
PERFECTOID RINGS AS THOM SPECTRA

ZHOUHANG MAO

Abstract. The Hopkins-Mahowald theorem realizes the Eilenberg-Maclane
spectraHFp as Thom spectra for all primes p2N>0. In this article, we record
a known proof of a generalization of Hopkins-Mahowald theorem, realizingHk
as Thom spectra for perfect rings k, and we provide a further generalization
by realizing HR as Thom spectra for perfectoid rings R. We also discuss even
further generalizations to prisms (A; I) and indicate how to adapt our proofs
to Breuil-Kisin case.
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1. Introduction

In this article, since most of our results are p-typical, we fix a prime p2N>0.
We first describe the classical Hopkins-Mahowald theorem. We know that Fp=�
Zp/p, that is to say, Fp is the free Zp-algebra in which p=0. For some reasons,
we need to extend this kind of results to a category of �less linear� algebras in
which the addition is not commutative or even associative on the nose, but only
up to coherent homotopy. To be more precise, we need to understand whether the
(Eilenberg-Maclane) ring spectrum HFp is still the free object in the category of
Sp
^-algebras satisfying certain associativity and commutativity with p= 0? The

classical Hopkins-Mahowald theorem answers this affirmatively: they are the free
object in the category of E2-Sp^-algebras with p=0. There are two ways to describe
�free E2-algebras with p=0�. In this article, we will mainly adopt the description
via Thom spectra. We will go to another, more direct and natural but technically
more burdened description in Section 7. We start with formal definitions of Thom
spectra with informal illustrations and refer to [AB19] for further discussions.

Definition 1.1. Given a ring spectrum R, we define the 1-category BGL1(R) to
be the full subcategory of LModR' spanned by left R-module spectra equivalent to R,
where we denote by C' the maximal groupoid associated to an 1-category C.

Remark 1.2. The1-category BGL1(R) is in fact an1-groupoid, and if we further
suppose that R is an En+1-ring spectrum, then BGL1(R) inherits an En-monoidal
structure from LModR.

We admit the following result, which could be understand as an analogue of the
fact that �1(BG)=G for any discrete group G:

Proposition 1.3. �1(BGL1(R))=GL1(�0R) for any ring spectra R. Concretely,
an invertible element a 2 �0R corresponds to a multiplication map ma :R!R in
BGL1(R).

Remark 1.4. In fact, BGL1(R) is a delooping of the group of invertible elements
in R.

Now we recall the definition of Thom spectra:

Definition 1.5. Given a ring spectrum R, a space X and a map f :X!BGL1(R),
the Thom spectrum Mf associated to f is the colimit of the composition

X!BGL1(R)!LModR

We note that by definition of colimits, we can understand the colimit as a kind
of �free objects satisfying several equations�. We will choose a special space X
to encode the E2-commutativity (understood as a generalized version of classical
associativity, a collection of equations) and a map f :X!BGL1(R) to encode the
�equation� p=0.

Remark 1.6. As a special case of [Lur09, Proposition 4.1.2.6], any homotopy
equivalence of Kan complexes is cofinal, therefore the formation of the colimit does
not depend on the choice of models of the space X .

Remark 1.7. In this article, we only consider the case that R is a connective E1-
ring spectrum. As a consequence, we can replace LModR by ModR and the Thom
spectrum Mf is connective.
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Remark 1.8. In Definition 1.5, if X is endowed with an En-algebra structure, and
f is assumed to be En-monoidal, then the Thom spectrum Mf naturally inherits
an En-R-algebra structure. In this case, we will call Mf the En-Thom spectrum
associated to f .

In the classical Hopkins-Mahowald theorem, we will choose X =
2S3, the free
E2-group in the 1-category S of spaces.

Remark 1.9. As a special case, �1(BGL1(Sp^))=GL1(Zp)=fa2Zp jamod p=/ 0g.
The invertible element 1¡ p u in Zp gives rise to a map S1! BGL1(Sp^) where
u2GL1(Zp) is an invertible element in Zp. Since the p-adic sphere spectrum Sp

^

is an E1-ring spectrum, by Remark 1.2 this map extends to a double loop map

2S3'
2�2S1!BGL1(Sp^), which we denote by fFp;pu.

We note that the choice of 1¡ p u essentially imposes an equation 1¡ p u=1.
This could be seen by the fact that taking the colimit along fFp;pu is essentially
taking the homotopy orbits of the 
2S3-action, which is somehow �multiplying by�
1¡ p u.

Remark 1.10. In the first drafts of this article, we simply took u=1: Later, we
realized that it might be easier to introduce u to fix a gap in commutative algebra
for technical reasons.

Now we formulate the classical Hopkins-Mahowald theorem (cf. [AB19, The-
orem 5.1], where u= 1, but the proof works for the general case. See also [KN,
Theorem A.1]):

Theorem 1.11. (Hopkins-Mahowald) The Eilenberg-Maclane spectrum HFp
is the E2-Thom spectrum associated to the map fFp;pu : 
2S3!BGL1(Sp^).

This arouses a natural question: what other discrete rings are Thom spectra in
a similar fashion? The first guess will come from the observation that Zp=�W (Fp),
so it would be natural to ask whether we have similar results for perfectFp-algebras?

In this article, our main purpose is to show that this is the case for perfec-
toid rings (which is inspired by computational results of topological Hochschild
homology of perfectoid rings in [BMS19]), and consequently, for perfect Fp-algebras.
In order to do so, we need the concept of spherical Witt vectors W+(k) for perfect
Fp-algebras k, which we will recall in section 2. For the moment, we will take
advantage of the fact that �0(W+(k))=W (k) where W (k) is the ring of (classical)
Witt vectors. One example is that W+(Fp)'Sp

^.

Remark 1.12. Given a perfectoid ring R, denote by � a generator of the kernel
of Fontaine's pro-infinitesimal thickening � :W (R[)!R, which we will review in
section 4. As in Remark 1.9, the invertible element inW (R[), 1¡ �2GL1(W (R[))=
�1(BGL1(W+(R[))) gives rise to a map S1!BGL1(W+(R[)) which extends to a
double loop map fR;� : 
2S3!BGL1(W+(R[)).

Theorem 1.13. (Main Theorem) The Eilenberg-Maclane spectrum HR is the
E2-Thom spectrum associated to the map fR;� for any perfectoid ring R.

Fontaine's pro-infinitesimal thickening � is in fact surjective. Note that R=�
W (R[)/�, and our result is amount to say that the ring spectrum HR is a free E2-
W+(R[)-algebra with �=0.
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Remark 1.14. When R is a perfect Fp-algebra, we can take � = p u where u 2
GL1(R) is an invertible element in R, and we note that R[=R. Especially, when
R=Fp, fR;pu coincides with fFp;pu, hence Theorem 1.13 generalizes Theorem 1.11.

Remark 1.15. The composite map W+(R[) !!!!!!!!!!!!!!!!!!!!!!!!!!
��0

HW (R[) !!!!!!!!!!!!!!!!!!!!!!
H�

HR should be
understood as a spherical analogue of Fontaine's map � :W (R[)!R. We will estab-
lish a universal property, Proposition 4.18, similar to Fontaine's, Proposition 4.16,
which might be of independent interest.

The motivation to realize HFp as a free E2-algebra with p=0 is that it describes
a direct �generation-relation� like description with respect to the (p-completed)
sphere spectrum Sp

^. Similarly, realization of HR as a free E2-W+(R)-algebra
with �=0 enables us to relate HR more directly to the ring W+(R[) of spherical
Witt vectors, which allows us to deduce �topological� results about these rings. For
example, as a consequence, we can compute the topological Hochschild homology
THH(HR) (of a perfectoid ring R) as an E1-ring spectrum and deduce Bökstedt's
periodicity. By [KN, Proposition 4.7], as in the proof of Theorem 4.1 there, we have

Proposition 1.16. The (relative) topological Hochschild homology THH(HR/
W+(R[))'HR

S3 as E1-W+(R[)-algebras for any perfectoid ring R.

The proof is somehow technical, but essentially it is similar to the classical com-
putation of the Hochschild homology HH(R/W (R[)), via resolving R by W (R[)-
CDGAs. We refer to first paragraphs of the proof of [HN19, Theorem 1.3.2] for this
classical case. As a consequence of Proposition 1.16, we have (see subsection 5.5):

Proposition 1.17. The (absolute) topological Hochschild homology THH(HR)p^'
HR

S3 as E1-ring spectra.

By known results on the homology of 
S3 (a classical reference is [Bot82]), we
deduce Bökstedt's periodicity for perfectoid rings (cf. [BMS19, Theorem 6.1]).

Corollary 1.18. (Bökstedt's periodicity) ��(THH(HR)p^) =�R[u] where u is
any generator of �2(THH(HR)p^) as a �0(THH(HR)p^)-module.

In fact, our question was motivated by Bökstedt's periodicity for perfectoid
rings: we wanted to understand why Bökstedt's periodicity holds.

Further generalizations of Theorem 1.13 to prisms, the concept introduced in
[BS19], seem plausible. However, we are only capable to reach another special case
of prisms motivated by Breuil-Kisin cohomology, parallel to the perfectoid case,
proposed by Matthew Morrow:

Theorem 1.19. Let A be complete discrete valuation ring of mixed character-
istic with residue field k being perfect of characteristic p. Then the Eilenberg-
Maclane spectrum HA is the E2-Thom spectrum associated to a map fE : 
2S3!
BGL1(W+(k)[[u]]).

Inspired by [KN19, Section 9], we will also provide a version of Hopkins-Mahowald
theorem for complete regular local rings:

Theorem 1.20. Let (A; m) be a complete regular local ring of mixed charac-
teristic with residue field k being perfect of characteristic p. Let (a1; :::; an)�m
be a regular sequence which generates the maximal ideal m. Then the Eilenberg-
Maclane spectrum HA is the E2-Thom spectrum associated to a map fA : 
2S3!
BGL1(W+(k)[[u1; :::; un]]).
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In this article, we will first review spherical Witt vectors. We then record a
known proof of perfect rings being Thom spectrum, the special case of Theorem 1.13
for perfect rings, which we learn from Sanath Devalapurkar, but the proof is also
well-known to experts such as Achim Krause and Thomas Nikolaus, see [KN19].
This result is needed in the proof of the general case of Theorem 1.13. Then we start
with recalling the definition and some basic properties of perfectoid rings, and prove
Theorem 1.13. As far as we know, although this is known to several experts, the
proof is not found in the literature. We will finally discuss further generalizations
to prisms in Section 6, and especially Hopkins-Mahowald theorem for Breuil-Kisin
cases, which seems also to be known by experts (see [KN19, Remark 3.4]). We take
an opportunity to write down those proofs. The author thanks Matthew Morrow
for various suggestions during the construction of this article.

Warning 1.21. For spectra M;N , we will denote the smash product of M;N by
M 
N . Let R be an E1-ring (spectrum), M a right R-module (spectrum) and N
a left R-module (spectrum), we will denote the relative tensor product by M 
RN .
In order to avoid possible ambiguities, for discrete rings A, right A-modules P
and left A-modules Q, we will denote the ordinary (algebraic) tensor product by
Tor0A(P ; Q) (instead of P 
AQ). It is important that in general the Eilenberg-
Maclane spectrum H Tor0A(P ; Q) do not coincide with the relative tensor product
HP 
HAHQ of spectra. Rather, the relative tensor HP 
HAHQ coincides with
the Eilenberg-Maclane spectrum H(P 
ALQ) of the derived tensor product. Since
the concept of the derived tensor product does not play a great role in this article,
we will not use the notation 
AL, and we will uniformly preserve the notation 
 for
smash products and relative tensor products of spectra.

Notation 1.22. In this article, we mainly adopt notations in [ Lur17], [ Lur18a]
and [ Lur18b]. In particular, we will let LModR denote the 1-category of an E1-
ring R, let ModR denote the symmetric monoidal 1-category of an E1-ring R

and let AlgR
En denote the 1-category of En-R-algebras for an E1-ring R and a

positive integer n2N>0. In particular, we will denote AlgR
E1 by CAlgR, referred to

as the 1-category of commutative R-algebras. On the other hand, we will denote
ModR

~ the 1-category of discrete R-modules, and CAlgR
~ the 1-category of discrete

commutative R-algebras.

2. Recollection of spherical Witt vectors

In this section, we will review the definition and some basic properties of spherical
Witt vectors. We quote some definitions and propositions from [Lur18a, Section 5.2].

Definition 2.1. ([Lur18a, Definition 5.2.1]) Let A be a connective E1-ring,
let I ��0A be a finitely generated ideal, and set A0=�0(A)/I. Suppose that we are
given a commutative diagram of connective E1-rings

A !!!!!!!!
f

B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

where B0 is a discrete commutative ring. We will say that � exhibits f as an A-
thickening of f0 if the following conditions are satisfied:

a) The E1-ring B is I-complete as an A-module;
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b) The diagram � induces an isomorphism of commutative rings �0(B) /
I �0(B)!B0;

c) Let R be any connective E1-algebra over A which is I-complete. Then the
canonical map

MapCAlgA(B;R)!HomCAlgA0
~ (B0; �0(R)/I �0(R))

is a homotopy equivalence. In particular, the mapping space MapCAlgA(B;R)
is discrete up to homotopy equivalence, that is, each connected component is
contractible.

Remark 2.2. (Uniqueness, [Lur18a, Remark 5.2.2]) Let A be a connective
E1-ring, let I ��0A be a finitely generated ideal, and set A0=�0(A)/I. Suppose
that we are given a homomorphism of commutative rings f0 :A0!B0. It follows
immediately from the definition that if there exists a diagram �:

A !!!!!!!!
f

B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

which exhibits f as an A-thickening of f0, then the morphism f (and the diagram
�) is uniquely determined up to equivalence.

Remark 2.3. ([Lur18a, Remark 5.2.4]) Suppose that we are given a commu-
tative diagram of commutative E1-rings

A !!!!!!!!f B

 
¡

 
¡

A0 !!!!!!!!!!!!!!!!
f 0

B 0

 
¡

 
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

Assume that A0; B0 are discrete rings and the left vertical maps induce surjective
ring morphisms �0A!�0A

0!A0 whose composition has kernel I ��0A. Suppose
that the outer rectangle exhibits f as an A-thickening of f0 and that the upper
square exhibits B 0 as an I-completion of B 
AA0. Then the lower square exhibits
f 0 as an A0-thickening of f0.

Theorem 2.4. ([Lur18a, Theorem 5.2.5]) Let A be a connective E1-ring, let
I ��0A be a finitely generated ideal, and set A0=�0(A)/I. Suppose that A0 is an
Fp-algebra such that HA0 is almost perfect as an A-module and that the Frobenius
map 'A0 :A0!A0 is flat. Let f :A0!B0 be a morphism of commutative Fp-algebras
which is relatively perfect, then there exists a diagram

A !!!!!!!!f B

 
¡ �  
¡

HA0 !!!!!!!!!!!!!!!!
f0

HB0

which exhibits f as an A-thickening of f0. Moreover, � is a pushout square.
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Example 2.5. (Classical Witt vectors, [Lur18a, Example 5.2.6]) In the
statement of Theorem 2.4 take A=HZp and I = pZp. Then A0=�0(A)/I is the
finite field Fp and a map f0 :A0!B0 of discrete rings is relative perfect if and only
if B0 is a perfect Fp-algebra. If this condition is satisfied, then Theorem 2.4 allows
us to lift B0 to an E1-HZp-algebra which is complete with respect to the ideal pZp
and for which the quotient �0(B)/ p �0(B) is isomorphic to B0. This Zp-algebra
is in fact the Eilenberg-Maclane spectrum of the ring of Witt vectors W (B0). See
also [Ser79, Section II.5, Proposition 10] for a classical description of this universal
property.

Example 2.6. (Spherical Witt vectors, [Lur18a, Example 5.2.7]) In the
statement of Theorem 2.4 take A=Sp

^ and I=(p). Then A0=�0(A)/I is the finite
field Fp and a morphism f0 :A0!B0 is relative perfect if and only if B0 is a perfect
Fp-algebra. If this condition is satisfied, Theorem 2.4 allows us to lift B0 to an E1-
Sp
^-algebra which is complete with respect to the ideal (p) and the tensor product

HFp
Sp
^B'�0(B)/p �0(B) is isomorphic to B0. This is the E1-ring W+(B0) of

�spherical� Witt vectors.

Proposition 2.7. �0(W+(k)) is isomorphic to W (k), the ring of Witt vectors, and
HW (k)'W+(k)
Sp

^HZp for any perfect Fp-algebra k.

Proof. First, we have a commutative diagram

S
∧

p
//

��

W
+(k)

��

HZp

��

HFp
// Hk

Figure 2.1.

where the outer square is given by Theorem 2.4. The right vertical mapW+(k)!Hk
factors through the pushoutW+(k)
Sp

^HZp in the category ofE1-rings. Note that
Sp
^ is a coherent ring as in Definition A.10, and HZp'H�0(Sp^) is an almost per-

fect Sp^-module by Corollary A.12, which implies thatW+(k)
Sp
^HZp is an almost

perfect W+(k)-module by Proposition A.8. By Definition 2.1, W+(k) is a p-com-
plete E1-Sp^-algebra, therefore by Proposition A.27, the spectrumW+(k)
Sp

^HZp

is p-complete. Now we take A = Sp
^, A0 = HZp, A0 = HFp, B =W+(k), B 0 =

W+(k)
Sp
^HZp and B0=Hk in Remark 2.3, we deduce that the lower square

HZp ¡! W+(k)
Sp
^HZp

 
¡

 
¡

HFp ¡! Hk

constitutes a commutative diagram of thickening as in Definition 2.1. Then it follows
from Remark 2.2 and Example 2.5 thatW+(k)
Sp

^HZp is equivalent to HW (k) as
E1-HZp-algebras, which implies that W (k)=��0(HW (k))=�Tor0

�0(Sp
^)(�0(W+(k));

�0(HZp))=�Tor0
Zp(�0(W+(k));Zp)=��0(W+(k)). �
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Proposition 2.8. (Recognition of Thickenings, [Lur18a, Proposition 5.2.9])
Let A be a connective E1-ring, let I � �0A be a finitely generated ideal, and set
A0 = �0(A)/I. Suppose that A0 is an Fp-algebra which is almost perfect as an
A-module and that the Frobenius map 'A0 :A0!A0 is flat. Suppose we are given
a commutative diagram of connective E1-rings �:

A !!!!!!!!
f

B

 
¡ �  
¡

A0 !!!!!!!!!!!!!!!!
f0

B0

where f0 is a relative perfect morphism of commutative Fp-algebras. Then � exhibits
f as an A-thickening of f0 if and only if the following conditions are satisfied:

i. The E1-ring B is I-complete as an A-module;

ii. The diagram � is a pushout square.

3. Perfect rings being Thom spectra

We first admit a (superficially) slightly stronger Hopkins-Mahowald's theorem
for sake of convenience. Given a perfect Fp-algebra k and an invertible element
u2GL1(W (k)), as a special case of Remark 1.12, we have a map fk;pu : 
2 S3!
BGL1(W+(k)).

Theorem 3.1. (Hopkins-Mahowald for k) The Eilenberg-Maclane spectrum
Hk is the E2-Thom spectrum associated to the map fk;pu.

For technical reasons, we start with the special case that u 2 GL1(Zp) �
GL1(W (k)). In this case, it is a direct consequence of that for Fp:

Lemma 3.2. Theorem 3.1 is true when u2GL1(Zp)�GL1(W (k)).

Proof. We note that the image of the multiplication map m1¡pu : Sp^! Sp
^

given by 1¡ p u2 �0(Sp^) =�Zp under the canonical (symmetric monoidal) functor
W+(k)
Sp

^¡ :ModSp
^!ModW+(k) is still a multiplication map m1¡pu :W+(k)!

W+(k) given by 1¡ p u 2 �0(W+(k)) =�W (k), and therefore the map fk;pu coin-
cides with the composition map


2S3 ¡!
fFp;puBGL1(Sp^)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

W+(k)
S p̂
¡

BGL1(W+(k))

Since MfFp;pu'HFp as E2-ring spectra by Theorem 1.11,

Mfk;pu'W+(k)
Sp
^MfFp;pu'W+(k)
Sp

^HFp'Hk

as E2-ring spectra, where the first equivalence follows from the fact that the functor
W+(k)
Sp

^¡ is a left adjoint therefore commutes with colimits and the last equiv-
alence is given by the last claim in Theorem 2.4. �

In order to prove Theorem 3.1, it suffices to show that Mfk;pu'Mfk;p holds
for all u2GL1(W (k)), thereforeMfk;pu'Mfk;p'Hk by Lemma 3.2. We will base
the proof on a universal property of Thom spectra which we will not use elsewhere,
and the author looks forward to an alternative proof which does not depend on this
universal property.
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Lemma 3.3. (Proposition 4.9 in [AB19] along with the discussions after
Lemma 4.6) The E2-Thom spectrumMfk;pu satisfies the following universal prop-
erty: For all E2-W+(k)-algebras A, the mapping space MapAlg

W+(k)
E2 (Mfk;pu; A)

could be naturally identified with the space of null-homotopies of the composite map
W+(k)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mpu
W+(k)!!!!!!!!!!

�
A in the category of W+(k)-modules where � :W+(k)!A

is the canonical map given by the E2-W+(k)-algebra structure, and mpu :W+(k)!
W+(k) is the multiplication map given by p u2W (k)=�0(W+(k)).

Proof of Theorem 3.1. Note that the multiplication mapmu :W+(k)!W+(k) is
an equivalence of W+(k)-modules since u2W (k)=�0(W+(k)) is invertible. Hence
by Lemma 3.3, the map mu induces an equivalence of spaces MapAlg

W+(k)
E2 (Mfk;p;

A)!MapAlg
W+(k)
E2 (Mfk;pu; A) which is natural in A. By the Yoneda lemma, we

deduce that Mfk;pu'Mfk;p as E2-W+(k)-algebras. �

4. Recollection of perfectoid rings

In this section, we will review basic definitions and properties of perfectoid rings.

4.1. Basic definitions and properties.

Definition 4.1. Let A be a ring and I �A be an ideal. Then the ring A is called
I-adically complete if the canonical map from A to the (inverse) limit of the tower

���!A/In!���!A/I2!A/I

is an isomorphism. The ring A is called I-adically separated if the intersectionT
n=0
1 In=0.

Warning 4.2. In the literature, sometimes authors call a ring A is I-adically
complete when the canonical map A! limn2(N;>) (A/In) is only supposed to be
surjective, and our I-adic completeness is equivalent to their I-adic completeness
plus I-adic separateness.

Definition 4.3. Let A be an Fp-algebra. The direct limit perfection Aperf of A is
the direct limit of the telescope A!!!!!!!!!!!!

'
A!!!!!!!!!!!!

'
A!!!!!!!!!!!!

'
���.

Definition 4.4. An Fp-algebra A is called semiperfect if the Frobenius map ' :
A!A is surjective.

Remark 4.5. For a semiperfect Fp-algebra A, the direct limit perfection Aperf

coincides with Ared=A/ 0
p

, by checking that Ared satisfies the universal property
of Aperf.

Remark 4.6. The canonical map R!Rperf is initial among all Fp-algebra mor-
phisms R! S such that S is a perfect Fp-algebra. This follows directly from the
universal property of direct limits in the definition of direct limit perfections.

Definition 4.7. Let R be a commutative ring which is p-adically complete. The
tilt of R, denoted by R[, is a perfect Fp-algebra defined by the limit of the tower

���!!!!!!!!!!!!
'
R/p!!!!!!!!!!!!

'
R/p!!!!!!!!!!!!

'
R/p

PERFECTOID RINGS AS THOM SPECTRA 9



where ' :R/p!R/p is the Frobenius map. In particular, if R is an Fp-algebra,
then R[ is the inverse limit perfection of R, and if furthermore R is semiperfect,
then the canonical map R[!R is a surjection.

We need the following classical proposition to define the Fontaine's pro-infini-
tesimal thickening map. We omit the proof which is routine. One can find a proof
in, say, [HN19, Section 1.3].

Proposition 4.8. Let R be a p-adically complete commutative ring. Then there
exists a multiplicative map (that is to say, a morphism of multiplicative monoids)

R[!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)]
R that sends a=(xn)n2N2R[ to a] := limn!1 yn

pn where (xn)n2N satisfies
'(xn+1)= xn for all n2N, and (yn)n2N2RN is any sequence such that for each
n2N, yn is a lift of xn2R/p in R. We note that a] does not depend on choice of
(yn)n2N.

Definition 4.9. Fontaine's map � :W (R[)! R is given by �(
P

i=0
1 [ai] pi) =P

i=0
1 ai

] pi, where [¡] :R[!W (R[) is the Teichmüller representative.

Definition 4.10. ([BMS18, Definition 3.5]) A commutative ring R is perfectoid
if there exists �2R such that p2�pR, such that the ring R is (�)-adically complete,
such that the Fp-algebra R/p is semiperfect, and such that the kernel of � :W (R[)!
R is a principal ideal.

Definition 4.11. Let R be a perfectoid ring. The special fiber, denoted by �, is the
direct limit perfection of R/p, that is to say � := (R/p)perf=R/ pR

p
since R/p

is semiperfect.

Notation 4.12. Let R be a perfectoid ring. We denote by � a generator of Fontaine's
map � :W (R[)!R.

Proposition 4.13. ([BMS18, Lemma 3.13]) Let R be a perfectoid ring. Then
the commutative diagram

W (R[) !!!!!!!!� R

 
¡

 
¡

W (�) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
modp

�

is a Tor-independent pushout square.

Corollary 4.14. Let R be a perfectoid ring. For any generator �2ker�, there exists
an invertible element u2GL1(W (�)) such that the image of � 2W (R[) in W (�) is
pu.

Proof. By Proposition 4.13, the image of u2W (R[) in W (�) is a generator of the
ideal pW (�). Since p 2W (�) is not a zero divisor, we deduce the result that we
need. �

Proposition 4.15. Let R be a perfectoid ring. Then the kernel of the composition
R[!R/p!� is �R[

q
.

Proof. The kernel of the composition W (R[)!R/p!� is pW (R[)+ �W (R[)
q

whose image under the canonical map W (R[)!R[ is �R[
q

. �
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4.2. Universal properties of Fontaine's map (and a spherical analogue).
The results of this subsection will not be used later. However, we find it better to

understand that Fontaine's map � :W (R[)!R and its spherical analogueW+(R[)!
��0(W+(R[))'HW (R[)!!!!!!!!!!!!!!!!!!!!!!

H�
HR satisfy a universal property, which is related to

the thickening defined in Definition 2.1. Roughly speaking, they are mixed charac-
teristic �absolute� versions of thickenings in Definition 2.1. The following proposition
is essentially due to Fontaine (see [Fon94], Theorem 1.2.1), rephrased in the modern
language:

Proposition 4.16. ([HN19, Proposition 1.3.4]) Let R be a perfectoid ring.
Then Fontaine's map � :W (R[)!R is initial among surjections �D :D!R of rings
such that the ring D is both p-adically complete and ker �D-adically complete.

We will sketch the proof in [HN19] for the universal property, that is, assume
that the p-adic completeness and the �-adic completeness of W (R[) is already given,
we show that Fontaine's map � :W (R[)!R is initial as claimed.

Proof. Let �D :D!R be a map of rings such that D is both p-adically complete
and ker �D-adically complete. We need to show that �D factors uniquely through
� :W (R[)!R. In view of Example 2.5 and Definition 2.1, we have a bijection

HomCAlgZp
~ (W (R[); D)!!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; D/p)

(here everything is discrete therefore classical, but in order to avoid conflicts of nota-
tions with other parts of the article, we retain the cumbersome notations CAlgZp

~

and CAlgFp
~ ) which is given as follows: for any map W (R[)!D of discrete Zp-

algebras, we compose it with the canonical map D!D/p to get the mapW (R[)!
D/p, which factors uniquely throughW (R[)!W (R[)/p=�R[ therefore gives rise to
a map R[!D/p. Note that �R= idR :R!R serves as a special choice of �D since
the perfectoid ring R is p-adically complete by Definition 4.10 and tautologically
ker(�R)= (0)-adically complete. That is to say, we also have a bijection

HomCAlgZp
~ (W (R[); R)!!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; R/p)

The map �D :D!R gives rise to a commutative diagram

HomCAlgZp
~ (W (R[); D) !!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; D/p)

 
¡

 
¡

HomCAlgZp
~ (W (R[); R) !!!!!!!!!!!!!!=

�
HomCAlgFp

~ (R[; R/p)

So in order to show that the map �D :D!R factors through the canonical map �,
or equivalently put, the preimage of the element � 2HomCAlgZp

~ (W (R[); R) under

the induced map HomCAlgZp
~ (W (R[); D)!HomCAlgZp

~ (W (R[); R) is a singleton,

it suffices to show that the preimage of the element (R[!R/p)2HomCAlgFp
~ (R[;

R/p) under the map HomCAlgFp
~ (R[;D/p)!HomCAlgFp

~ (R[;R/p) is a singleton, or

equivalently put, the canonical map � :R[!R/p lifts uniquely through the map
�D :D/p!R/p induced by the map �D :D!R. Note that the surjectivity of �D
implies that of �D. Since the ring D is (p;ker �D)-adically complete, the ring D/p
is ker�D-adically complete.
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We can conclude the existence and the uniqueness of lift of the map � :R[!R/p
along the surjection �D :D/p!R/p simply by the fact that the Fp-algebra R[ is
perfect and thus the cotangent complex LR[/Fp is contractible, which implies the
existence and the uniqueness of such lift.

However, we prefer to give a direct argument: We set the Fp-algebra A :=R[ to
stress that we only depend on the fact that A is a perfect Fp-algebra, but not on the
properties of the map � :A!R/p. Denote by 'B :B!B;x 7!xp the Frobenius map
on any Fp-algebra A. Then the Frobenius map 'A is an isomorphism by assumption.

For each a2A, we choose a sequence (bn)n=01 2 (D/p)N such that for each n2N,
we have �D(bn)=�('A

¡n(a)).
Note that the sequence ('D/p

n (bn))n=01 converges ker�D-adically: �D(bn¡bn+1
p )=

�D(bn)¡�D(bn+1)p=�('A¡n(a))¡�
¡
'A
¡(n+1)(a)

�
p=�('A

¡n(a))¡�('A('A¡n(a)))=0
and therefore 'D/p

n (bn)¡'D/p
n+1(bn+1)='D/p

n (bn¡bn+1
p )2'D/pn (ker�D)�(ker�D)p

n
.

Let b := limn!1 'D/p
n (bn).

We first note that �D(b) = �(a), since �('D/p
n (bn)) = �(bn

pn) = �(bn)p
n
=

�('A
¡n(a))p

n
=�('An('A

¡n(a)))=�(a) for all n2N.
Now the value b2D/p does not depend on the choice of (bn), since for any other

choice (cn), we have cn¡ bn2 ker �D, thus 'D/pn (bn)¡ 'D/p
n (cn) = 'D/p

n (bn¡ cn)2
'D/p
n (ker�D)� (ker �D)p

n
which implies that limn!1 'D/p

n (cn)= b.
Combining the preceding discussions, we have shown that for each a 2A, we

can associate a b 2D/p such that �D(b) = �(a). It is routine to check that a 7! b
defines a map A!D/p of rings which serves as a lift of �:A!R/p. Furthermore,
the uniqueness essentially follows from the above argument that the value b2D/p
does not depend on the choice of (bn). �
Remark 4.17. In fact, we can weaken our assumption on D to be derived p-
complete and that the map D!R is Adams complete (due to [Car08] while the
terminology is coined in [Bha12]) by using some basic facts about Adams complete
surjective maps of animated rings.

Now we give a spherical version of Fontaine's universal property:

Proposition 4.18. Let R be a perfectoid ring. We compose Fontaine's map � :
W (R[)!R with the 0th Postnikov section W+(R[)! ��0(W+(R[)) =HW (R[),
obtaining the map � :W+(R[)!HR. Then we have

1. The E1-Sp^-algebra W+(R[) of spherical Witt vectors is (p;ker�)-complete.
Furthermore, the discrete ring �0(W+(R[))/ p is ker �/(p �0(W+(R[)) +
ker �)-adically separated.

2. The map � :W+(R[)!HR is initial among all maps �D :D!HR surjective
on �0 where D is an E1-Sp^-algebra such that D is (p;ker �D)-complete and
the discrete ring �0(D)/ p is ker �D/(p �0(D) + ker �D)-adically separated,
where we denote the map �0(�D) :�0(D)!R by �D.

Remark 4.19. In Proposition 4.18, the technical conditions imposed on the E1-
Sp
^-algebra D are somewhat complicated. However, we can restrict to the full sub-

category of �D such that �0(D) is (p;ker �D)-adically complete, where � :W+(R[)!
HR lives (see the proof of Proposition 4.18) and hence � is still an initial object in
this full subcategory.

Remark 4.20. Using Remark 4.17, we can drop the adic completeness of �0(D)/p
in Proposition 4.18.
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Now we want to establish some computational results about homotopy groups of
the ring W+(k) of spherical Witt vectors of a perfect Fp-algebra k. First, we need
the following proposition, which follows from Serre's computations of homotopy
groups of spheres:

Proposition 4.21. The sphere spectrum S is connective, �0(S) =Z, and for all
n2N>0, the nth (stable) homotopy group �n(S) is finite.

Thus for each n2N, the homotopy group �n(S) has bounded p-torsion. Com-
bined with Milnor sequence of homotopy groups, we have

Corollary 4.22. The p-adic sphere spectrum Sp
^ is connective, �0(Sp^) =Zp and

for all n2N>0, the nth (stable) homotopy group �n(Sp^) is a finite direct sum of
finite abelian groups of form Z/pr=�Zp/pr for some positive integer r2N>0.

We need a result announced in [Lur18a, Example 5.2.7] the argument of which
we learn from Matthew Morrow:

Proposition 4.23. Let k be a perfect Fp-algebra. Then the ring of spherical Witt
vectors W+(k) is a flat Sp

^-module.

Proof. First, by Proposition 2.7, �0(W+(k)) =�W (k) which is a torsion-free Zp-
module. Since Zp is a valuation ring, we deduce that W (k) is a flat Zp-module (see
[Sta21, Tag 0539]). Now we consider the Postnikov tower (��n Sp^)n2N of the p-
adic sphere spectrum Sp

^, which induces a tower Xn := (��nSp^)
Sp
^W+(k). Note

that Xn/Xn¡1=��nH�n(Sp^)
Sp
^W+(k). We have shown in Corollary 4.22 that

�n(Sp^) is a direct sum of finite abelian groups of form Zp/pr, which allows us to

realize H�n(Sp^) as a direct sum of spectra of form cofib
�
HZp !!!!!!!!!!!!!!!!

pr

HZp

�
. Note

that the smash product ¡
Sp
^W+(k) commutes with taking cofibers, we deduce

that H�n(Sp^) 
Sp
^W+(k) =� H Tor0

Zp(�n(Sp^); W (k)). Thus the tower (Xn)n2N
constitutes the Postnikov tower of the spectrum W+(k), therefore �n(W+(k)) =�
Tor0

�0(Sp
^)(�n(Sp^);W (k)). �

Corollary 4.24. Let k be a perfect Fp-algebra. Then the ring of spherical Witt
vectors W+(k) is connective, �0(W+(k)) =W (k), and for all n 2N>0, the nth
(stable) homotopy group �n(W+(k)) is a finite direct sum of W (k)-modules of form
W (k)/pr.

We are now ready to prove Proposition 4.18:

Proof of Proposition 4.18. We check two statements one by one:

1. Proposition 4.16 tells us that the discrete ring �0(W+(R[)) =�W (R[) is
(p; ker �)-adically complete, therefore by Proposition A.29, it is (p; ker �)-
complete. Furthermore, we deduce from (p; ker �)-adic completeness that
�0(W+(R[)) is ker �/(p �0(W+(R[)) + ker �)-adically separated. In view of
Theorem A.25, it remains to show that for each n2N>0, the homotopy group
�n(W+(R[)) is (derived) (p; ker �)-complete as a discrete W (R[)-module.
However, by Corollary 4.24, we have realized �n(W+(R[)) as a direct sum
of cofibers of (p;ker �)-complete modules, therefore it is (p;ker �)-complete.
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2. This part is parallel to the proof of Proposition 4.16. We start with the
following commutative diagram induced by the map �D :D!HR:

MapCAlgS p̂
(W+(R[); D) !!!!!!!!!!!!!!' HomCAlgFp

~ (R[; �0(D)/p)

 
¡

 
¡

MapCAlgSp̂
(W+(R[);HR) !!!!!!!!!!!!!!

'
HomCAlgFp

~ (R[; R/p)

as in the proof of Proposition 4.16. It follows from Definition 2.1 and
Example 2.6 that the horizontal maps are homotopy equivalences, which
implies that the connected components of each space on the left are all
contractible. We pick the connected component of MapCAlgS p̂

(W+(R[);HR)
corresponds to the map � :W+(R[)!HR. In order to show that � is an
initial object, it suffices to show that there exists one and only one con-
nected component in MapCAlgS p̂

(W+(R[); D) which maps to the connect

component corresponding to �. Note that the image of � in HomCAlgFp
~ (R[;

R/p) along the bottom horizontal map coincides with � 2HomCAlgFp
~ (R[;

R/ p) defined in the proof of Proposition 4.16. In view of the commuta-
tive diagram, it remains to show that the preimage of � 2HomCAlgFp

~ (R[;

R/p) in HomCAlgFp
~ (R[; �0(D)/p). The rest of the proof is identical to that

of Proposition 4.16. �

5. Proof of the main theorem

Fix a perfectoid ring R and a generator � of Fontaine's map � :W (R[)!R, the
goal of this section is to prove Theorem 1.13. We first need a much weaker version
which says that the 0th homotopy group of the E2-Thom spectrum in question, as
a ring, is isomorphic to R:

Lemma 5.1. The 0th homotopy group �0(MfR;�) of the Thom spectrum associated
to fR;� is isomorphic to R for any perfectoid ring R.

Proof. We mimic a segment of the proof of Theorem A.1 in [KN]:
We note that MfR;� is connective, so we have

�0(MfR;�)=��0(W+(R[)h
3S3)=��0(W+(R[))�0(
3S3)

where the �0(
3S3)=�Z-action on �0(W+(R[))=�W (R[) is given by multiplication
by 1¡ �, hence

�0(W+(R[))�0(
3S3)=�W (R[)/(1¡ (1¡ �))=�R �

In view of Lemma 5.1, in order to prove Theorem 1.13, it suffices to show that

Proposition 5.2. The 0th Postnikov section tR;� :MfR;�! ��0MfR;�'HR, being
an E2-map a priori, is an equivalence of spectra.

To begin with, we first note that the special case when R is a perfect Fp-algebra
is already covered by previous considerations:

Lemma 5.3. The tR;� in question is an equivalence of spectra when R is a perfect
Fp-algebra.
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Proof. Theorem 3.1 tells us that there is an equivalenceMfR;�!HR. The lemma
follows from the fact that HR lives in (ModW+(R))�0 and that the 0th Postnikov
section is essentially unique. �

We first note that both MfR;� and HR admit canonical W+(R[)-module struc-
tures. Our strategy breaks up into several steps:

1. Prove some finiteness and completeness results of MfR;� andHR asW+(R[)-
modules;

2. Show that tR;� is an equivalence after the base change along W+(R[)!
W+(�), and hence an equivalence after a further base change alongW+(�)!
H� to the special fiber H�;

3. The composition W+(R[)!W+(�)!H� coincides with the composition
W+(R[)!HR[!H�, and a Nakayama-like argument shows that tR;� is an
equivalence after base change along W+(R[)!HR[;

4. Deduce that tR;� is an equivalence by completeness.

To proceed, by Corollary 4.14, we also fix an invertible element u 2GL1(W (�))
associated to � so that the image of � in W (�) is p u.

5.1. Finiteness and completeness of MfR;� andHR asW+(R[)-modules.

Lemma 5.4. HW (k) is an almost perfectW+(k)-module for any perfect Fp-algebra
k.

Proof. If k=Fp, then W+(Fp)'Sp
^ is a coherent ring as in Definition A.10, and

HW (Fp)'HZp'H�0(W+(Fp)) is an almost perfect Sp^-module by Corollary A.12.
In general, by Proposition 2.7, we haveHW (k)'W+(k)
Sp

^HZp, henceHW (k)
is almost perfect by Proposition A.8. �

Corollary 5.5. HR is an almost perfect W+(R[)-module.

Proof. HR is the cofiber of the multiplication mapm� :HW (R[)!HW (R[) where
the domain and the codomain are almost perfect (Lemma 5.4), hence HR is also
almost perfect (Proposition A.7). �

We need a nontrivial input from algebraic topology:

Proposition 5.6. There exists a Kan complex X� which is homotopy equivalent
to the double loop space 
2S3 of the 3-sphere such that Xn is a finite set for each
[n]2�op.

Proof. This is essentially due to [Wal65, Thm A and B] and Serre. We first note
that, the loop space 
2S3 is a loop space therefore simple [MP12, Cor 1.4.5]. Now
we show that 
2 S3 is of finite type, i.e. homotopy equivalent to a CW-complex
with finite skeleta. By [MP12, Thm 4.5.2], it suffices to show that Hi(
2S3;Z) are
finitely generated for all i2N>0. The argument is standard (due to Serre): we know
that Hi(S3;Z) are finitely generated for all i 2N. Applying [tD08, Thm 20.4.1]
to the fiber sequence 
S3!�! S3 in S, we deduce that Hi(
S3) are finitely
generated for all i 2N. We apply again [tD08, Thm 20.4.1] to the fiber sequence

2S3!�!
S3, we deduce that Hi(
2S3) are finitely generated. Now the result
follows from the simplicial approximation theorem. �

Lemma 5.7. MfR;� is an almost perfect W+(R[)-module.
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Proof. We first pick up a Kan complex X� representing 
2 S3 where each Xn is
a finite set as in Proposition 5.6. It follows from Bousfield-Kan formula (see, for
example, Corollary 12.3 in [Sha18]) that MfR;� could be written as the geometric
realization of a simplicial objectN� where eachNn is a freeW+(R[)-module of finite
rank, hence almost perfect by Proposition A.7. �

Corollary 5.8. cofib(tR;�) is an almost perfect W+(R[)-module.

Proof. The subcategory of almost perfect modules are closed under taking cofibers
and base changes (Proposition A.7). The statement then follows from Corollary 5.5
and Lemma 5.7. �

Lemma 5.9. The spectrum HR is p-complete.

Proof. By definition of perfectoid rings, R is p-adically complete, therefore HR is
p-complete by Proposition A.29. �

Lemma 5.10. The spectrum MfR;� is p-complete.

Proof. We note thatW+(R[) is p-complete by definition of spherical Witt vectors,
and MfR;� is almost perfect, therefore p-complete by Proposition A.27. �

Corollary 5.11. The spectrum cofib(tR;�) is p-complete.

Proof. It follows from Corollary 5.8 and Proposition A.27. �

5.2. tR;� is an equivalence after the base change alongW+(R[)!W+(�).
The proof is similar to that of Theorem 3.1, except that we need to be more

careful to identify the maps.

Lemma 5.12. There is a canonical equivalence Mf�;pu!!!!!!!!!!!!!!
'

W+(�)
W+(R[)MfR;�
of W+(�)-modules.

Proof. We first note that the image of the multiplication map m1¡� :W+(R[)!
W+(R[) under the base change functorW+(�)
W+(R[)¡ :ModW+(R[)!ModW+(�)

is the multiplication map m1¡pu :W+(�)!W+(�).
Therefore f�;pu coincides with the composition


2S3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
fR;�

BGL1(W+(R[))!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
W+(�)


W+(R[)¡
BGL1(W+(�))

Along with the fact that the functor W+(�)
W+(R[)¡ :ModW+(R[)!ModW+(�)

commutes with small colimits, or to be more precise, that the natural transforma-
tion colimi (W+(�)
W+(R[)Mi)!W+(�)
W+(R[) (colimiMi) is an equivalence for
any diagram (Mi)i in ModW+(R[), we deduce that there is a canonical equivalence
Mf�;pu!!!!!!!!!!!!!!

'
W+(�)
W+(R[)MfR;� as W+(�)-modules. �

Lemma 5.13. Given a morphism of perfect Fp-algebras k!K, the commutative
diagram of E1-rings

W+(k) ¡! W+(K)

 
¡

 
¡

HW (k) ¡! HW (K)
is a pushout square.
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Proof. Consider the commutative diagram of E1-rings

Sp
^ ¡! W+(k) ¡! W+(K)

 
¡

 
¡

 
¡

HZp ¡! HW (k) ¡! HW (K)

By Proposition 2.7, we know that the left square and the outer square are pushout
squares, therefore so is the right square. �

Lemma 5.14. There is a canonical equivalence W+(�) 
W+(R[) HR! H� of
W+(�)-modules.

Proof. Combining two pushout squares in the category of E1-rings:

W+(R[) ¡! W+(�)
 
¡ �  
¡

HW (R[) ¡! HW (�)

 
¡ �  
¡

HR ¡! H�

where � is a pushout square by Lemma 5.13 and � is a pushout square by Propo-
sition 4.13. �

Lemma 5.15. The map W+(�) 
W+(R[) tR;� : W+(�) 
W+(R[) MfR;� !
W+(�)
W+(R[)HR is equivalent to t�;pu :Mf�;pu!H�.

Proof. In view of Lemma 5.12 and Lemma 5.14, we only need to show that
t�;pu :Mf�;pu!H� coincides with the composition of the equivalences Mf�;pu!
W+(�) 
W+(R[)MfR;�, W+(�) 
W+(R[) tR;� and W+(�) 
W+(R[)HR!H�. In
other words, it suffices to show that the composition in question is the 0th Post-
nikov section. We only need to check that the composition induces an isomorphism
on �0 by basic properties of t-structures, since ��0Mf�;pu 'H�. It suffices to
show that W+(�) 
W+(R[) tR;� induces an isomorphism on �0, and this follows
from the fact that all spectra in question are connective and that tR;� induces
an isomorphism on �0 by Lemma 5.1. �

Corollary 5.16. H�
W+(R[) tR;� is an equivalence of spectra.

Proof. It follows from Lemma 5.15 and Lemma 5.3. �

5.3. tR;� is an equivalence after the base change along W+(R[)!HR[.

Lemma 5.17. LetM be an HR[-module which is bounded below and almost perfect.
If there exists an r2N such that �r�n(M)= 0 for all n2Z, and H�
HR[M ' 0,
then M ' 0.

Proof. We show inductively on n that �nM =0.

� Since M is bounded below, �nM =0 for n� 0;

� Suppose that form<n we have �mM =0. Then by unrolling Definition A.6,
�nM is a compact object in the category of discrete R[-modules, therefore
is finitely presented and in particular finitely generated. Now we have

0=�n(H�
HR[M)=Tor0R
[

(�; �nM):
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By Proposition 4.15 and that �r�n(M)=0, we have

Tor0R
[

(�; �nM)=Tor0
R[/�r(�; �nM)

We note that ker(R[/ �r! �) lies in the (nil-radical, therefore) Jacobson
radical of R[/ �r, thus �nM =0, by Nakayama's lemma along with the fact
that �nM is finitely generated. �

Remark 5.18. Matthew Morrow told us that in Lemma 5.17, the hypothesis
�r �n(M) = 0 is redundant, since the kernel of the map R[! � of Fp-algebras lies
in the radical of the ideal � R[�Rad(R[) where Rad(R[) is the Jacobson radical
of the Fp-algebra R[ and the inclusion � R[�Rad(R[) is deduced from the � R[-
adically completeness of the Fp-algebra R[. Since the Jacobson radical is �radical�,
the kernel of the map R[!� also lies in the Jacobson radical Rad(R[). We decide
to preserve the original version to reflect our real thoughts.

Corollary 5.19. HR[
W+(R[) tR;� is an equivalence of spectra.

Proof. Note that

�0(HR[
W+(R[)MfR;�)=Tor0
W (R[)(R[; �0(MfR;�))=R[/ �R[

and

�0(HR[
W+(R[)HR)=Tor0
W (R[)(R[; R)=R[/�R[

and that HR[
W+(R[)MfR;�, HR[
W+(R[)HR are connective E1-rings, we con-
clude that the homotopy groups of these E1-rings are �-torsion groups, which
implies that for all n2Z,

�2�n(cofib(HR[
W+(R[) tR;�))=0

In addition, since the subcategory of almost perfect modules are closed
under base changes (Proposition A.8), we deduce from Corollary 5.8 that
cofib(HR[ 
W+(R[) tR;�) ' HR[ 
W+(R[) cofib(tR;�) is almost perfect. On the
other hand, being the cofiber of a map of connective spectra, it is also connec-
tive. Then we invoke Lemma 5.17 along with Corollary 5.16 to conclude that
cofib(HR[
W+(R[) tR;�)' 0. �

5.4. Conclude: tR;� is an equivalence.
We are now at the final stage to conclude a proof of Proposition 5.2, and con-

sequently, Theorem 1.13.

Proof of Proposition 5.2. We recall that by Theorem 2.4 and Example 2.6, there
is a pushout square of E1-rings:

Sp
^ ¡! W+(R[)

 
¡

 
¡

HFp ¡! HR[

Therefore by Corollary 5.19 we have

0' cofib(HR[
W+(R[) tR;�)'HR[
W+(R[) cofib(tR;�)'HFp
Sp
^ cofib(tR;�)

We then invoke Corollary A.33 with Corollary 5.11 to deduce that cofib(tR;�)'0. �
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5.5. An intermezzo: Identifying THH(¡/W+(k)) with THH(¡) after p-
completion.

In this subsection, we will show that Proposition 1.17 follows from Proposi-
tion 1.16. It suffices to prove the following lemma:

Lemma 5.20. Let R be an E1-algebra over W+(k) where k is a perfect Fp-algebra.
Then the canonical map THH(R)! THH(R/W+(k)) induced by S! Sp

^ is an
equivalence after p-completion.

Proof. Note that THH(R/W+(k))'W+(k)
THH(W+(k))THH(R). We are left
to show that the canonical map THH(W+(k))!W+(k) is an equivalence after p-
completion. In view of Corollary A.33, we only need to check it after tensoring with
HFp. We note that the base changed map HFp
THH(W+(k))!HFp
W+(k)
fits into the commutative diagram

HFp
THH(W+(k)) ¡! HFp
W+(k)

 
¡ �

==

THH(HFp
W+(k)/HFp) ¡! HFp
W+(k)

 
¡ �  
¡

THH(Hk/HFp) ¡! Hk

where the commutativity of � follows from the functoriality of the base change
functor of THH, and the commutative of � follows from the functoriality of the
natural transformation THH(¡/HFp)! (¡). All vertical maps are equivalences
of spectra: the upper left map is the base change equivalence, and the lower right
map is the equivalence by Proposition 2.7, and the lower left map is the image of
this equivalence under the functor THH(¡/HFp) and hence also an equivalence.
The bottom horizontal map is an equivalence by the fact that k is a perfect Fp-
algebra. �

6. Analogues

It is worth to note that in Bhatt and Scholze's recent work [BS19], they intro-
duced the concept of prisms (A; I) which serves as a �non-perfect� version of
perfectoid rings. Especially, the category of perfect prisms (A; I) is equivalent
to that of perfectoid rings A/I, and given a perfectoid ring R, the corresponding
perfect prism is given by (W (R[); ker �). It is interesting to know whether we
can generalize our description for general orientable prisms (A; I), that is to say,

Question 1. Given an orientable prism (A; I = (d)) . When can we find an E1-
ring spectrum A+ (which satisfies some hypotheses related to A. A naive guess
would be that �0(A+)=A) and a map 
2S3!BGL1(A+) to which the associated
E2-Thom spectrum (possibly after p-completion) coincides with A/I.

We don't know the answer in this generality. However, we will discuss another
special class of prism (related to Breuil-Kisin cohomology) for which an analogue
holds. This result is more-or-less known by experts. In fact, it is essentially equiv-
alent to Remark 3.4 in [KN19] of which no proof is presented. In this section, we
will first recall some basic facts about complete discrete valuation rings, then we
will indicate briefly how to adapt our proof above to this special class.

6.1. Preparations.
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Definition 6.1. ([Ser79, Section I.1]) A ring A is called a discrete valuation
ring, or a DVR, if it is a principal ideal domain that has a unique non-zero prime
ideal m. In this case, since A is local, we also denote the DVR A by (A;m). The field
A/m is called the residue field of A. A generator of m, unique up to multiplication
by an invertible element, is called a uniformizer, usually denoted by $.

Definition 6.2. A DVR (A;m) is called of mixed characteristics (0; p) if the field
of fraction Frac(A) of A is of characteristics 0 while the residue field A/m is of
characteristics p, which implies that 0=/ p2m.

Definition 6.3. ([Ser79, Section I.1]) Let (A;m) be a DVR. The valuation of
an element x2A n 0 is defined to be the maximal integer n2N such that x2mn,
which always exists, denoted by v(x)2N.

Definition 6.4. ([Ser79, Section II.5]) Let (A;m) be a DVR of mixed character-
istics (0; p). Then the integer e=v(p) is called the absolute ramification index of A.

Definition 6.5. ([Ser79, Chapter II]) A DVR (A;m) is called complete if it is
complete with respect to the m-adic topology, that is to say, the canonical map from
A to the limit of the tower

���!A/mn!���!A/m2!A/m

is an isomorphism.

Proposition 6.6. ([Ser79, Section II.5, Theorem 4]) Let (A;m) be a complete
DVR of mixed characteristics (0; p) with residue field k being perfect. Let e be
its absolute ramification index. Let $ 2m be a uniformizer. Then there exists an
Eisenstein W (k)-polynomial E(u)2W (k)[u] (that is, a W (k)-polynomial E(u) =
ue+

P
j=0
e¡1

aju
j such that p jaj for j=0; :::; e¡1 and p2 -a0, where W (k) is the ring

of Witt vectors as before) along with an isomorphism W (k)[u]/(E(u))!!!!!!!!!!!!!!� A which
maps u to the uniformizer $ 2m.

In the rest of this section, we will fix a complete DVR (A;m) of mixed char-
acteristics (0; p) with residue field k being perfect, absolute ramification index e
and a uniformizer $ 2m. We also fix a choice of an Eisenstein W (k)-polynomial
E(u)2W (k)[u] as in Proposition 6.6. We first note that

Proposition 6.7. The element 1¡E(u)2W (k)[[u]] is invertible.

Proof. Write E(u)=ue+
P

j=0
e¡1 aj u

j as in Proposition 6.6. Note that W (k) is p-
adically complete, therefore 1¡ a0 is invertible in W (k), which implies that 1¡
E(u)2W (k)[[u]] is invertible. �

Let W+(k)[u] be the �single variable polynomial W+(k)-algebra�, that is, the
E1-W+(k)-algebra W+(k)
S S[N]. Since the space N is endowed with discrete
topology, we have

Proposition 6.8. As a W+(k)-module, W+(k)[u] is equivalent to the direct sumL
j=0
1 ujW+(k), a free W+(k)-module. The graded homotopy group ��(W+(k)[u]),

as a (graded-commutative) ��(W+(k))-algebra, is equivalent to ��(W+(k))[u], where
deg u=0.
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Now let W+(k)[[u]] be the (u)-completion of the E1-W+(k)-algebra W+(k)[u].
To study W+(k)[[u]], we need some preparations.

Proposition 6.9. Let n2N be a natural number. Letmun :W+(k)[u]!W+(k)[u] be
the multiplication map given by un2�0(W+(k)[u])=W (k)[u]. Then the W+(k)[u]-
module cofib(mun) as a W+(k)-module is a free W+(k)-module

L
j=0
n¡1 ujW+(k)

of rank n, which admits an E1-W+(k)[u]-algebra structure. In particular, we have
the cofiber sequence

W+(k)[u]!!!!!!!!!!!!!!!!!!!!!!!!mu
W+(k)[u]!W+(k)

of W+(k)[u]-modules.

Proof. For any space X 2 S, we let X+ 2 S� denote the pointed discrete space
f�g [X . Especially, N+= f�g [N and (N<n)+= f�g [N<n. The addition map
N!N; m 7! n+m induces a map of pointed spaces �n :N+!N+. Note that in
the 1-category S of spaces, we have a pushout diagram

N+ !!!!!!!!!!!!!!!!!!!!
�n

N+

 
¡

 
¡

f�g ¡! (N<n)+

to which we apply the functor �1 :S�!Sp, left adjoint of the functor 
�1 :Sp!S�
therefore preserving colimits, we get a cofiber sequence S[u]!!!!!!!!!!!!!!!!!!!!u

n

S[u]!
L

j=0
n¡1ujS.

A further base change toW+(k) gives rise to the result. In addition, the multiplica-
tion structure could be seen from the fact that the addition map N!N;m 7!n+m
in fact defines a monoidal action. �

Corollary 6.10. Let n2N be a natural number. Let mun :W+(k)[u]!W+(k)[u]
be the multiplication map. Then homotopy groups ��(cofib(mun)) of the cofiber as
��(W+(k)) could be identified with ��(W+(k))[u]/(un), and the long exact sequence
of homotopy groups associated to the cofiber sequence W+(k)[u]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mun

W+(k)[u]!
cofib(mun) decomposes as short exact sequences, which assemble to a short exact
sequence of graded ��(W+(k))[u]-modules:

0!��(W+(k))[u]!!!!!!!!!!!!!!!!!!!!u
n

��(W+(k))[u]!��(W+(k))[u]/(un)! 0

Furthermore, this sequence is functorial in n2 (N; >).

Proposition 6.11. The E1-W+(k)-algebra W+(k)[[u]] is connective. The zeroth
homotopy group of �0(W+(k)[[u]]) is isomorphic to the (u)-adic completion of the
polynomial W (k)-algebra W (k)[u], that is, the formal power series W (k)-algebra
W (k)[[u]], as W (k)-algebras.

Our proof is incomplete: we only identify theW (k)-module structures on homo-
topy groups. A formal identification of algebra structures would require more
rudiments about the symmetric monoidal structure on the completion functor than
we know.

Proof. We reinterpret Proposition A.19 as follows: since the limit functor is exact,
it commutes with cofibers, therefore we can rewrite W+(k)[[u]] = (W+(k)[u])(u)

^ as
the limit of the tower

���! cofib
�
W+(k)[u]!!!!!!!!!!!!!!!!!!

u2

W+(k)[u]
�
! cofib

¡
W+(k)[u]!!!!!!!!!!

u
W+(k)[u]

�
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After passage to homotopy groups, by Corollary 6.10, we get the tower of graded
��(W+(k))[u]-modules

���!��(W+(k))[u]/(un)!���!��(W+(k))[u]/(u2)! ��(W+(k))[u]/(u) (6.1)

which is degree-wise a tower of surjective maps. It follows from Milnor's sequence
that the graded ��(W+(k))[u]-module ��(W+(k)[[u]]) is isomorphic to the (ordi-
nary) inverse limit of the tower (6.1), that is, ��(W+(k))[[u]]. Take �=0, we get
the result. �

The following lemma serves as a key tool in our proof:

Lemma 6.12. Let M be a W+(k)[u]-(or W+(k)[[u]]-)module (spectrum). If the
spectrum W+(k)
W+(k)[u]M (or W+(k)
W+(k)[[u]]M respectively) is contractible,
then so is the (u)-completion of the spectrum M. In particular, if furthermore
W+(k)[u]-(or W+(k)[[u]]-)module M is assumed to be (u)-complete, then the spec-
trum M is contractible.

Proof. We first assume that the spectrum W+(k)
W+(k)[u]M is contractible. In
this case, we apply the exact functor ¡
W+(k)[u]M to the cofiber sequence

W+(k)[u]!!!!!!!!!!!!!!!!!!!!!!!!
mu

W+(k)[u]!W+(k) (6.2)

indicated in Proposition 6.9 obtaining that the base-changed map

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mu
W+(k)[u]M

M is an equivalence of spectra. Note that this map is just
the multiplication map, denoted by mM;u. Now we look at Proposition A.19: the
(u)-completion of the W+(k)[u]-module M is the cofiber of the canonical map
T (M)!M , where T (M) is the limit of the tower

���!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
mM;u

M

Since all maps in the tower are equivalences of spectra, we deduce that the canonical
map T (M)!M is an equivalence of spectra, which implies that the (u)-completion
of the W+(k)[u]-module M is contractible. In particular, the W+(k)[u]-module M
is assumed to be (u)-complete, therefore the spectrum M is contractible.

If, on the other hand, W+(k)
W+(k)[[u]]M is contractible, then to adopt the
proof above, it suffices to establish the cofiber sequence

W+(k)[[u]]!!!!!!!!!!!!!!!!!!!!!!!!mu
W+(k)[[u]]!W+(k) (6.3)

We apply the (u)-complete functor to the cofiber sequence (6.2), and note that the
W+(k)[u]-module W+(k) is (u)-nilpotent (in fact, multiplying u is the zero map
on W+(k)), therefore W+(k) is (u)-complete by Corollary A.17, which leads to the
cofiber sequence (6.3). The rest of the proof is same as before. �

6.2. The Breuil-Kisin case.
As before, we fix a complete DVR (A;m) of mixed characteristics (0; p) with

residue field k being perfect, absolute ramification index e, a uniformizer $ 2
m and an Eisenstein W (k)-polynomial E(u)2W (k)[u] which induces an isomor-
phism W (k)[u] /(E(u)) !!!!!!!!!!!!!!� A; u 7!$ as in Proposition 6.6. As in Remark 1.9
and Remark 1.12, 1¡E(u)2W (k)[[u]]=�1(BGL1(W+(k)[[u]])) gives rise to a map
fE : 
2 S3!BGL1(W+(k)[[u]]). The proof of Lemma 5.1 results in the following
analogue:
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Lemma 6.13. The zeroth homotopy group of the E2-Thom spectrum MfE associ-
ated to the map fE is isomorphic to the W (k)-algebraW (k)[[u]]/(E(u))=�W (k)[u]/
(E(u))=�A.

The W (k)[u]-module structure on A gives rise to a W+(k)[u]-module structure
on HA. Since A is m=($)-adically complete, the W (k)[u]-module structure on A
also gives rise to aW (k)[[u]]-module structure on A and consequently aW+(k)[[u]]-
module structure on HA. We readily [details needed] check that these structures
are compatible, in the sense that the W+(k)[u]-module structure on HA coin-
cides with the image of the W+(k)[[u]]-module HA under the forgetful functor
ModW+(k)[[u]]!ModW+(k)[u]. Matthew Morrow proposed the following analogue
of the Hopkins-Mahowald theorem:

Theorem 6.14. The truncation map tE :MfE!H�0(MfE)=�HA of E2-W+(k)[[u]]-
algebras is an equivalence of spectrum. Thus the Eilenberg-Maclane spectrum HA is
the E2-Thom spectrum MfE associated to the map fE : 
2S3!BGL1(W+(k)[[u]]).

Corollary 6.15. (see [KN19, Remark 3.4]) The E2-HA-algebra
HA
W+(k)[[u]]HA is a free E2-HA-algebra on a single generator in degree 1.

Proof. The strategy is already covered in the proof of Lemma 3.2 and Lemma 5.12.
Since this pattern will appear again soon, we find it beneficial to present again.
Let's recall that the E2-Thom spectrumMfE is the colimit of the composite functor


2S3!!!!!!!!!!!!!!!!!!fE BGL1(W+(k)[[u]])!ModW+(k)[[u]]

which by abuse of notation will be still denoted by fE.
Since the base change functor HA
W+(k)[[u]]¡ :ModW+(k)[[u]]!ModHA is a

left adjoint, it commutes with colimits, we deduce that HA 
W+(k)[[u]]MfE '
M (fE
W+(k)[[u]]HA), where fE
W+(k)[[u]]HA is the map 
2S3!BGL1(HA).

As in the proof of Lemma 3.2, we can identify map as follows: we pick the image
of 1¡E(u) 2GL1(W (k)[[u]]) under the map GL1(W (k)[[u]])!GL1(A), that is,
the element 1 2GL1(A) =� �1(BGL1(HA)), which gives rise to the constant map
S1!BGL1(HA) and consequently the constant map fA : 
2 S3!BGL1(HA), as
in Remark 1.9 and Remark 1.12.

In conclusion, the map fE 
W+(k)HA : 
2S3!BGL1(HA) coincides with the
constant map fA, and the E2-Thom spectrumMfA is thus the colimit of a constant
map, which evaluates to HA

2S3, the free E2-HA-algebra on a single generator
in degree 1. �

Recall that E(u)2W (k)[u] is an Eisenstein W (k)-polynomial. Let a0 denote
the constant term of E(u). By assumption, p j a0 but p2 - a0. Let a0= p b0 where
b02W (k). Since p is not a zero-divisor in W (k), we have p - b0, which implies that
the image of b0 in W (k)/p=� k is invertible since k is a field. Now since W (k) is p-
adically complete, we have b02GL1(W (k)).

The strategy to prove Theorem 6.14 is similar to the approach to attack The-
orem 1.13. We first show that the base change of the truncation map tE along the
map W+(k)[[u]]!W+(k) coincides with the truncation map tk;a0, then it follows
from Lemma 5.3 that the base changed map W+(k) 
W+(k)[[u]] tE ' tk;a0 is an
equivalence of spectra, and by completeness, we deduce that the map tE is also an
equivalence of spectra by Lemma 6.12.

Lemma 6.16. There is a canonical equivalence Mfk;a0!!!!!!!!!!!!!!
'

W+(k)
W+(k)[[u]]MfE
of W+(k)-modules.
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Proof. We will duplicate the proof of Lemma 5.12. The image of the multi-
plication map m1¡E(u) :W+(k)[[u]]!W+(k)[[u]] under the base change functor
W+(k)
W+(k)[[u]]¡ :ModW+(k)[[u]]!ModW+(k) is the multiplication map m1¡a0 :
W+(k)!W+(k). Note also that the base change functor is symmetric monoidal.
Now we conclude that the map fk;a0 coincides with the composite map


2S3!!!!!!!!!!!!!!!!!!fE BGL1(W+(k)[[u]])!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
W+(k)


W+(k)[[u]]¡
BGL1(W+(k))

Thus by commuting the colimit and the base-change, we obtain

Mfk;a0 = colim(W+(k)
W+(k)[[u]] fE)

!!!!!!!!!!!!!!' W+(k)
W+(k)[[u]] colim fE

= W+(k)
W+(k)[[u]]MfE

where by abuse of notation, the colimit of the maps fk;a0 (or fE respectively) are
understood as the colimit of the maps fk;a0 (or fE respectively) composed with the
functor BGL1(W+(k))!ModW+(k) (or BGL1(W+(k)[[u]])!ModW+(k)[[u]] respec-
tively) as in the definition of Thom spectra. �
Lemma 6.17. There is a canonical equivalence W+(k)
W+(k)[[u]]HA!!!!!!!!!!!!!!

'
Hk of

W+(k)-modules.

Proof. As in the proof of Lemma 6.12, we identify W+(k) with the cofiber of the
multiplication map mu :W+(k)[[u]]!W+(k)[[u]] which gives us an equivalence

W+(k)
W+(k)[[u]]HA' cofib
¡
HA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mHA;u
HA

�
Now by the definition of the W+(k)[[u]]-module structure on HA and that u
is not a zero-divisor in A, we have the equivalence cofib

¡
HA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

mHA;u
HA

�
'

H
¡
coker

¡
A!!!!!!!!!!!!!!

$
A
��
'Hk. Thus we obtain an equivalence W+(k)
W+(k)[[u]]HA'

Hk. We can readily check [details needed] that this equivalence could be described
as follows: consider the commutative diagram in the 1-category of E1-rings

W+(k)[[u]] ¡! W+(k)

 
¡

 
¡

HA ¡! Hk

where the left vertical map is the composite mapW+(k)[[u]]!H(�0(W+(k)[[u]]))'
H(W (k)[[u]])!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

u 7!$
HA (where the first map is the Postnikov section). The com-

mutative diagram induces a map W+(k)
W+(k)[[u]]HA!Hk (note that the left
hand side is a pushout of E1-rings), which coincides with the equivalence obtained
above. �
Lemma 6.18. The equivalences in Lemma 6.16 and Lemma 6.17 assembles into
a commutative diagram:

Mfk;a0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
tk;a0

Hk

 
¡' ¡!'

W+(k)
W+(k)[[u]]MfE ¡! W+(k)
W+(k)[[u]]HA

where the top horizontal map is the 0th Postnikov section tk;a0 defined in Proposi-
tion 5.2 and the bottom horizontal map is the base-changed 0th Postnikov section
W+(k)
W+(k)[[u]] tE.
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Proof. As in the proof of Lemma 5.15, it suffices to show that the composite
map on the 0th homotopy group �0(Mfk;a0)! �0(W+(k) 
W+(k)[[u]]MfE)!
�0(W+(k) 
W+(k)[[u]]HA)! �0(Hk) =� k is an isomorphism, which follows from
an explicit element chasing. �

Combined with Lemma 5.3, we obtain that

Corollary 6.19. The base-changed map W+(k) 
W+(k)[[u]] tE :
W+(k)
W+(k)[[u]]MfE!W+(k)
W+(k)[[u]]HA is an equivalence of W+(k)-mod-
ules.

Apply Lemma 6.12 to the cofiber cofib(tE), we deduce that

Corollary 6.20. The map tE :MfE!HA is an equivalence of spectra after (u)-
completion.

As in Lemma 5.9, we deduce from Theorem A.25 that

Lemma 6.21. The W+(k)[[u]]-module HA is (u)-complete.

Now, given the nontrivial topological input Proposition 5.6, as in Lemma 5.10
and Corollary 5.11, we deduce that

Lemma 6.22. The W+(k)[[u]]-module MfE is (u)-complete.

Corollary 6.23. The cofiber cofib(tE) is a (u)-complete W+(k)[[u]]-module, and
thus the map tE is an equivalence of spectra by Corollary 6.20.

This completes the proof of Theorem 6.14.

6.3. Complete regular local rings.
Inspired by [KN19, Section 9], we will provide a Hopkins-Mahowald theorem for

complete regular local rings of mixed characteristic. We will show how to modify
our proof of Theorem 6.14 to deduce this. Note that this is also a special case of
Question 1, by [BS19, Remark 3.11].

We need some preparations in higher algebra:
Let W+(k)[u1; :::; un] be the �n-variate polynomial W+(k)-algebra�, that is, the

E1-W+(k)-algebra W+(k)
SS[Nn]. Since the space Nn is endowed with discrete
topology, parallel to Proposition 6.8, we have

Proposition 6.24. As a W+(k)-module, W+(k)[u1; :::; un] is equivalent to the
direct sum

L
�2Nn u

�W+(k), a free W+(k)-module. The graded homotopy group
��(W+(k)[u1; :::; un]), as a (graded-commutative) ��(W+(k))-algebra, is equivalent
to ��(W+(k))[u1; :::; un], where deg u1= ���=deg un=0.

Now let W+(k)[[u1; :::; un]] be the (u1; :::; un)-completion of the E1-W+(k)-
algebraW+(k)[u1; :::;un]. By induction on n2N>0 and argue as in Proposition 6.11
[details needed], we obtain:

Proposition 6.25. The E1-W+(k)-algebra W+(k)[[u1; :::; un]] is connective. The
zeroth homotopy group of �0(W+(k)[[u1; :::; un]]) is isomorphic to the (u1; :::; un)-
adic completion of the polynomial W (k)-algebra W (k)[u1; :::; un], that is, the formal
power series W (k)-algebra W (k)[[u1; :::; un]], as W (k)-algebras.
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Similarly, argue inductively on n2N>0 as in Lemma 6.12, we obtain:

Lemma 6.26. Let M be a W+(k)[u1; :::; un]-(or W+(k)[[u1; :::; un]]-)module (spec-
trum). If the spectrum W+(k) 
W+(k)[u1;:::;un]M (or W+(k) 
W+(k)[[u1;:::;un]]M

respectively) is contractible, then so is the (u1; :::; un)-completion of the spectrum
M. In particular, if furthermore W+(k)[u1; :::; un]-(or W+(k)[[u1; :::; un]]-)module
M is assumed to be (u1; :::; un)-complete, then the spectrum M is contractible.

We note that in these inductive arguments, we heavily depend on Proposi-
tion A.23.

Now we are ready to formulate the Hopkins-Mahowald theorem for complete
regular local rings. We fix a positive integer n 2N>0, a perfectoid ring R. As in
Section 5, let � :W (R[)!R be Fontaine's pro-infinitesimal thickening. Let � 2
W (R[)[[u1; :::;un]] be formal power series such that �(0; :::;0)2W (R[) is a generator
of ker �. We recall that ker � is principal by definition. We note that the element
1¡ �(u1; :::; un)2W (R[)[[u1; :::; un]] is invertible, since 1¡ �(0; :::; 0)2W (R[) is
invertible as the ring W (R[) is ker �-adically complete. As in Remark 1.9 and
Remark 1.12, the element 1¡ �(u1; :::; un)2GL1(W (R[)[[u1; :::; un]]) gives rise to
an E2-map f : 
2S3!BGL1(W (R[)[[u1; :::; un]]). The proof of Lemma 5.1 results
in the following analogue:

Lemma 6.27. The zeroth homotopy group of the E2-Thom spectrumMf associated
to the map f is isomorphic to the W (R[)-algebra W (R[)[[u1; :::; un]]/(�(u1; :::; un)).

We now phrase the following variant of the Hopkins-Mahowald theorem:

Theorem 6.28. The truncation map t :Mf!H�0(Mf)=�HW (R[)[[u1; :::; un]]/
(�(u1; :::; un)) of E2-W+(R[)[[u1; :::; un]]-algebras is an equivalence of spectrum.
Thus the Eilenberg-Maclane spectrum HW (R[)[[u1; :::; un]] /(�(u1; :::; un)) is the
E2-Thom spectrum Mf associated to the map f : 
2 S3! BGL1(W+(R[)[[u1; :::;
un]]).

The proof is parallel to that of Theorem 6.14, which we will omit. Now let
(A;m) be a complete regular local ring with residue field k=A/m being perfect of
characteristic p. We also assume that p=/ 0 in A. Let (a1; :::; an)�m be a regular
sequence which generates the maximal ideal m. We need the following lemma:

Lemma 6.29. ([KN19, Lemma 9.2]) There exists a map W (k)[[u1; :::; un]]!
A of rings given by ui 7! ai for i= 1; :::; n, which is surjective with kernel being
principal, generated by a formal power series � 2W (k)[[u1; :::; un]] with �(0; :::;
0)= p.

Proof. First, the isomorphism k!A/m lifts to a map W (k)!A since A is m-
adically complete, see Example 2.5 or [Ser79, Section II.5, Proposition 10]. The map
W (k)[[u1; :::; un]]!A is then well-defined since A is m-adic complete. Let C;K be
the cokernel and the kernel of the map W (k)[[u1; :::; un]]!A of W (k)[[u1; :::; un]]-
modules. By right-exactness of classical tensor products, we have

Tor0
W (k)[[u1;:::;un]](C;W (k))=� coker(W (k)! k)=� 0
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Now by inspecting the exact sequence 0!m!A! k! 0, we deduce that A is
a finitely generated W (k)[[u1; :::; un]]-module, therefore so is C. We deduce from
Nakayama's lemma that C =� 0, therefore the map W (k)[[u1; :::; un]] is surjective.
Now we obtain a short exact sequence of W (k)[[u1; :::; un]]-modules

0!K!W (k)[[u1; :::; un]]!A! 0

which gives rise to an exact sequence of W (k)-modules

Tor1
W (k)[[u1;:::;un]](A;W (k))!Tor0

W (k)[[u1;:::;un]](K;W (k))!W (k)! k! 0

Since (a1; :::; an) is a regular sequence, it is also Koszul regular [Sta21, Tag 062F],
hence Tor1

W (k)[[u1;:::;un]](A;W (k))=� 0. Thus

Tor0
W (k)[[u1;:::;un]](K;W (k))=� ker(W (k)! k)=� pW (k)

We pick a lift �2K of p2 pW (k). By Nakayama's lemma, the W (k)[[u1; :::; un]]
module (and hence the ideal) K is generated by the element �2K. Furthermore,
by multiplying an invertible element in W (k), we can assume that the lift � is so
chosen that �(0; :::; 0)= p. �

Remark 6.30. Our proof of Lemma 6.29 leads to a more general result: Let
A be a commutative ring with an ideal I � A generated by a (Koszul) regular
sequence (a1; :::; an)� I. If A is both p-adically complete and I-adically complete,
and R :=A/I is a perfectoid ring, then by Proposition 4.16, there exists a unique
map W (R[)! A such that the composite map W (R[)! A! R coincides with
Fontaine's map, which allows us to view A as a W (R[)-algebra. Now we consider
the map ' :W (R[)[[u1; :::; un]]!A of W (R[)-algebras given by ui 7!ai for i=1; :::;
n. Our proof of Lemma 6.29 implies that the map ' is surjective with kernel
being principal, generated by a formal power series �2W (R[)[[u1; :::; un]] such that
�(0; :::; 0) generates the kernel ker(�) of Fontaine's map � :W (R[)!R.

Corollary 6.31. Let � 2W (k)[[u1; :::; un]] be a power series as described in
Lemma 6.29. Let f : 
2 S3!BGL1(W+(k)[[u1; :::; un]]) be the map given by the
element 1¡ �(u1; :::; un) 2GL1(W (k)[[u1; :::; un]]). Then the E2-Thom spectrum
Mf associated to the map f is as an E2-W+(k)[[u1; :::; un]]-algebra equivalent to
the Eilenberg-Maclane spectrum HA of the complete regular local ring A (of mixed
characteristic).

Proof. It follows from Theorem 6.28 by taking R= k and Lemma 6.29. �

7. Characterizing Thom spectra as quotients of free E2-algebras

In this section, we will discuss an alternative characterization of Thom spectra
which we learn from [AB19]. This characterization will enable us to peel off some
redundant restraints in the definition of Thom spectra. We will rephrase Question 1
more broadly, and give a toy example related to the Breuil-Kisin case. We note
that in fact, we have already used this characterization in Lemma 3.3.

We first present a theorem which we learn from Antolín-Camarena and Barthel's
paper:
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Remark 7.1. Let R be an E1-ring. Let R[
2S2] be the free E2-R-algebra on a
single generator in degree 0. Then for all E2-R-algebra S and elements x2 �0(S),
the universal property of free E2-R-algebras gives rise to a map R[
2S2]!S which
maps the generator (in fact, a connected component) to x. We will call this map
the evaluation map of R[
2S2] at x.

Theorem 7.2. ([AB19, Theorem 4.10]) Let R be an E1-ring and � 2
�1(BGL1(R)) =� GL1(�0 R). Let q : S1! BGL1(R) a loop representing � 2
�1(BGL1(R)). Let f : 
2 S3! BGL1(R) be the double loop map associated to q
(see Remark 1.2). Then the E2-Thom spectrum Mf associated to the E2-map
f fits into a pushout diagram of E2-R-algebras:

R[
2S2] ¡! R

 
¡

 
¡

R ¡! Mf

where R[
2 S2] =� R 
S �+1 S2 is the free E2-R-algebra on a single generator in
degree 0, and two maps R[
2S2]!R are evaluation maps of R[
2S3] at 02 �0R
and 1¡�2 �0R respectively.

Remark 7.3. Theorem 7.2 shows that the Thom spectrum description is equivalent
to the pushout-diagram description. However, we note that the pushout-diagram
description is more general in the sense that even if �2 �0R is not invertible, the
pushout-diagram description is still valid while we can no longer, at least superfi-
cially, give a Thom spectrum description. We find it easier to write down proofs
for Thom spectrum description so we adapted the Thom spectrum description for
perfectoid rings.

We can now rephrase Question 1 as follows:

Question 2. Given an orientable prism (A; I = (d)) . When can we find an E1-
ring spectrum A+ (which satisfies some hypotheses related to A. A naive guess
would be that �0(A+)=A) so that the Eilenberg-Maclane spectrum H(A/I) as an
E2-A+-algebra fits into a pushout diagram

A+[
2S2] ¡! A+

 
¡

 
¡

A+ ¡! H(A/I)

such that two maps A+[
2S2]!A+ are evaluation maps of the free E2-A+-algebra
A+[
2S2] at 02 �0(A+) and d2 �0(A+) respectively.

Remark 7.4. Theorem 7.2 shows that Theorem 1.13 answers this question affir-
matively when (A; I) is a perfect prism (W (R[); ker �), with A+ :=W+(R[).

Remark 7.5. Similarly, Theorem 6.14 answers this question affirmatively when
(A; I) is a prism (W (k)[[u]]; (E(u))) associated to Breuil-Kisin cohomology where
k is a perfect Fp-algebra and E(u)2W (k)[u] is an Eisenstein polynomial.

We now announce a toy example of a variant of Theorem 6.14. As there, we fix
a complete DVR (A;m) of mixed characteristics (0; p) with residue field k being
perfect, absolute ramification index e, a uniformizer$2m and an EisensteinW (k)-
polynomial E(u)2W (k)[u] which induces an isomorphism W (k)[u]/(E(u))!!!!!!!!!!!!!!

�
A;

u 7!$ as in Proposition 6.6.
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Theorem 7.6. The (u)-completion of the total cofiber of the commutative diagram
of E2-W+(k)[u]-algebras

W+(k)[u]
SS[
2S2] ¡! W+(k)[u]

 
¡

 
¡

W+(k)[u] ¡! HA

is contractible, where two maps W+(k)[u] 
S S[
2 S3]!W+(k)[u] are given by
evaluation maps at 02�0(W+(k)[u]) and E(u)2�0(W+(k)[u]) respectively. Equiv-
alently put, the commutative diagram above induces an equivalence of W+(k)[u]-
modules from the E2-pushout of the diagram W+(k)[u] W+(k)[u]
SS[
2S2]!
W+(k)[u] to the Eilenberg-Maclane spectrum HA after (u)-completion.

Corollary 7.7. ([KN19, Remark 3.4]) The E2-HA-algebra HA
W+(k)[u]HA

is the (p)-completion of the free E2-HA-algebra on a single generator in degree 1.

Proof. Note that E(u) vanishes after tensoring HA, and that (u)-completion
coincides with (p)-completion forHA since $e/p is an invertible element, the result
follows. �

We sketch a proof of Theorem 7.6, which is totally parallel to that of The-
orem 6.14.

A sketch of a proof of Theorem 7.6. Let X be the pushout of the diagram
W+(k)[u] W+(k)[u] 
S S[
2 S2]!W+(k)[u] in question. We first check that
the induced map X!HA is the 0th Postnikov section. Then we perform a base
change W+(k)
W+(k)[u]¡. We show that after such a base change, the induced
map X!HA becomes an equivalence, given by Theorem 7.2 and Lemma 5.3. We
then conclude the result by Corollary 6.20. �

Appendix A. Recollection of Higher Algebra

This appendix is devoted to a recollection of basic facts in Higher Algebra
needed in the main text. Our main reference is [Lur17], [Lur18b] and [Lur18a].

A.1. Finiteness properties of rings and modules.
We will include some definitions and properties from [Lur17, Section 7.2.4].

Definition A.1. ([Lur17, Notation 7.1.1.10, Proposition 7.1.1.13]) Given a
connective E1-ring R, there is a canonical accessible t-structure on LModR deter-
mined by subcategories (LModR)�0 and (LModR)�0, where (LModR)�0 is the full
subcategory of LModR spanned by those left R-modules M for which �nM =� 0 for
n< 0, and (LModR)�0 is the full subcategory of LModR spanned by those left R-
modules M for which �nM =� 0 for n> 0.

Proposition A.2. ([Lur17, Proposition 7.1.1.13]) Let R be a connective E1-
ring, then the subcategories (LModR)�0; (LModR)�0 � LModR are stable under
small products and small filtered colimits.

Definition A.3. ([Lur17, Proposition 7.2.2.10]) Let M be a left module over
an E1-ring R. We will say that M is flat if the following conditions are satisfied:

1. The homotopy group �0M is flat as a left module over �0R in the usual sense.

2. For each n2Z, the natural map Tor0
�0R(�nR; �0M)! �nM is an isomor-

phism of abelian groups.
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Definition A.4. ([Lur17, Definition 7.2.4.1]) Let R be an E1-ring. We let
LModR

perf denote the smallest stable subcategory of LModR which contains R
(regarded as a left module over itself) and is closed under retracts. We will say
that a left R-module M is perfect if it belongs to LModR

perf.

Definition A.5. ([Lur17, Definition 7.2.4.8]) Let C be a compactly generated
1-category. We will say that an object C 2 C is almost compact if ��n C is a
compact object of ��n C for all n� 0.

Definition A.6. ([Lur17, Definition 7.2.4.10]) Let R be a connective E1-ring.
We will say that a left R-module M is almost perfect if there exists an integer k
such that M 2 (LModR)�k and is almost compact as an object of (LModR)�k. We
let LModR

aperf denote the full subcategory of LModR spanned by the almost perfect
left R-modules.

Proposition A.7. ([Lur17, Proposition 7.2.4.11]) Let R be a connective E1-
ring. Then:

1. The full subcategory LModR
aperf � LModR is closed under translation and

finite colimits, and is therefore a stable subcategory of LModR;

2. The full subcategory LModR
aperf�LModR is closed under retracts;

3. Every perfect left R-module is almost perfect;

4. The full subcategory (LModR
aperf)�0�LModR is closed under geometric real-

izations of simplicial objects;

5. Let M be a left R-module which is connective and almost perfect. Then M
can be obtained as the geometric realization of a simplicial left R-module P�
such that each Pn is a free R-module of finite rank.

Proposition A.8. Let f :A!A0 be a map of connective E1-rings. Let M be a
connective left A-module and set M 0=A0
AM. If M is an almost perfect left A-
module, then M 0 is an almost perfect left A0-module.

Proof. Since M is connective and almost perfect, by Proposition A.7, there exists
a simplicial object P� in LModA such that each Pn is a free A-module of finite rank
and M is equivalent to the geometric realization of P�. Therefore M 0 is equivalent
to the geometric realization of A0
AP�, by the fact the tensor products commute
with small colimits. On the other hand, each A0
APn is a free A0-module of finite
rank, hence perfect, thus almost perfect. Now M 0 is equivalent to the geometric
realization of almost perfect modules, therefore M 0 is almost perfect by Proposi-
tion A.7. �

Definition A.9. ([Lur17, Definition 7.2.4.13]) A discrete associative ring R is
left coherent if every finitely generated left ideal of R is finitely presented as a left
R-module.

Definition A.10. ([Lur17, Definition 7.2.4.16]) Let R be an E1-ring. We will
say that R is left coherent if the following conditions are satisfied:

1. The E1-ring R is connective;

2. The discrete associative ring �0R is left coherent;

3. For each n�0, the homotopy group �nR is finitely presented as a left module
over �0R:
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Proposition A.11. ([Lur17, Proposition 7.2.4.17]) Let R be an E1-ring and
M a left R-module. Suppose that R is left coherent. Then M is almost perfect if
and only if the following conditions are satisfied:

i. For m� 0, �mM =0;

ii. For every integer m, �mM is finitely presented as a left �0R-module.

Corollary A.12. Let R be a left coherent E1-ring, then H �0(R) as a left R-module
is almost perfect.

A.2. Nilpotent, local and complete modules.
We will include several definitions and propositions from [Lur18b], Chapter 7.

Definition A.13. ([Lur18b, Definition 7.1.1.1, Example 7.1.1.2]) Let R
be a connective E1-ring and let x 2 �0R. An R-module M is x-nilpotent if the
localizationM [1/x] vanishes. Equivalently,M is x-nilpotent if and only if the action
of x on ��M is locally nilpotent, that is, if and only if for each y2�jM, there exists
an integer n� 0 such that xn y=0 in �jM for all j 2Z.

Definition A.14. ([Lur18b, Definition 7.1.1.6]) Let R be a connective E1-
ring and let I � �0R be an ideal. We say that an R-module M is I-nilpotent if it
is x-nilpotent for each x2 I.

Definition A.15. ([Lur18b, Definition 7.2.4.1]) Let R be a connective E1-ring
and let I ��0R be an ideal. We say that an R-module M is I-local if for every I-
nilpotent R-module N, the mapping space MapModR(N;M) is contractible.

Definition A.16. ([Lur18b, Definition 7.3.1.1]) Let R be a connective E1-
ring and let I ��0R be an ideal. We will say that an R-module M is I-complete if
for every I-local R-module N, the mapping space MapModR(N;M) is contractible.

Corollary A.17. Let R be a connective E1-ring and let I ��0R be an ideal. If
M is an I-nilpotent R-module, then it is also an I-complete R-module.

Proposition A.18. ([Lur18b, Proposition 7.3.1.4 and Notation 7.3.1.5])
Let R be a connective E1-ring and let I ��0R be a finitely generated ideal. Then
every left R-module M fits into an (essentially unique) fiber sequence M 0!M!
M 00, where M 0 is I-local and M 00 is I-complete. Moreover, there is a functor, called
the I-completion functor, ModR!ModR, which maps M to M 00. We denote by MI

^

the image of M under the I-completion functor.

We can compute the I-completion functor when I is principal:

Proposition A.19. ([Lur18b, Proposition 7.3.2.1]) Let R be a connective E1-
ring and let x2�0R be an element. For any R-module M 2ModR, let T (M) denote
the limit of the tower

���!!!!!!!!!!
x
M !!!!!!!!!!

x
M !!!!!!!!!!

x
M !!!!!!!!!!

x
M

Then T (M) is (x)-local and the (x)-completion of M can be identified with the
cofiber of the canonical map � :T (M)!M.
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Corollary A.20. ([Lur18b, Corollary 7.3.2.2]) Let R be a connective E1-ring
and let x2�0R be an element. The following conditions on an R-module M 2ModR
are equivalent:

1. The module M is (x)-complete.

2. The limit of the tower

���!!!!!!!!!!x M !!!!!!!!!!x M !!!!!!!!!!x M !!!!!!!!!!x M

vanishes.

Corollary A.21. ([Lur18b, Corollary 7.3.2.3]) Let R be a connective E1-
ring, I ��0R an ideal and x2 �0R an element. Then the (x)-completion functor
ModR!ModR;M 7!M(x)

^ carries I-complete modules to I-complete modules.

Corollary A.22. ([Lur18b, Corollary 7.3.2.4]) Let R be a connective E1-ring,
x2�0R and let M be an R-module.

1. If the R-moduleM is connective, then the (x)-completionM(x)
^ is connective.

2. If M 2 (ModR)�0, then M(x)
^ 2 (ModR)�1.

Proof. Let T (M) be the limit of the tower
¡
��� !!!!!!!!!!x M !!!!!!!!!!x M !!!!!!!!!!x M

�
. Then by

Proposition A.19, we have the cofiber sequence T (M)!M!M(x)
^ which gives rise

to a long exact sequence

���!�n(T (M))!�n(M)!�n(M(x)
^ )!�n¡1(T (M))!�n¡1(M)!�n¡1(M(x)

^ )!���

Furthermore, let Tn(M)� be the tower

���!!!!!!!!!!x �n(M)!!!!!!!!!!x �n(M)!!!!!!!!!!x �n(M)

Then there is a Milnor sequence

0! lim1 Tn+1(M)�!�n(T (M))! limTn(M)�! 0

Especially, if M is assumed to be connective, then Tn(M)� is a tower of 0 for n<0,
which implies that �n¡1(T (M)) vanishes when n < 0. We deduce from the long
exact sequence that �n(M(x)

^ ) vanishes when n<0. Similarly, if M 2(ModR)�0, then
Tn(M)� is a tower of 0 for n> 0, thus �n(T (M)) vanishes when n� 0. We deduce
from the long exact sequence that �n(M(x)

^ ) vanishes when n> 0. �

Proposition A.23. ([Lur18b, Corollary 7.3.3.3]) Let R be a connective E1-
ring and I � �0R be a finitely generated ideal. Let M be an R-module. Then the
following conditions on M are equivalent:

1. M is I-complete;

2. For each x2 I, M is (x)-complete;

3. There exists a set of generators x1; :::; xn for the ideal I such that M is (xi)-
complete for i=1; :::; n.

Remark A.24. ([Lur18b, Corollary 7.3.3.6]) Let � :R!R0 be a morphism
of connective E1-rings, I ��0R a finitely generated ideal and I 0= �(I)�0(R0) the
ideal generated by the image of I . Then

1. An R0-module M is I 0-complete if and only if it is I-complete as an R-
module;
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2. For every R0-module M , the canonical map M!MI 0̂ exhibits MI 0̂ as an I-
completion of M , regarded as a morphism of R-modules.

Theorem A.25. ([Lur18b, Theorem 7.3.4.1]) Let R be an E1-ring, let I��0R
be a finitely generated ideal and let M be an R-module. The following conditions
are equivalent:

a) The R-module M is I-complete;

b) For every integer k, the homotopy group �kM satisfies the condition that
for each x2 I, we have ExtA0(A[1/x]; �kM)=0=ExtA1(A[1/x]; �kM) where
A=�0R:

Proposition A.26. ([Lur18b, Proposition 7.3.4.8]) Let R be a connective
E1-ring, let I � �0R be a finitely generated ideal, and let x2 �0R be an element
whose image in (�0R)/I is invertible. If M is an I-complete left R-module, then
multiplication by x induces an equivalence from M to itself.

Proposition A.27. ([Lur18b, Proposition 7.3.5.7]) Let R be a connective E1-
ring, let I � �0R be a finitely generated ideal, and let M be an almost perfect R-
module. If R is I-complete, then so is M.

Definition A.28. ([Lur18b, Section 7.3.6]) Let R be a discrete commutative
ring and M be a (discrete) R-module. Let I �R be a finitely generated ideal. The
I-adic completion of M, denoted by Cpl(M ; I), is defined to be the limit of tower
limM /InM. There is a canonical map M!Cpl(M ; I). An R-module M is called
I-adically complete if the canonical map M!Cpl(M ; I) is an isomorphism, and
M is called I-adically separated if the canonical map M!Cpl(M ; I) is injective.

Proposition A.29. ([Lur18b, Corollary 7.3.6.3]) Let R be a discrete commu-
tative ring, let I �R be a finitely generated ideal, and let M be a discrete R-module.
The following conditions are equivalent:

a) The module M is I-adically complete;

b) The module HM is I-complete and M is I-adically separated.

Warning A.30. By Proposition A.29, the concept of I-adic completeness does
not coincide with the concept of I-completeness for discrete modules over discrete
commutative rings. Rather, the former is stronger than the latter.

Definition A.31. A spectrum X is called p-complete if it is (p)-complete as an
S-module. For any spectrum X, the p-completion of X, denoted by Xp

^, is the (p)-
completion of X as an S-module.

Remark A.32. WhenM is an R-module for a connective E1-ring R, (p) is also an
ideal of �0R. In this case, it follows from Remark A.24 that M is (p)-complete as
an S-module if and only if it is (p)-complete as an R-module, so there is completely
no ambiguity to talk about p-completeness. Similarly, Remark A.24 implies the p-
completion of an R-module M is the underlying spectrum of the (p)-completion of
M as an R-module.

Corollary A.33. Let X be a bounded below spectrum. If X is p-complete and
HFp
X ' 0, then X' 0.
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Proof. We will show inductively on n2Z that �nX =0.

1. Since X is bounded below, �nX =0 for n� 0.

2. Suppose now that for every m<n, we have �mX = 0. We will show that
�nX=0. In this case, we have 0=�n(HFp
X)=�Tor0Z(Fp; �nX). Thus for
each x2�nX, there exists (by axiom of choice) a sequence (xj)j2N2 (�nX)N
such that x0= x and xj = p xj+1 for all j 2N, which gives rise to a map
'x :Z[1/p]!�nX of abelian groups given by '(1/pj)=xj. Theorem A.25
tells us that 'x=0, and especially, x=0. In conclusion, we have proved that
x=0 for each x2 �nX , thus �nX =0. �

Bibliography

[AB19] Omar Antolín-Camarena and Tobias Barthel. A simple universal property of Thom ring
spectra. Journal of Topology, 12(1):56�78, 2019.

[Bha12] B. Bhatt. Completions and derived de Rham cohomology. ArXiv e-prints, jul 2012.
[BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic Hodge theory.

Publications Mathématiques. Institut de Hautes Études Scientifiques, 128:219�397, 2018.
[BMS19] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Topological Hochschild homology

and integral p-adic Hodge theory. Publications Mathématiques. Institut de Hautes Études
Scientifiques, 129:199�310, 2019.

[Bot82] Raoul Bott. Differential Forms in Algebraic Topology. Springer New York, New York,
NY, 1982.

[BS19] Bhargav Bhatt and Peter Scholze. Prisms and Prismatic Cohomology. ArXiv e-prints,
May 2019.

[Car08] Gunnar Carlsson. Derived completions in stable homotopy theory. Journal of Pure and
Applied Algebra, 212(3):550�577, 2008.

[Fon94] Jean-Marc Fontaine. Le corps des périodes p-adiques. Number 223, pages 59�111. 1994.
With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).

[HN19] Lars Hesselholt and Thomas Nikolaus. Topological cyclic homology. ArXiv e-prints, May
2019.

[KN] Achim Krause and Thomas Nikolaus. Lectures on topological Hochschild homology and
cyclotomic spectra. https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/
Lectures.pdf.

[KN19] Achim Krause and Thomas Nikolaus. Bökstedt periodicity and quotients of DVRs. ArXiv
e-prints, Jul 2019.

[Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2009.

[Lur17] Jacob Lurie. Higher Algebra. https://www.math.ias.edu/~lurie/papers/HA.pdf, sep
2017.

[Lur18a] Jacob Lurie. Elliptic Cohomology II: Orientations. https://www.math.ias.edu/~lurie/
papers/Elliptic-II.pdf, apr 2018.

[Lur18b] Jacob Lurie. Spectral Algebraic Geometry. https://www.math.ias.edu/~lurie/papers/
SAG-rootfile.pdf, feb 2018.

[Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-
Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.

[Sha18] Jay Shah. Parametrized higher category theory and higher algebra: Exposé II - Indexed
homotopy limits and colimits. ArXiv e-prints, Sep 2018.

[Sta21] StacksProjectAuthors. The Stacks project. https://stacks.math.columbia.edu, 2021.
[Wal65] C. T. C. Wall. Finiteness conditions for CW-complexes. Annals of Mathematics. Second

Series, 81:56�69, 1965.

34 ZHOUHANG MAO

https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	1. Introduction
	2. Recollection of spherical Witt vectors
	3. Perfect rings being Thom spectra
	4. Recollection of perfectoid rings
	4.1. Basic definitions and properties
	4.2. Universal properties of Fontaine's map \(and a spherical analogue\)

	5. Proof of the main theorem
	5.1. Finiteness and completeness of M f_\(R,ξ\) and H R as W^+\(R^♭\)-modules
	5.2. t_\(R,ξ\) is an equivalence after the base change along W^+\(R^♭\)→W^+\(κ\)
	5.3. t_\(R,ξ\) is an equivalence after the base change along W^+\(R^♭\)→H R^♭
	5.4. Conclude: t_\(R,ξ\) is an equivalence
	5.5. An intermezzo: Identifying THH\(-/W^+\(k\)\)_ with THH\(-\)_ after p-completion

	6. Analogues
	6.1. Preparations
	6.2. The Breuil-Kisin case
	6.3. Complete regular local rings

	7. Characterizing Thom spectra as quotients of free ᵓ쀅 퀆ဆ쀆瀆倆  ဇ�
	Appendix A. Recollection of Higher Algebra
	A.1. Finiteness properties of rings and modules
	A.2. Nilpotent, local and complete modules

	Bibliography

