkan!D(k);
R 7!HPpoly(R/k) (resp. R 7!HC¡;poly(R/k)), for every animated k-algebra R, we
get an exhaustive filtration FilHKR

� on the Cartesian square

HC¡;poly(R/k)p^ ¡! HC¡(R/k)p^

 
¡

 
¡

HPpoly(R/k)p^ ¡! HP(R/k)p^

whose i-th associated graded piece grHKR
i is given by

FilHi dRR/k[2 i]p^ ¡! FilHi dRb R/k[2 i]p^

 
¡

 
¡

dRR/k[2 i]p^ ¡! dRb R/k[2 i]p^

where dRb R/k is the Hodge-completed derived de Rham cohomology of R/k.

Question 3. Is the HKR filtration in Construction 4.7 complete?

It is very natural to extend our definition to de-Nygaard-complete topological
periodic cyclic homology.

4.1. An attempt for this definition: a dualizable presentable stable k-linear 1-category C has
bounded Tor-amplitude if the coevaluation functor C_
D(k) C!D(k) sends compact objects to
objects of bounded Tor-amplitude in D(k).
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Definition 4.8. Let k be a t-bounded animated ring, and C a dualizable pre-
sentable stable k-linear 1-category. Then the topological k-polynomial periodic
cyclic homology TPpoly/k(C) (resp. the topological k-polynomial negative cyclic
homology TC¡;poly/k(C)) is defined to be the THH(k)-de-completed T-Tate con-
struction THH(C)�THH(k)T (resp. the THH(k)-de-completed homotopy T-fixed points
THH(C)�THH(k)T).

Topological k-polynomial periodic (resp. negative) cyclic homology, even after
p-completion, seems intractable in general, partially due to the global nature of its
prismatization. The situation is drastically simpler when the ring k=S is p-com-
plete and perfectoid, thanks to the Bökstedt periodicity of THH(S)p^. We recollect
some notations and computations in [BMS19, Prop 6.2 & 6.3]. However, we view
THH(S)tCp non-equivariantly as a TC¡(S)-module, which follows more closely to
the convention in [Rig22, Lem 2.1].

Remark 4.9. ([BMS19, Prop 6.2 & 6.3]) Let S be a perfectoid ring, A :=
Ainf(S)=W (S[) with Frobenius endomorphism ' :A!A, and � a chosen generator
of the kernel ker(�) of Fontaine's map � :A�S. Then the commutative square

TC¡(S)p^ !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
'p
hT

TP(S)p^

 
¡

 
¡

THH(S)p^ !!!!!!!!!!!!!!!!!!
'p

THH(S)tCp

is a pushout diagram of E1-rings, and its homotopy groups are given by

A[u; v]/(u v¡ �) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
v 7!'(�)�¡1

u 7!�
A[��]

 
¡

 
¡

R[u] = (A/ �)[u] !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !u 7!�
(A/'(�))[u]

;

where juj= j� j=2 and jv j=¡2, the vertical maps are A-linear, and the horizontal
maps are '-linear. The homotopy groups of the canonical map TC¡(S)p^!TP(S)p^

is given by the A-linear map

A[u; v]/(u v¡ �)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
v 7!�¡1

u 7!��
A[��]:

In particular, the THH(S)-module S = THH(S)/u in SpBT is perfect, which
implies that

Lemma 4.10. Let S be a perfectoid ring, and M a THH(S)-module in Spg
<T.

Then the canonical map

M�THH(S)T
TP(S)
L StT¡! (M 
THH(S)S)�ST

is an equivalence after p-completion.

Corollary 4.11. Let S be a perfectoid ring, and C a dualizable presentable stable
S-linear 1-category. Then the commutative diagram

TC¡;poly/S(C) ¡! TC¡(C)

 
¡

 
¡

TPpoly/S(C) ¡! TP(C)
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as an instance of ( 2.1) is Cartesian. If the assembly map HPpoly(C/S)!HP(C/
S) is an equivalence after p-completion4.2, then the horizontal assembly maps are
equivalences after (p; ker(�))-completion.

Proof. By Remark 2.2, this commutative diagram is Cartesian. When the assembly
map HPpoly(C/S)!HP(C/S) is p-completely an equivalence, then by Remark 4.9,
it is the (modker(�)) reduction of the map TPpoly/S(C)!TP(C), thus the later is
(p; ker(�))-completely an equivalence, and the result follows. �

Similarly to Construction 4.7, we have

Construction 4.12. (Motivic filtration) Let S be a perfectoid ring, and let A :=
Ainf(S). Then by [BMS19], for every smooth S-algebra R, there is an exhaustive
filtration FilM� , functorial in R, on the canonical (p; ker(�))-completed4.3 map

TC¡(R)(p;ker(�))
^ ¡!TP(R)(p;ker(�))

^

whose i-th associated graded piece grMi is given by the canonical map

FilNi 'A� �R/A¡! 'A
� �R/A

for the Frobenius twisted prismatic cohomology. By Proposition 4.4 and Corol-
lary 4.11, and sifted-colimit-preservation of the functors CAlgSan!D(TC¡(S));
R 7!TPpoly/S(R) (resp. R 7!TC¡;poly/S(R)), for every animated k-algebra R, we
get an exhaustive filtration FilM� on the Cartesian square

TC¡;poly/S(R)(p;ker(�))
^ ¡! TC¡(R)(p;ker(�))

^

 
¡

 
¡

TPpoly/S(R)(p;ker(�))
^ ¡! TP(R)(p;ker(�))

^

whose i-th associated graded piece is given by

FilNi 'A� �R/A ¡! FilNi 'A� �̂R/A

 
¡

 
¡

'A
� �R/A ¡! 'A

� �̂R/A

:

Remark 4.13. The construction of HKR filtration and motivic filtration on poly-
nomial cyclic theories is quite formal: one only needs a proposition similar to
Proposition 4.4 and Corollary 4.11. In particular, the above construction also adapts
to the Breuil�Kisin case (as in [BMS19, §11]) and the q-de Rham case.

Remark 4.14. The topological polynomial periodic cyclic homology should be com-
parable to TC(¡1) as introduced in [Man24, §1], or some construction in an ongoing
project of Devalapurkar�Hahn�Raksit�Yuan as mentioned in [Man24, Rem 1.6].

A natural question is whether the previous picture extends to relative prismatic
cohomology over an arbitrary base prism? When the base prism is transveral, we
have the following expectation.

4.2. By Proposition 4.4, this is the case when C=D(R) for some p-completely smooth E1-S-
algebra R.

4.3. The p-completed TC¡(R)p^ and TP(R)p^ are automatically ker(�)-complete (since they are
Nygaard-complete), but it is conceptually better to phrase it after (p; ker(�))-completion, since
the p-completed polynomial versions might not be ker(�)-complete.

EQUIVARIANT ASPECTS OF DE-COMPLETING CYCLIC HOMOLOGY 15



Remark 4.15. In a companion paper [Mao24], we defined prismatic Hochschild
homology HH�(C /A) for a transversal prism (A; I) and a dualizable pre-
sentable stable A / I -linear 1-category C , and formulated an HKR-type
conjecture for p-completely smooth A/ I-algebras. If that conjecture holds,
then the p-completed (A; I)Cpr¡1-de-completed T/Cpr¡1-construction

¡
HH�(R/

A)Cpr¡1
��
(A;I)

C
pr¡1

¡
T/C

pr¡1
�
for animated (A/I)-algebra would carry an exhaus-

tive filtration with associated graded pieces equivalent to shifts of ('A��R/A)
AL (A/
Ir). We will address this in the future.

Up to our knowledge, it was not widely expected that the topological Hochschild
homology as a cyclotomic spectrum contains enough information for a de-Nygaard-
completion such as Definition 4.8. However, in view of Efimov's rigidity of localizing
motives, this is expected:

Remark 4.16. (M. Ramzi) Let k be a commutative ring, and G a finite group,
A an E1-algebra in SpgG, and E : Catk

perf!ModA(SpBG) a finitary symmetric
monoidal localizing invariant. Then the symmetric monoidal functor E factors
uniquely through the presentably stable symmetric monoidal1-category Motloc;k,
obtaining a functor Motloc;k!ModA(D(k)BG) in CAlg(PrStL ). Efimov's rigidity
theorem, as mentioned in [Efi24, Rem 4.3], tells us that the presentably stable
symmetric monoidal 1-category Motloc;k is rigid, thus we get a unique strongly
continuous functor Motloc;k!ModA(D(k)BG)rig.

If we are in addition given a finitary symmetric monoidal factorization

Catk
perf!!!!!!!!!!!!E

~
ModA(SpgG)¡!ModA(D(k)BG)

of E, where the functor E~ is localizing as well, then by Remark 2.7, we see that
the strongly continuous functor Motloc;k!ModA(D(k)BG)rig coincides with the
composite functor

Motloc;k!!!!!!!!!!!!
E~

ModA(SpgG)¡!ModA(D(k)BG)rig:

Informally, this tells us that E~ �knows� everything about refined E.
Now we apply this to the finitary symmetric monoidal localizing invariant

E~ :=THH :Catk
perf¡!CycSpgen¡!ModTHH(k)(SpgG)

for any finite cyclic group G. It follows that the refinement of SpBG-valued THH is
completely determined by the functor E~, thus by the (genuine) cyclotomic THH.
Roughly speaking, this implies that the cyclotomic THH already contains �all�
profinite or p-adic formal information, including any de-Nygaard-completion.

5. Comparison to THH

Recall that the Cartier isomorphism identifies algebraic de Rham cohomology
groups of smooth Fp-algebras with their algebraic differential forms. We give two
noncommutative analogues. In this section, we discuss one of them, which compares
polynomial coperiodic cyclic homology of dualizable presentable stable Fp-linear
1-categories with their topological Hochschild homology. This comparison was
proved in [Kal20, Cor 11.15] for associative Fp-algebras, using Goodwillie derivative
of (Hochschild�)Witt trace theory. We give two arguments. Although the second
argument is much shorter, the first argument gives us more information, which is
used in Section 6.
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The key to the first argument is the observation that the T/Cp-equivariant E1-
ZtCp-module Fp

tCp is co-induced.

Construction 5.1. Let n2N>0. There is a map

ZT/Cn¡!Z/n

in D(Z)BT, where Z/n is equipped with the trivial action, i.e. $1
�(Z/n). Indeed,

this map is taken to be represented5.1 by the following surjective map

0 ¡1

Z ����������
n

0

Z

 
¡

 
¡

Z/n ��������
0

0

0

of mixed complexes concentrated in homological degrees [¡1; 0]. Since it is surjec-
tive, it is a fibration in the projective model structure on mixed complexes, with

kernel being the mixed complex
�
n Z ����������

n

0

Z

�
, which represents ZT 2D(Z)BT.

Consequently, we get a fiber sequence

ZT¡!ZT/Cn¡!Z/n
in D(Z)BT.

Remark 5.2. One can also construct the map and the fiber sequence in Construc-
tion 5.1 by the gold relation a�n u�m= (n/m) a�m u�n for (m; n) 2N>0

2 with m j
n in [HHR17, Lem 3.6] (where u�m's become equivalence after forgetting to the

Borel equivariant objects), where �n is the complex S1-representation S1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)n
C�

viewed as a real representation, and a�n is the Euler class S0!S�
n
, i.e. the map of

Thom spectra of the inclusion f0g��n of representations. Indeed, there is a fiber
sequence

�T
1 [T/Cn]+¡!S0¡!S�

n

of cyclonic spectra (and thus, ofT-equivariant spectra), cf. [Sul20, Obs 2.32]. Taking
Z-linear dual, and applying the �octahedral axiom� to the gold relation a�n� (n/
m) a�m, we get the fiber sequence in Construction 5.1.

This allows us to establish results beyond char p, as observed by Yuri Sulyma
in [Sul20, Lem 4.9].

Corollary 5.3. The map ZT/Cn!Z/n in D(Z)BT as in Construction 5.1 induces
an equivalence

ZtCn
Z
LZT/Cn¡! (Z/n)tCn

in ModZtCn(D(Z)
B(T/Cn)).

Proof. Applying (¡)tCn to the fiber sequence in Construction 5.1, we see that the
induced map (ZT/Cn)tCn! (Z/n)tCn in D(Z)B(T/Cn) is an equivalence (which even
has an E1-structure). It suffices to establish an equivalence

ZtCn
Z
LZT/Cn¡! (ZT/Cn)tCn

5.1. The E1-monoidal equivalence of the monoidal1-category D(Z)BT and the monoidal1-
category of mixed complexes up to quasi-isomorphism is explained in details in [Lei22, §5.4].
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in ModZtCn(D(Z)
B(T/Cn)). This is given by equivalences

ZtCn
Z
LZT/Cn ' (ZtCn
Z

LZ[T/Cn])[¡1]
' (ZtCn
 (T/Cn))[¡1]
' (Z[T/Cn])tCn[¡1]
' (ZT/Cn)tCn

in ModZtCn(D(Z)
B(T/Cn)). �

Warning 5.4. The map in Corollary 5.3 does not carry any E1-structure when
n=2. Indeed, on the left hand side, the square-zero class e2�¡1(ZT/Cn) gives rise
to a square-zero class e2�¡1(ZT/Cn
Z

LZtCn), while the homotopy ring ��(F2
tC2) is

isomorphic to F2((s)) for a generator s2�1(F2tC2), which is integral, thus any square-
zero elements is necessarily zero.

Question 4. Is there any version of E1-enhancement of Corollary 5.3?

Now we compare polynomial periodic cyclic homology of dualizable presentable
stable Fp-linear1-categories. Slightly more generally, we consider THH(Fp)-mod-
ules in cyclonic spectra. By Lemma 2.13 and the symmetric monoidal structure on
(¡)�Cp, we have

Lemma 5.5. Let k be a commutative algebra. Then the composite functor

ModTHH(k)(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

(¡)
THH(k)
L k

Modk(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

¡
(¡)�kT �

p
^

D(ktT)p^:

is equivalent to the composite functor

ModTHH(k)(Spg
<T) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

ModTHH(k)�Cp(Sp
gp(T/Cp))

 
¡

ModktCp(Sp
gp(T/Cp)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
k
tCp

(T/Cp)

D(ktT)

where the vertical arrow is the base change along the map THH(k)�Cp! ktCp of
T/Cp-E1-rings.

Remark 5.6. Recall that both maps in the composite map Z! Zp= TR(Fp)!
THH(Fp) of T-E1-rings become equivalences after taking geometric fixed points
(¡)�Cp (cf. [AMR21, Rem 10.9]). It follows that we can identify the T-E1-ring
THH(Fp) with Z�Cp. Moreover, by [HM97], there exists a Bökstedt element � 2
�2TF(Fp) which maps to a Bökstedt element in �2TRr(Fp) for every r2N>0, and
by [NS18, Lem II.6.1] and computational results about THH(Fp), we can identify
the T-E1-ring THH(Fp)[�¡1] with the Borel T-E1-ring ZtCp. Consequently, for
every associative ring k, the map k�Cp!ktCp of T-E1-rings is simply inverting �.

Lemma 5.7. The composite functor

ModTHH(Fp)tCp(Sp
gp(T/Cp))¡!Mod

Fp
tCp(Spgp(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�
Fp
tCp

(T/Cp)

D(ZtT)

coincides with the forgetful functor, where the first functor is the base change along
the map THH(Fp)tCp!Fp

tCp of Borel E1-p-cyclonic spectra.
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Recall that the map Z!THH(Fp) as in Remark 5.6 also becomes an equivalence
after taking (¡)tCp by [NS18, Cor IV.4.13], thus we can replace THH(Fp)tCp by
ZtCp in Lemma 5.7.

Proof. Since both functors in question preserve filtered colimits, it suffices to check
on compact objects of ModZtCp(Sp

gp(T/Cp)). Note that the first base change functor
preserves compact objects. The result follows from Corollary 5.3. �

Remark 5.8. The target of the composite functor in Lemma 5.7 has an Fp
tT-module

structure, and such a structure is yet to explore.

Summarizing the above discussion, we get

Proposition 5.9. The composite functor

ModTHH(Fp)(Sp
g<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

(¡)
THH(Fp)
L Fp

ModFp(Spg
<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

�Fp
T

D(ZtT)

coincides with with the composite functor

ModTHH(Fp)(Sp
g<T)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

ModTHH(Fp)�Cp(Sp
gp(T/Cp))¡!D(ZtT);

where the second functor is inverting � to the underlying THH(Fp)�Cp-module.

Applying to the THH(Fp)-module spectrum THH(C), we get:

Corollary 5.10. Let C be a dualizable presentable stable Fp-linear 1-category. Then
the polynomial periodic cyclic homology HPpoly(C/Fp) is equivalent to THH(C)[�¡1]
as ZtT-module spectra.

Remark 5.11. We do not compare the multiplicative structures on polynomial
periodic cyclic homology (as a lax symmetric monoidal functor) with topological
Hochschild homology in Corollary 5.10.

Now we give a second proof of Lemma 5.7, inspired by the proof of [Mat20,
Prop 2.15]. The key is the following lemma.

Lemma 5.12. The composite functor

ModTHH(Fp)tCp(Sp
B(T/Cp))¡!Mod

Fp
tCp(SpB(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h(T/Cp)

D(TP(Fp))

coincides with the forgetful functor.

Proof. Since the image of u 2 �2TC¡(Fp) under the canonical map TC¡(Fp)!
TP(Fp) is up2�2TP(Fp) as reviewed in Remark 4.9, this composite functor coin-
cides with the composite functor

ModTHH(Fp)tCp(Sp
B(T/Cp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)h(T/Cp)

D(TP(Fp))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)/Lp
D(TP(Fp));

which is subsequently identified with the forgetful functor by the proof of [BMS19,
Prop 6.4] (or more precisely, the first displayed formula there). �

Lemma 5.7 follows from the fact that the composite functor in Lemma 5.12,
by virtue of identification with the forgetful functor, preserves filtered colimits,
and that the first functor ModTHH(Fp)tCp(Sp

gp(T/Cp))!Mod
Fp
tCp(Spgp(T/Cp)) in

Lemma 5.7 preserves compact objects.
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6. Conjugate filtration

As explained in the introduction of Section 5, another noncommutative ana-
logue of the Cartier isomorphism is conjugate filtration, which we will address
in this section. As there, our version is constructed out of THH(k)-modules for
a base commutative ring k, and by Lemma 5.5, it is crucial to analyze the map
THH(k)�Cp! ktCp, endowing the target ktCp a suitable filtration.

First, we note that, the homotopy Cp-fixed points khCp of a commutative Fp-
algebra k is a direct summand of the Cp-Tate construction ktCp.

Remark 6.1. LetM be an Fp-vector space. Then it follows from computations that
the composite map

MhCp¡!M tCp¡! �60M tCp

of Fp
hCp-module spectra is an equivalence. In particular, let k be a commutative

Fp-algebra. Then the composite map

khCp¡! ktCp¡! �60 ktCp

of khCp-module spectra is an equivalence, where the first map has an E1-structure,
and the second map has a ktCp-module structure.

Recall that, in Section 5, a key fact is that the T/Cp-equivariant ZtCp-module
spectrum Fp

tCp is co-induced. It is natural to ask whether the same holds for ktCp

for any commutative Fp-algebra k. We do not know the answer, but expect it to be
false, at least functorially in k (see Remark 6.6). However, note that the E1-ring
ktCp is 2-periodic, and we show that a �fundamental region� of ktCp with respect to
its 2-periodicity is T/Cp-equivariantly k-linearly co-induced.

Notation 6.2. Let n be a positive integer. Let CoInde
T/Cn denote right adjoint

D(Z)!D(Z)B(T/Cn) to the (symmetric monoidal) forgetful functor D(Z)B(T/Cn)!
D(Z).

Construction 6.3. Let M be a spectrum. Endow M with trivial T-action, we get
a map $p

�M!MhCp in Fun(B(T/Cp); Sp), where $p :T/Cp!� is the quotient
map, which gives rise to a lax symmetric monoidal lax transformation

$p
�(¡)¡! (¡)hCp

between lax symmetric monoidal functors Sp!Fun(B(T/Cp); Sp). On the other
hand, there is a non-T/Cp-equivariant mapMhCp!M which, by adjunction, gives

rise to a map MhCp!CoInde
T/CpM in Fun(B(T/Cp); Sp) which is functorial in

M 2Sp, and this has a lax symmetric monoidal structure. In summary, we have a
composite lax symmetric natural transformation

$p
�(¡)¡! (¡)hCp¡!CoInde

T/Cp(¡)

of lax symmetric monoidal functors Sp!Fun(B(T/Cp);Sp).

Lemma 6.4. Let M be an Fp-vector space. Then the composite map

�>¡1MhCp¡!MhCp¡!CoInde
T/CpM

of T/Cp-equivariant Fp-module6.1 spectra is an equivalence, where the second map
is as in Construction 6.3.

6.1. The Fp-module structure comes from lax symmetric monoidal structures in Construc-
tion 6.3.
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Proof. Since the maps in question are already constructed, to check that it is an
equivalence, we could pick a free Z-lift M~ of M , namely, a free abelian group M~ =
Z�I withM~ /p=�M . Then taking I-direct sum6.2 of the equivalence in Corollary 5.3
and truncating at [¡1;0], we get an equivalence as an inverse to the composite map
in question. �

It follows from lax symmetric monoidal structures in Construction 6.3 and
Lemma 6.4 that

Corollary 6.5. Let k be a commutative Fp-algebra. Then there is a canonical
equivalence

�>¡1 khCp¡!CoInde
T/Cp k

of T/Cp-equivariant k-modules.

Remark 6.6. Let M be an Fp-vector space. It is unclear whether we can functo-
rially identify M tCp with the co-induced T/Cp-equivariant Z-module spectrum
CoInde

T/Cp(M tT) (although we can do it functorially in free Z-lifts M~ ), let alone
Fp-linearly. The multiplicative structure is even more complicated.

Now we describe the filtration on khCp and ktCp as promised.

Construction 6.7. Let k be a commutative Fp-algebra. Then we consider the odd
filtration onT/Cp-equivariant �>0(ktCp)-module spectra khCp, ktCp, and the canon-
ical T/Cp-equivariant �>0(ktCp)-module map khCp! ktCp, given by the odd parts
of the Whitehead filtrations, i.e. for i2Z, we have

Filoddi khCp := �>2i¡1 khCp;
Filoddi ktCp := �>2i¡1 ktCp:

We note that Filodd
>0 khCp=0, and the maps groddi khCp!groddi ktCp are equivalences

for i� 0.

Remark 6.8. Note that grodd0 ktCp= �>¡1 khCp is concentrated in degree [¡1; 0],
by [Lur17, Prop 2.2.1.8], the �>0(ktCp)-module structure on grodd0 ktCp descends
canonically to a �[0;1](ktCp) = k 
Z

LFp-module structure, where the animated ring
k
Z

LFp is equipped with trivial T/Cp-action.

We now produce the conjugate filtration for THH(k)-modules. Before this, we
need a base-independence result, which says that the de-completed Tate construc-
tion over ktCp coincides with that over �>0(ktCp).

Lemma 6.9. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)
�
�>0

�
k
tCp

�(T/Cp)
¡! (¡)�ktCp(T/Cp)

of functors ModktCp(Sp
gpT)! D(k), induced by the map �>0(ktCp)! ktCp in

CAlg(D(k)B(T/Cp)), is an equivalence.

Proof. It suffices to show that, for every compact generator M = ktCp
 [T/Cpr]2
ModktCp(Sp

gpT)@0, the assembly map

M
�
�>0

�
k
tCp

�(T/Cp)
¡!Mh(T/Cp)

6.2. Tate construction preserves infinite direct sum of uniformly t-bounded objects.
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is an equivalence. Recall that the Whitehead tower of ktCp= (�>0 ktCp)[�¡1] is a
sequential colimit of shifts of �>0(ktCp), where � 2 �2(ktCp) is a generator. Then
the result follows from the fact that (¡)h(T/Cp) preserves weakly Whitehead towers
(cf. [NS18, Lem I.2.6], or the dual of [BMS19, Lem 3.3]). �

Construction 6.10. (Conjugate filtration) Let k be a commutative Fp-algebra,
andM a THH(k)-module in Spg

<T. Then by Lemma 5.5 and Construction 6.7, the
ZtT-module spectrum

(M 
THH(k)
L k)�kT'

¡
M�Cp
THH(k)�Cp

L �>0(ktCp)
�>0(ktCp)
L ktCp

��
�>0

�
k
tCp

�(T/Cp)

admits a filtration Filconj� induced by the odd filtration on ktCp.

We now analyze the associated graded pieces of the conjugate filtration. It suf-
fices to analyze the zeroth associated piece:

Remark 6.11. By 2-periodicity of ktCp, all groddi ktCp's, as k�Cp-modules, are iso-
morphic up to a shift. Thus to study associated graded pieces of odd filtered ktCp,
it suffices to study grodd0 ktCp'groddi khCp, thus the same for the conjugate filtration.

Since k
Z
LFp=(�>0ktCp)/� is a perfect �>0 ktCp-module in SpB(T/Cp), we have

Lemma 6.12. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)
�
�>0

�
k
tCp

�(T/Cp)
¡! (¡)

�
k
Z

LFp
(T/Cp)

of functors Modk
Z
LFp(Sp

gpT)!D(k), induced by the map �>0(ktCp)! k
Z
LFp in

CAlg(D(k)B(T/Cp)), is an equivalence (we tacitly used Remark 2.4).

Similarly, by perfectness of k-module k
Z
LFp, we have

Lemma 6.13. Let k be a commutative Fp-algebra. Then the natural transformation

(¡)�k(T/Cp)¡! (¡)
�
k
Z

LFp
(T/Cp)

of functors Modk
Z
LFp(Sp

gpT)! D(k), induced by the map k! k 
Z
L Fp in

CAlg(D(k)B(T/Cp)), is an equivalence (we tacitly used Remark 2.4).

It follows from Remark 6.8 and Lemmas 6.12 and 6.13 that

Lemma 6.14. Let k be a commutative Fp-algebra, and M a THH(k)-module in
Spg

<T. Then the 0-th associated graded piece grconj0 (M 
THH(k)
L k)�kTof the conju-

gate filtration is equivalent to¡¡
M�Cp
THH(k)�Cp

L (k
Z
LFp)

�

k
Z

LFp
L grodd0 ktCp

�
�k(T/Cp)

in D(k) (again, we tacitly used Remark 2.4).

Now we embark to understand the composite map THH(k)!!!!!!!!!!!!!!' THH(k)�Cp!
k
Z

LFp of T-E1-rings6.3. In fact, this could be understood for any commutative
ring, not necessarily over Fp.

6.3. For our purposes, thanks to Remark 2.4, it suffices to understand the underlying T-
equivariant E1-ring. However, here we deduce slightly stronger results.
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Remark 6.15. Let k be an animated ring. By construction (cf. [NS18, §IV.2]), we
have a commutative diagram

k ¡! THH(k)

 
¡'  
¡'

(Ne
Cp k)�Cp ¡! THH(k)�Cp ¡! k�Cp

 
¡

 
¡

 
¡

(k
Sp)tCp ¡! THH(k)tCp ¡! ktCp

where the leftmost row are maps of E1-rings while the rest are T-E1-rings. The
composite map k! ktCp from the top left to the bottom right is the Tate-valued
Frobenius.

Remark 6.16. Let k be an animated ring. Note that we have a commutative diagram

k ¡! k�Cp

 
¡

 
¡

k !!!!!!!!!!!!!!!!!!!!
'~k

k
Z
LFp

in CAlg(D(Z)), where the top arrow is found in Remark 6.15, the bottom arrow
is induced by the �extended� Frobenius map '~k : k! k 
Z

L Fp! k 
Z
L Fp of ani-

mated rings, and except the top left k, other terms are T-E1-rings, and the arrows
between T-E1-rings have T-E1-structures. By the universal property of THH in
[ABG+18], we get a commutative diagram

THH(k) ¡! k�Cp

 
¡

 
¡

k !!!!!!!!!!!!!!!!!!!!
'~k

k
Z
LFp

of T-E1-rings6.4.

So far, we have analyze the part M�Cp 
THH(k)�Cp
L (k 
Z

L Fp) of the expres-

sion in Lemma 6.14. Now we analyze the part ((¡) 
k
Z
LFp

L grodd0 ktCp)�k(T/Cp)

for commutative Fp-algebras k. It follows from Corollary 6.5 that this simplifies
to (¡) 
k
Z

LFp
L k, where the k 
Z

L Fp-module structure on k is simply given by
the multiplication map k 
Z

LFp! k. Recall that, for animated Fp-algebras k, the
composite map

k!!!!!!!!!!!!!!!!!!!!'~k k
Z
LFp¡! k

coincides with the usual Frobenius map 'k :k!k. The above discussion implies that

Proposition 6.17. Let k be a commutative Fp-algebra, and M a THH(k)-module
in Spg

<T. Then the 0-th associated graded piece grconj0 (M 
THH(k)
L k)�kTof the

conjugate filtration is equivalent to the Frobenius twist

(M�Cp
THH(k)
L k)
k;'k

L k

in D(k), where the THH(k)-module structure onM�Cp is induced by the equivalence

THH(k)!!!!!!!!!!!!!!' THH(k)�Cp.

6.4. Those who are not familiar with T-E1-rings can simply replace them by T-equivariant
E1-rings, and the THH also has an analogous universal property by McClure�Schwänzl�Vogt,
cf. [NS18, Prop IV.2.2].
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Corollary 6.18. Let k be a commutative Fp-algebra, and C a dualizable presentable
stable Fp-linear 1-category. Then the 0-th associated graded piece grconj0 HPpoly(C/
k) is equivalent to HH(C/k)
k;'k

L k in D(k).

Finally, we show that the conjugate filtration is complete. It suffices to establish
the following connectivity result.

Lemma 6.19. Let k be a commutative Fp-algebra, and M a THH(k)�Cp-module
in Spg

<(T/Cp). Suppose that M is connective. Then the spectrum¡
M 
THH(k)�Cp

L �>¡1 ktCp
��

�>0
�
k
tCp

�(T/Cp)

is connective.

Note that ktCp is co-induced in D(Z). Although it might not be compatibility
with THH(k)�Cp-module structure, this is already enough for us to prove the con-
nectivity.

Proof. By the bar resolution of the relative tensor product, and the fact that the
de-completed Tate construction preserves small colimits, it suffices to show that,
for every n2N, the spectrum¡

M 
Z
L (THH(k)�Cp)
Z

Ln
Z
L �>¡1 ktCp

��
�>0

�
k
tCp

�(T/Cp)

is connective. We write k as a direct sum Fp
�I, and applying Corollary 5.3, we see

that this spectrum is equivalent to the direct sum of I's copies of

M 
Z
L (THH(k)�Cp)
Z

Ln
Z
L �>0ZtCp

which is connective. �
By 2-periodicity of ktCp, and the fact that (¡)�Cp preserves connectivity, we

deduce from Lemma 6.19 that

Corollary 6.20. Let k be a commutative Fp-algebra, and M a connective THH(k)-
module in Spg

<T. Then the conjugate filtration on (M 
THH(k)
L k)�kT is complete.

Corollary 6.21. Let k be a commutative Fp-algebra, and C a dualizable pre-
sentable stable Fp-linear 1-category. Suppose that its topological Hocschild homology
THH(C) is bounded below6.5. Then the conjugate filtration on its polynomial peri-
odic cyclic homology HPpoly(C/k) is complete.

Appendix A. Tate cohomology complex

We briefly show that our de-completed Tate cohomology on Lazard-semi-flat
chain complexes of cohomological Mackey functors can be computed by Tate coho-
mology complex in [Kal15, §6.2], or [PVV18, §2.1], thus it is a homotopy invariant
version of the latter.

Let k be a commutative ring. Recall that a finitely generated permutation G-
module is a (left) k[G]-module of the form k[X] for some finite G-set X. We
denote by PermG(k)�LModk[G] the full subcategory spanned by finitely generated
permutation G-modules. We refer to [BG21] for comparison of different character-
izations of cohomological Mackey functors, and [BCN21, Ex 2.5] for the equivalence
D(MackGcoh(k)) =Modk(SpgG) between derived cohomological G-Mackey functors
and k-modules in genuine G-spectra.

6.5. This is the case when C=D(R) for a (¡1)-connective E1-k-algebra R, or C=D(X) for a
quasicompact quasiseparated k-scheme X.
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Now we start with a flatness of cohomological Mackey functors.

Definition A.1. Let k be a commutative ring, and G a finite group.

� We say that a cohomological Mackey functor is Lazard-flat if it is a filtered
colimit of finitely generated permutation modules.

� We say that an (unbounded) chain complex of cohomological Mackey functors
is Lazard-semi-flat if it is a filtered colimit of bounded chain complexes of
finitely generated permutation modules. Compare with [ CH15, Thm 1.1].

Remark A.2. Let k be a commutative ring, and G a finite group. Then permutation
k[G]-modules are compact in the category MackGcoh(k) of cohomological G-Mackey
functors. Consequently, we have a canonical fully faithful functor

Ind(PermG) ,¡!MackGcoh(k):

In particular, we can identify Lazard-flat (derived) cohomological Mackey functors
as objects of Ind(PermG(k)).

Similarly, recall that a chain complex in an additive category is compact if and
only if it is bounded and degreewise compact [CH15, Thm 4.5]. The preceding
argument shows that we have a canonical fully faithful functor

Ind(Chb(PermG(k))) ,¡!Ch(MackGcoh(k))

and thus we can identify Lazard-semi-flat chain complexes of cohomological Mackey
functors as objects of Ind(Chb(PermG(k))).

Lazard-flat cohomological Mackey functors (resp. Lazard-semi-flat chain com-
plexes of cohomological Mackey functors) are in fact k[G]-modules (resp. chain
complexes of k[G]-modules):

Remark A.3. Let k be a commutative ring, and G a finite group. Then finitely
generated permutation k[G]-modules are compact in the category LModk[G] of left
G-modules, thus the fully faithful functor

Ind(PermG(k)) ,¡!MackGcoh(k)

in Remark A.2 factors through the inclusion LModk[G] ,!MackGcoh(k), and the fully
faithful functor

Ind(Chb(PermG(k))) ,¡!Ch(MackGcoh(k))

factors through the inclusion Ch(LModk[G]) ,!Ch(MackGcoh(k)).

Now we review the Tate cohomology complex. Let k be a commutative ring,
and G a finite group. A complete resolution [PVV18, §2.1] of the left k[G]-module
k is an acyclic complex P�2Ch(LModk[G]

free ) of free left k[G]-modules along with an
isomorphism " :Z! ker(d :P0!P¡1) of left k[G]-modules.

Definition A.4. Let k be a commutative ring, G a finite group, and P� a complete
resolution of k. The functor of the Tate cohomology complex is defined to be the
functor

Ch(MackGcoh(k)) ¡! Ch(k);
M� 7¡! (Tot�(M�
kP�))G:
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On Lazard-semi-flat chain complexes of cohomological Mackey functors, the Tate
cohomology complex represents the de-completed Tate cohomology. More precisely,
we have

Proposition A.5. Let k be a commutative ring, and G a finite group. Then we
have a commutative diagram

Ind(Chb(PermG(k))) ¡! Ch(k)

 
¡

 
¡

D(MackGcoh(k))=Modk(SpgG) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�kG
D(k)

of additive 1-categories, where the top horizontal arrow is the composite of the
inclusion in Remark A.2 and the Tate cohomology complex, and the vertical arrows
are localizations at quasi-isomorphisms.

Sketch of proof. Since all functors in question preserve filtered colimits, we can
replace the top left term Ind(Chb(PermG(k))) by Chb(PermG(k)). By stability,
we could further restrict to the full subcategory Ch>0b (PermG(k)) of bounded
chain complexes concentrated in non-negative degrees. This is the same as freely
adjoining finitary-geometric-realizations to PermG(k). All functors in question pre-
serve finitary geometric realizations, thus we can replace the top left term simply
by PermG(k).

In this case, the left vertical arrow is fully faithful, with essential image being
compact in Modk(SpgG). Therefore we may replace (¡)�kG by (¡)tG. It remains
to show that, for every finitely generated permutation G-module M , the complex
(M 
kP�)G represents M tG, which follows from definition. �
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