Perfectoid rings as Thom spectra

BY ZHOUHANG MAO

IMJ-PRG

3 Dec 2020

Introduction

In this talk, we will discuss

- the classical Hopkins-Mahowald theorem,
- prisms, perfectoid rings and the site of (perfect) prisms,
- a proof of the Hopkins-Mahowald theorem for perfectoid rings,
- a proof of the Hopkins-Mahowald theorem for complete regular local rings of mixed char,
- applications to topological Hochschild homology.

Background: \mathbb{E}_n -algebras, quotients

Recall

- \mathbb{E}_{∞} -rings, $\operatorname{CAlg} := \operatorname{Alg}_{\mathbb{E}_{\infty}}(\operatorname{Sp})$
- \mathbb{E}_n -A-algebras where $A \in \operatorname{CAlg}$, $\operatorname{Alg}_{\mathbb{E}_n}(\operatorname{LMod}_A)$

Definition. Let $A \in CAlg$, $a \in \pi_0(A)$. The \mathbb{E}_n -quotient $A/\mathbb{E}_n a := the pushout$

in $Alg_{\mathbb{E}_n}(LMod_A)$.

Remark. (Antolin-Camarena-Barthel) A special case of *versal* A-algebras \Rightarrow equivalent to an \mathbb{E}_n -A-Thom spectrum.

Classical Hopkins-Mahowald Theorem

Notation. \mathbb{S}_p^{\wedge} : *p*-complete sphere spectrum

The canonical map $\mathbb{S}_p^{\wedge} \to \pi_0(\mathbb{S}_p^{\wedge}) = \mathbb{Z}_p \to \mathbb{F}_p$ gives rise to a diagram

by definition, get a natural map $\mathbb{S}_p^{\wedge}/\mathbb{E}_2 p \to \mathbb{F}_p$.

Remark. One can show that the induced map $\pi_0(\mathbb{S}_p^{\wedge}/\mathbb{E}_2 p) \to \mathbb{F}_p$ is equivalence $\Rightarrow \mathbb{S}_p^{\wedge}/\mathbb{E}_2 p$ is p-complete.

Theorem. (Hopkins-Mahowald) The natural map $\mathbb{S}_p^{\wedge}/\mathbb{E}_2 p \to \mathbb{F}_p$ is an equivalence of spectra (therefore also of \mathbb{E}_2 - \mathbb{S}_p^{\wedge} -algebras).

Our generalizations: replace \mathbb{F}_p by *perfectoid rings*, or complete regular local rings.

δ -rings and prisms

Definition. (Bhatt-Scholze)

• A δ -ring A is a ring A along with a derived Frobenius lift, i.e. a ring endomorphism $\varphi:A\to A$ along with a diagram

in the ∞ -category of simplicial commutative rings (also described by a map $\delta: A \to A$ satisfying several equations).

- A prism is a pair (A, I) where A is a δ -ring and $I \subseteq A$ is an ideal defining a Cartier divisor in $\operatorname{Spec}(A)$ such that A is (derived) (p, I)-complete and $p \in I + \varphi(I) A$.
- A prism (A, I) is perfect if the δ -ring A is perfect, i.e. if the Frobenius lift $\varphi : R \to R$ is an automorphism. In this case, I is principal.
- A ring S is perfectoid if \exists a perfect prism (A, I) such that $S \cong A/I$ as rings.

δ -rings and prisms

Definition. (Bhatt-Scholze)

• A δ -ring A is a ring A along with a derived Frobenius lift, i.e. a ring endomorphism $\varphi:A\to A$ along with a diagram

in the ∞ -category of simplicial commutative rings (also described by a map $\delta: A \to A$ satisfying several equations).

Remark. If A is p-torsion free, derived Frobenius lift = Frobenius lift $\varphi: A \to A$ s.t. $\forall x \in A, \varphi(x) \equiv x^p \pmod{p}$.

• A prism is a pair (A, I) where A is a δ -ring and $I \subseteq A$ is an ideal defining a Cartier divisor in $\operatorname{Spec}(A)$ such that A is (derived) (p, I)-complete and $p \in I + \varphi(I) A$.

- A prism (A, I) is perfect if the δ -ring A is perfect, i.e. if the Frobenius lift $\varphi : R \to R$ is an automorphism. In this case, I is principal.
- A ring S is perfectoid if \exists a perfect prism (A, I) such that $S \cong A/I$ as rings.

δ -rings and prisms

Definition. (Bhatt-Scholze)

• A δ -ring A is a ring A along with a derived Frobenius lift, i.e. a ring endomorphism $\varphi:A\to A$ along with a diagram

in the ∞ -category of simplicial commutative rings (also described by a map $\delta: A \to A$ satisfying several equations).

- A prism is a pair (A, I) where A is a δ -ring and $I \subseteq A$ is an ideal defining a Cartier divisor in $\operatorname{Spec}(A)$ such that A is (derived) (p, I)-complete and $p \in I + \varphi(I) A$.
- A prism (A, I) is perfect if the δ -ring A is perfect, i.e. if the Frobenius lift $\varphi : R \to R$ is an automorphism. In this case, I is principal.
- A ring S is perfectoid if \exists a perfect prism (A, I) such that $S \cong A/I$ as rings.

Perfect prisms and perfectoid rings

Proposition. (Bhatt-Scholze) There is a canonical equivalence of categories

where $S^{\flat} := \lim \left(\cdots \xrightarrow{\operatorname{Frob}} S/p \xrightarrow{\operatorname{Frob}} S/p \right)$ is the tilt and $\theta : W(S^{\flat}) \to S$ is Fontaine's map.

Example.

- (\mathbb{Z}_p, p) is a perfect prism.
- More generally, perfect \mathbb{F}_p -algebras k are perfectoid \leadsto perfect prisms (W(k), p).
- (perfect q-crystalline) $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q:=1+q+\cdots+q^{p-1})$

Remark. A map of prisms $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q) \to (\mathbb{Z}_p,p)$ with kernel (q-1) being complete.

- $(\mathbb{Z}_p[[u]], p-u)$ with $\varphi(u)=u^p$ is a non-perfect prism.
- (Breuil-Kisin) (W(k)[[u]], E(u)) with $\varphi(u) = u^p$ where $E \in W(k)[u]$ Eisenstein polynomial.

Perfect prisms and perfectoid rings

Proposition. (Bhatt-Scholze) There is a canonical equivalence of categories

$$\{perfectoid\ rings\ R\} \simeq \{perfect\ prisms\ (A,I)\}$$

$$A/I \longleftrightarrow (A,I)$$

$$S \mapsto (W(S^{\flat}), \ker \theta)$$

where $S^{\flat} := \lim \left(\cdots \xrightarrow{\operatorname{Frob}} S/p \xrightarrow{\operatorname{Frob}} S/p \right)$ is the tilt and $\theta : W(S^{\flat}) \to S$ is Fontaine's map.

Example.

- (\mathbb{Z}_p, p) is a perfect prism.
- More generally, perfect \mathbb{F}_p -algebras k are perfectoid \rightsquigarrow perfect prisms (W(k), p).
- (perfect q-crystalline) $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q:=1+q+\cdots+q^{p-1})$

Remark. A map of prisms $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q) \to (\mathbb{Z}_p,p)$ with kernel (q-1) being complete.

Remark. In fact, the map $\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge}/[p]_q \xrightarrow{q\mapsto \mu_{p^{\infty}}} \mathbb{Z}_p^{\text{cycl}} := (\mathbb{Z}_p[\mu_{p^{\infty}}])_p^{\wedge}$ is an equivalence.

- $(\mathbb{Z}_p[[u]], p-u)$ with $\varphi(u)=u^p$ is a non-perfect prism.
- (Breuil-Kisin) (W(k)[[u]], E(u)) with $\varphi(u) = u^p$ where $E \in W(k)[u]$ Eisenstein polynomial.

Perfect prisms and perfectoid rings

Proposition. (Bhatt-Scholze) There is a canonical equivalence of categories

where $S^{\flat} := \lim \left(\cdots \xrightarrow{\operatorname{Frob}} S/p \xrightarrow{\operatorname{Frob}} S/p \right)$ is the tilt and $\theta : W(S^{\flat}) \to S$ is Fontaine's map.

Example.

- (\mathbb{Z}_p, p) is a perfect prism.
- More generally, perfect \mathbb{F}_p -algebras k are perfectoid \leadsto perfect prisms (W(k), p).
- (perfect q-crystalline) $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q:=1+q+\cdots+q^{p-1})$

Remark. A map of prisms $(\mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge},[p]_q) \to (\mathbb{Z}_p,p)$ with kernel (q-1) being complete.

- $(\mathbb{Z}_p[[u]], p-u)$ with $\varphi(u)=u^p$ is a non-perfect prism.
- (Breuil-Kisin) (W(k)[[u]], E(u)) with $\varphi(u) = u^p$ where $E \in W(k)[u]$ Eisenstein polynomial.

Let k be a perfect \mathbb{F}_p -algebra. Then

- The cotangent complex $\mathbb{L}_{k/\mathbb{F}_n} \simeq 0$.
- By deformation theory, \exists an equivalence of ∞ -categories

{pro-inf-thickenings
$$R \to \mathbb{F}_p$$
} $\xrightarrow{\simeq}$ {pro-inf-thickenings $S \to k$ }

• (Lurie) The \mathbb{E}_{∞} -ring $W^+(k)$ of spherical Witt vectors is given by

$$(\mathbb{S}_p^{\wedge} \to \mathbb{F}_p) \longmapsto (W^+(k) \to k)$$

Remark. $\mathbb{S}_p^{\wedge} \to \mathbb{F}_p$ is the initial pro-infinitesimal thickening of \mathbb{F}_p , therefore so is $W^+(k) \to k$.

• Restrict to discrete rings,

$$(\mathbb{Z}_p \to \mathbb{F}_p) \longmapsto (W(k) \to k).$$

Let k be a perfect \mathbb{F}_p -algebra. Then

• The cotangent complex $\mathbb{L}_{k/\mathbb{F}_p} \simeq 0$.

Remark. For any map $R \to S$ of rings, the algebraic cotangent complex $\mathbb{L}_{S/R} \neq$ the topological cotangent complex $\mathbb{L}_{S/R}^{top}$. However, $\mathbb{L}_{S/R} \simeq 0 \iff \mathbb{L}_{S/R}^{top} \simeq 0$.

• By deformation theory, \exists an equivalence of ∞ -categories

$$\{\text{pro-inf-thickenings } R \to \mathbb{F}_p\} \xrightarrow{\simeq} \{\text{pro-inf-thickenings } S \to k\}$$

• (Lurie) The \mathbb{E}_{∞} -ring $W^+(k)$ of spherical Witt vectors is given by

$$(\mathbb{S}_p^{\wedge} \to \mathbb{F}_p) \longmapsto (W^+(k) \to k)$$

Remark. $\mathbb{S}_p^{\wedge} \to \mathbb{F}_p$ is the initial pro-infinitesimal thickening of \mathbb{F}_p , therefore so is $W^+(k) \to k$.

Restrict to discrete rings,

$$(\mathbb{Z}_p \to \mathbb{F}_p) \longmapsto (W(k) \to k).$$

Let k be a perfect \mathbb{F}_p -algebra. Then

- The cotangent complex $\mathbb{L}_{k/\mathbb{F}_n} \simeq 0$.
- By deformation theory, \exists an equivalence of ∞ -categories

{pro-inf-thickenings
$$R \to \mathbb{F}_p$$
} $\xrightarrow{\simeq}$ {pro-inf-thickenings $S \to k$ }

• (Lurie) The \mathbb{E}_{∞} -ring $W^+(k)$ of spherical Witt vectors is given by

$$(\mathbb{S}_p^{\wedge} \to \mathbb{F}_p) \longmapsto (W^+(k) \to k)$$

Remark. $\mathbb{S}_p^{\wedge} \to \mathbb{F}_p$ is the initial pro-infinitesimal thickening of \mathbb{F}_p , therefore so is $W^+(k) \to k$.

• Restrict to discrete rings,

$$(\mathbb{Z}_p \to \mathbb{F}_p) \longmapsto (W(k) \to k).$$

Let k be a perfect \mathbb{F}_p -algebra. Then

- The cotangent complex $\mathbb{L}_{k/\mathbb{F}_n} \simeq 0$.
- By deformation theory, \exists an equivalence of ∞ -categories

{pro-inf-thickenings
$$R \to \mathbb{F}_p$$
} $\xrightarrow{\simeq}$ {pro-inf-thickenings $S \to k$ }

Definition. A map $R \to S$ of connective \mathbb{E}_{∞} -rings is called a pro-inf-thickening if it is Adams complete.

• (Lurie) The \mathbb{E}_{∞} -ring $W^+(k)$ of spherical Witt vectors is given by

$$(\mathbb{S}_p^{\wedge} \to \mathbb{F}_p) \longmapsto (W^+(k) \to k)$$

Remark. $\mathbb{S}_p^{\wedge} \to \mathbb{F}_p$ is the initial pro-infinitesimal thickening of \mathbb{F}_p , therefore so is $W^+(k) \to k$.

Restrict to discrete rings,

$$(\mathbb{Z}_p \to \mathbb{F}_p) \longmapsto (W(k) \to k).$$

Let k be a perfect \mathbb{F}_p -algebra. Then

- The cotangent complex $\mathbb{L}_{k/\mathbb{F}_n} \simeq 0$.
- By deformation theory, \exists an equivalence of ∞ -categories

{pro-inf-thickenings
$$R \to \mathbb{F}_p$$
} $\xrightarrow{\simeq}$ {pro-inf-thickenings $S \to k$ }

• (Lurie) The \mathbb{E}_{∞} -ring $W^+(k)$ of spherical Witt vectors is given by

$$(\mathbb{S}_p^{\wedge} \to \mathbb{F}_p) \longmapsto (W^+(k) \to k)$$

Remark. $\mathbb{S}_p^{\wedge} \to \mathbb{F}_p$ is the initial pro-infinitesimal thickening of \mathbb{F}_p , therefore so is $W^+(k) \to k$.

• Restrict to discrete rings,

$$(\mathbb{Z}_p \to \mathbb{F}_p) \longmapsto (W(k) \to k).$$

Get a pushout diagram in the ∞ -category CAlg

Corollary. $\pi_0(W^+(k)) \cong W(k)$.

Corollary. Let $\operatorname{Perf}_{\mathbb{F}_p} := \text{the opposite category of perfect } \mathbb{F}_p\text{-algebras}$. Then W^+ is a presheaf of \mathbb{E}_{∞} -rings on $\operatorname{Perf}_{\mathbb{F}_p}$, and $\operatorname{Perf}_{\mathbb{F}_p} \to \operatorname{Mod}_k \mapsto (W^+(k), W(k) \in \operatorname{Mod}_{W^+(k)})$ is a crystal in almost perfect W^+ -module spectra.

Proof of almost perfectness. \mathbb{S}_p^{\wedge} coherent $\Rightarrow \pi_0(\mathbb{S}_p^{\wedge})$ almost perfect $/\mathbb{S}_p^{\wedge} \Rightarrow W(k)$ almost perfect $/\mathbb{W}^+(k)$. \square

Hopkins-Mahowald for perfectoid rings

Let S be a perfectoid ring, and ξ a generator of $\ker \left(W(S^{\flat}) \stackrel{\theta}{\longrightarrow} S\right)$.

Then the composite map $W^+(S^{\flat}) \to \pi_0(W^+(S^{\flat})) \cong W(S^{\flat}) \twoheadrightarrow S \leadsto$ a natural map $W^+(S^{\flat})/^{\mathbb{E}_2}\xi \to S$.

Our first Hopkins-Mahowald type result is that

Theorem. The map $W^+(S^{\flat})/^{\mathbb{E}_2}\xi \to S$ is an equivalence of spectra.

In particular, when S is a perfect \mathbb{F}_p -algebra, we have

Corollary. Let k be a perfect \mathbb{F}_p -algebra. Then the natural map $W^+(k)/^{\mathbb{E}_2}p \to k$ is an equivalence of spectra.

Now we briefly discuss our strategy to prove this.

Hopkins-Mahowald for perfectoid rings

Let S be a perfectoid ring, and ξ a generator of $\ker \left(W(S^{\flat}) \stackrel{\theta}{\longrightarrow} S\right)$.

Then the composite map $W^+(S^{\flat}) \to \pi_0(W^+(S^{\flat})) \cong W(S^{\flat}) \twoheadrightarrow S \leadsto$ a natural map $W^+(S^{\flat})/^{\mathbb{E}_2} \xi \to S$.

Our first Hopkins-Mahowald type result is that

Theorem. The map $W^+(S^{\flat})/^{\mathbb{E}_2}\xi \to S$ is an equivalence of spectra.

In particular, when S is a perfect \mathbb{F}_p -algebra, we have

Corollary. Let k be a perfect \mathbb{F}_p -algebra. Then the natural map $W^+(k)/\mathbb{E}_2 p \to k$ is an equivalence of spectra.

Now we briefly discuss our strategy to prove this.

Hopkins-Mahowald for perfectoid rings

Let S be a perfectoid ring, and ξ a generator of $\ker \left(W(S^{\flat}) \stackrel{\theta}{\longrightarrow} S\right)$.

Then the composite map $W^+(S^{\flat}) \to \pi_0(W^+(S^{\flat})) \cong W(S^{\flat}) \twoheadrightarrow S \leadsto$ a natural map $W^+(S^{\flat})/^{\mathbb{E}_2}\xi \to S$.

Our first Hopkins-Mahowald type result is that

Theorem. The map $W^+(S^{\flat})/^{\mathbb{E}_2}\xi \to S$ is an equivalence of spectra.

In particular, when S is a perfect \mathbb{F}_p -algebra, we have

Corollary. Let k be a perfect \mathbb{F}_p -algebra. Then the natural map $W^+(k)/^{\mathbb{E}_2}p \to k$ is an equivalence of spectra.

Now we briefly discuss our strategy to prove this.

The site of perfectoid rings

The site Perfd of perfectoid rings:

Category. The opposite category of perfectoid rings.

Topology. Covers given by p-completely faithfully flat maps $S \to S'$, i.e. $S \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{F}_p \to S' \otimes_{\mathbb{Z}}^{\mathbb{L}} \mathbb{F}_p$ is faithfully flat.

Structure presheaves. $A_{\inf}: S \mapsto W(S^{\flat}), \overline{\mathcal{O}}: S \mapsto S, \mathcal{I}_{\inf}:= \ker(A_{\inf} \to \overline{\mathcal{O}})$

Lemma. The presheaf A_{inf} is a sheaf of rings, and $\overline{\mathcal{O}}$ and \mathcal{I}_{inf} are crystals of perfect A_{inf} -module spectra.

"Spherical- A_{\inf} "

Consider the presheaf $\mathcal{A}_{\inf}^+: \operatorname{Perfd}^{\operatorname{op}} \to \operatorname{CAlg}_p^{\wedge}, S \mapsto W^+(S^{\flat}).$

Proposition. The presheaf A_{inf}^+ is a sheaf, and A_{inf} is a crystal in almost perfect A_{inf}^+ -module spectra.

Sheaf:

Lemma. Given a diagram $S' \leftarrow S \rightarrow S''$ in Perfd^{op}. Then

- 1. (B-S) $S' \hat{\otimes}_S^{\perp} S''$ is a perfectoid ring, and
- 2. the canonical map $\mathcal{A}^+_{\inf}(S') \, \hat{\otimes}^{\mathbb{L}}_{\mathcal{A}^+_{\inf}(S)} \, \mathcal{A}^+_{\inf}(S'') \to \mathcal{A}^+_{\inf}(S' \, \hat{\otimes}^{\mathbb{L}}_S \, S'')$ is an equivalence of (p, \mathcal{I}_{\inf}) -completed) spectra.

Lemma. Let $S \to S'$ be a p-completely faithfully flat map of perfectoid rings. Then $\mathcal{A}^+_{\inf}(S) \to \mathcal{A}^+_{\inf}(S')$ is (p, \mathcal{I}_{\inf}) -completely faithfully flat.

Crystals + almost perfect: seen that W is a crystal in almost perfect W^+ -module spectra.

Proof of H-M for perfectoid rings

Theorem. (H-M rephrased) The natural map $\mathcal{A}_{\inf}^+/\mathbb{E}_2\mathcal{I}_{\inf} \to \overline{\mathcal{O}}$ of presheaves of spectra on Perfd^{op} is an equivalence.

Sketch of proof. Fix $S \in \text{Perfd}$. Suffices to show the equivalence for S.

- 1. Both sides are crystals in almost perfect \mathcal{A}_{inf}^+ module spectra, and in particular, sheaves.
- 2. Choose a cover $S \to S' \in \operatorname{Perfd}$ with compatible choice of p-power roots of unity by André's lemma. Thus suffices to show for S'.
- 3. $\mathbb{Z}_p^{\text{cycl}} := \mathbb{Z}[q^{1/p^{\infty}}]_{(p,q-1)}^{\wedge}/[p]_q \to S'$ & crystals \Rightarrow suffices to show for $\mathbb{Z}_p^{\text{cycl}}$.
- 4. Classical H-M \Rightarrow equiv for \mathbb{F}_p , + crystals \Rightarrow equiv for $\mathbb{Z}_p^{\mathrm{cycl}}$ after base change $\mathcal{A}_{\mathrm{inf}}^+(\mathbb{Z}_p^{\mathrm{cycl}}) \to \mathcal{A}_{\mathrm{inf}}^+(\mathbb{F}_p) \simeq \mathbb{S}_p^{\wedge}$.
- 5. For $\mathbb{Z}_p^{\mathrm{cycl}}$, both sides are Adams complete w.r.t. $\mathcal{A}_{\mathrm{inf}}^+(\mathbb{Z}_p^{\mathrm{cycl}}) \to \mathcal{A}_{\mathrm{inf}}^+(\mathbb{F}_p) \simeq \mathbb{S}_p^{\wedge}$.

Remark.
$$\pi_0(\mathcal{A}_{\mathrm{inf}}^+(\mathbb{Z}_p^{\mathrm{cycl}})) \cong \mathcal{A}_{\mathrm{inf}}(\mathbb{Z}_p^{\mathrm{cycl}}) \cong \mathbb{Z}[q^{1/p^\infty}]_{(p,q-1)}^{\wedge}.$$

Generalization to prisms

Let Prism: the site of prisms with flat topology, $Perfd \subseteq Prism$ is a full subcategory.

$$\begin{array}{ccc} \operatorname{Shv}(\operatorname{Prism}) & \longrightarrow & \operatorname{Shv}(\operatorname{Perfd}) \\ \mathcal{O}: (A, I) \mapsto A & \longmapsto & \mathcal{A}_{\operatorname{inf}} \\ \overline{\mathcal{O}}: (A, I) \mapsto A/I & \longmapsto & \overline{\mathcal{O}} \\ ? & \longmapsto & \mathcal{A}_{\operatorname{inf}}^+ \end{array}$$

Question. Does the sheaf $\mathcal{A}_{\inf}^+ \in \operatorname{Shv}(\operatorname{Perfd})$ (+ the map $\mathcal{A}_{\inf}^+ \to \mathcal{A}_{\inf}$) extends to some $\mathcal{O}^+ \in \operatorname{Shv}(\operatorname{Prism})$?

If true, then the previous proof \Rightarrow the natural map $\mathcal{O}^+/\mathbb{E}_2\mathcal{I}_{\inf} \to \overline{\mathcal{O}}$ is an equivalence, at least for orientable prisms ((A,I) is *orientable* if I is principal).

We now consider a candidate of values of \mathcal{O}^+ for some prisms (A, I).

Deforming a perfect prism

Let (A, d): an oriented perfect prism.

Consider $(B := A[[u_1, \dots, u_n]], f)$ where $\varphi(u_i) = u_i^p$ and $f \in B$ s.t. f(0) = d.

This is a prism, + a map $B \rightarrow A, u_i \mapsto 0$ of prisms, seen as a pro-infinitesimal thickening.

Example. A complete regular local ring R of mixed char (0, p) with perfect residue field k,

Cohen $\Rightarrow R \cong W(k)[[u_1, \dots, u_n]]/E$ where $E \in W(k)[[u_1, \dots, u_n]]$ s.t. $v_p(E(0)) = 1$.

Get (A, d) = (W(k), E(0)) and f = E.

A candidate for $\mathcal{O}^+(B, f)$: $\mathcal{A}^+_{\inf}(A/d)[[u_1, \dots, u_n]] =: B^+$.

Theorem. The natural map $B^+/^{\mathbb{E}_2}f \to B/f$ induced by the composite map $B^+ \to \pi_0(B^+) \cong B \to B/f$ is an equivalence of spectra.

Proof. Follows from equiv after base change along $B^+ \to A^+ + \text{both sides}$ are Adams complete w.r.t. $B^+ \to A^+$. \square

Computing THH

Application: alternative computations of THH in Bhatt-Morrow-Scholze and Krause-Nikolaus.

Proposition. Let $A \in CAlg$, $d \in \pi_0(A)$. Then

$$THH((A/^{\mathbb{E}_2}d)/A) \simeq (A/^{\mathbb{E}_2}d) \otimes \Omega S^3$$

as \mathbb{E}_1 -A-algebras.

Corollary. Let *R*: a perfectoid ring. Then

$$THH(R/W^+(R^{\flat})) \simeq R \otimes \Omega S^3.$$

Corollary. (B-M-S) Let R: a perfectoid ring. Then $\pi_*(THH(R)_p^{\wedge}) \cong R[u]$ where $\deg u = 2$.

Corollary. Let $R \cong W(k)[[u_1, \ldots, u_n]]/E$: a compl. reg. loc. ring of mixed char. Then

$$THH(R/W^+(k)[[u_1,\ldots,u_n]]) \simeq R \otimes \Omega S^3$$

Corollary. (K-N, B-M-S) Let $R \cong W(k)[[u_1, \ldots, u_n]]/E$. Then $\pi_*(\mathrm{THH}(R/\mathbb{S}[[u_1, \ldots, u_n]])_p^{\wedge}) \cong R[u]$ where $\deg u = 2$.