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Introduction

In this talk, we will discuss

e the classical Hopkins-Mahowald theorem,

prisms, perfectoid rings and the site of (perfect) prisms,

a proof of the Hopkins-Mahowald theorem for perfectoid rings,

a proof of the Hopkins-Mahowald theorem for complete regular local rings of mixed char,

applications to topological Hochschild homology.



Background: [E,-algebras, quotients

Recall

o [E.-rings, CAlg:=Algg_(Sp)

o [E,-A-algebras where A€ CAlg, Algp, (LMody)

Definition. Let Ac CAlg, a € mo(A). The E,-quotient A /Enq := the pushout

Freef:') (r) =25 A

-

A— > AfEnqg

in Algy, (LMody).

Remark. (Antolin-Camarena-Barthel) A special case of versal A-algebras = equivalent to an [E,-A-Thom
spectrum.



Classical Hopkins-Mahowald Theorem

Notation. SQ : p-complete sphere spectrum

The canonical map 3, — (%)) = Z, — I, gives rise to a diagram

Freeéa) (x)

Lplx) —Zy

lx»—)O
Z

p —Fp
by definition, get a natural map S;)\/EQp—> IEp.
Remark. One can show that the induced map (%) /*2p) — T, is equivalence = %, /%2p is p-complete.

Theorem. (Hopkins-Mahowald) The natural map ), /E2p — T, is an equivalence of spectra (therefore also
of [E-%)-algebras).

Our generalizations: replace I}, by perfectoid rings, or complete regular local rings.



0-rings and prisms

Definition. (Bhatt-Scholze)

e A d-ring A is a ring A along with a derived Frobenius lift, i.e. a ring endomorphism ¢ : A— A along with a
diagram

A 7 A

.

AQLF, 22 AgLF,

in the oo-category of simplicial commutative rings (also described by a map 0 : A— A satisfying several equa-
tions).

e A prism is a pair (A, I) where A is a 0-ring and I C A is an ideal defining a Cartier divisor in Spec(A) such
that A is (derived) (p, I)-complete and pe I+ p(I) A.

e A prism (A, 1) is perfect if the )-ring A is perfect, i.e. if the Frobenius lift p: R— R is an automorphism. In
this case, I is principal.

e Aring S is perfectoid if 3 a perfect prism (A, I) such that S = A /I as rings.
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Perfect prisms and perfectoid rings

Proposition. (Bhatt-Scholze) There is a canonical equivalence of categories
{perfectoid rings R} =~ {perfect prisms (A,I)}
A/l — (A D)
S — (W(S°),ker6)

where S” :=lim ( UL S/pm S/p) is the tilt and 0 : W (S”) — S is Fontaine's map.

Example.

Zn, p) is a perfect prism.
p

More generally, perfect IF-algebras £ are perfectoid ~+ perfect prisms (W (k), p).

(perfect g-crystalline) (Z[ql/poolé\pvq_l)’ [plgi=14+q+ - +¢° 1)

A

(p.q—1) [Plg) = (Zy, p) with kernel (¢ — 1) being complete.

Remark. A map of prisms (Z[ql/poo]

(Zp|[u]], p—u) with p(u) =u” is a non-perfect prism.
(Breuil-Kisin) (W (k)[[u]], E(u)) with ¢(u) =u” where E'€ W (k)[u] Eisenstein polynomial.
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Spherical Witt vectors

Let k& be a perfect IF-algebra. Then

The cotangent complex IL; /i, ~ 0.

By deformation theory, 3 an equivalence of co-categories

{pro-inf-thickenings R — IF, } = {pro-inf-thickenings S — k}

(Lurie) The E-ring W (k) of spherical Witt vectors is given by
(8p — ) — (W (k) — k)

Remark. $, — T, is the initial pro-infinitesimal thickening of I, therefore so is W*(k) — k.

Restrict to discrete rings,

(Zp = Bp) == (W(k) = k).
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Spherical Witt vectors

Get a pushout diagram in the oco-category CAlg

Sp) —— W (k)

Corollary. my(W™(k)) =W (k).

Corollary. Let Perfr := the opposite category of perfect IF,-algebras. Then W™ is a presheaf of IE..-rings on
Perfg , and Perfy, — Mod, k+— (W™ (k), W (k) € Mody+x)) is a crystal in almost perfect W *-module spectra.

Proof of almost perfectness. $ coherent = 7(%$))) almost perfect / $,, = W (k) almost perfect / W (k). O



Hopkins-Mahowald for perfectoid rings

0
Let S be a perfectoid ring, and £ a generator of ker(W(Sb) —»S).

Then the composite map W*(S”) — mo(W*(S%)) = W (S”) = S ~» a natural map W+(S%) /F2¢ — S,

Our first Hopkins-Mahowald type result is that

Theorem. The map W*(S°) /®2¢ — S is an equivalence of spectra.

In particular, when S is a perfect IF,-algebra, we have

Corollary. Let k be a perfect I,-algebra. Then the natural map W (k) /®2p— k is an equivalence of spectra.

Now we briefly discuss our strategy to prove this.
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The site of perfectoid rings

The site Perfd of perfectoid rings:

Category. The opposite category of perfectoid rings.

Topology. Covers given by p-completely faithfully flat maps S — S, i.e. S ®yTF,— S'®y T, is faithfully flat.
Structure presheaves. A;:S5S— W(Sb), O:5— S, Tins:=ker(Aps— O)

Lemma. The presheaf A, is a sheaf of rings, and O and T, are crystals of perfect Aint-module spectra.



“Spherical-A; ¢’

Consider the presheaf A ;: Perfd®? — CAlg), S — W*(S").
Proposition. The presheaf A is a sheaf, and Ay is a crystal in almost perfect A;' ;-module spectra.
Sheaf:
Lemma. Given a diagram S’ S — S” in Perfd®®. Then
1. (B-S) S'®%S" is a perfectoid ring, and
2. the canonical map Aif(S") &% AF (s Amf(S ") — A {(S' &% S") is an equivalence of ((p, Tins)-completed) spectra.

Lemma. Let S— S’ be a p-completely faithfully flat map of perfectoid rings. Then A;.(S) — AL (S") is (p, Tint)-
completely faithfully flat.

Crystals + almost perfect: seen that 117 is a crystal in almost perfect W "-module spectra.



Proof of H-M for perfectoid rings

Theorem. (H-M rephrased) The natural map A /¥ T, — O of presheaves of spectra on Perfd® is an
equivalence.

Sketch of proof. Fix S € Perfd. Suffices to show the equivalence for S.
1. Both sides are crystals in almost perfect A; ~-module spectra, and in particular, sheaves.

2. Choose a cover S — S’ € Perfd with compatible choice of p-power roots of unity by André’'s lemma. Thus
suffices to show for S’

3. chd:: Zlg"P™ [(p.q-1)/[Plg— S" & crystals = suffices to show for chd.

4. Classical H-M = equiv for T, + crystals = equiv for ZCyC after base change Amf(ZCyd) — Aii(F,) ~ B,

5. For ZCyCl both sides are Adams complete w.r.t. Amf(ZCyCl) — Af(Fy) ~ S,

Remark. WO(Amf(Z;yd))gAinf(Z;yd) Z[q"/*" [lp.q—1)- -



Generalization to prisms

Let Prism: the site of prisms with flat topology, Perfd C Prism is a full subcategory.

Shv(Prism) — Shv(Perfd)
O: (A1)~ A — Ay

O: (A1)~ A/l — O
? — A;Ir_lf

Question. Does the sheaf A ;€ Shv(Perfd) (+ the map A’ — A extends to some OF € Shv(Prism)?

If true, then the previous proof = the natural map O /¥2T,;— O is an equivalence, at least for orientable prisms
((A,I) is orientable if I is principal).

We now consider a candidate of values of O for some prisms (A, ).



Deforming a perfect prism

Let (A, d): an oriented perfect prism.
Consider (B := Al[uy, ..., u]], f) where p(u;)=u! and f € B s.t. f(0)=d.
This is a prism, + a map B — A, u;+— 0 of prisms, seen as a pro-infinitesimal thickening.

Example. A complete regular local ring R of mixed char (0, p) with perfect residue field £,
Cohen = R=W (k)[[u1,...,un)]/ E where E € W(k)[[u1,...,u,]] s.t. vp(E£(0))=1.
Get (A,d)=(W(k),E(0)) and f=F.

A candidate for O (B, f): AL{(A/d)[[w,. .., u,)] =: BT

Theorem. The natural map B" /®2f — B/ f induced by the composite map B+ — mo(B") = B — B/ f is an
equivalence of spectra.

Proof. Follows from equiv after base change along BT — A" + both sides are Adams complete w.r.t. B™— A*. [



Computing THH

Application: alternative computations of THH in Bhatt-Morrow-Scholze and Krause-Nikolaus.

Proposition. Let Ac CAlg, demy(A). Then

THH((A/®2d) /| A) ~ (A /®2d) @ Q53
as [E,-A-algebras.
Corollary. Let R: a perfectoid ring. Then

THH(R/WH(R’))~R® NS>
Corollary. (B-M-S) Let R: a perfectoid ring. Then m,(THH(R),) =~ R[u] where degu=2.
Corollary. Let R=W (k)|[uy,...,u)]/ E: a compl. reg. loc. ring of mixed char. Then
THH(R /Wt (k)[[u1,...,u,]]) ~ R®QS3

Corollary. (K-N, B-M-S) Let R W (k)[[u1,...,u,)]/E. Then m.(THH(R/S[[u1, ..., un)]),) > R[u] where
deg u=2.



