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Abstract. In this brief note, we present an elementary construction of the
first Chern class of Hodge�Tate crystals in line bundles using a refinement of
the prismatic logarithm, which should be comparable to the one considered
by Bhargav Bhatt. The key to constructing this refinement is Yuri Sulyma's
norm on (animated) prisms. We explain the relation of this construction to
prismatic Witt vectors, as a generalization of Kaledin's polynomial Witt vec-
tors. We also propose the prismatic Hochschild homology as a noncommutative
analogue of prismatic de Rham complex.

1. Introduction

LetX a bounded p-adic formal scheme, and E a vector bundle onX. In [BL22, §7
& §9.2], Bhatt�Lurie constructed the prismatic1.1 Chern classes ci�(L)2H�

2i(X)fig,
using the prismatic logarithm

log�
BL :Tp(Gm(A))¡!Af1g

on the Tate module for bounded prisms (A;I) with A :=A/I. In [Bha23, Cons 7.6],
Bhatt observed that the prismatic Chern classes ci�(E) only depend on the pullback
of the vector bundle E to the Hodge�Tate stack XHT, and he defined the prismatic
Chern classes ci(E) 2 H�2i(X)fig for Hodge�Tate crystals E in vector bundles,
obtained by pulling back the generators of the prismatic cohomology of the stack
BGLn.

In this brief note, we propose an elementary construction of the first Chern class
c1(L) of Hodge�Tate crystals L in line bundles when p> 2 is an odd prime, using
a variant

d log� :Gm(A)¡!Af1g[1]

of the prismatic logarithm, for any animated prism (A; I) with A :=A/I. The key
to this construction is to produce Sulyma's norm maps [Sul23, §3.1] on animated
prisms. We show that this refines Bhatt�Lurie's prismatic logarithm log�

BL.
This construction comes out of discussions with Alexander Petrov who expects

some relation between Kaledin's polynomial Witt vectors and crystalline Chern
classes. Let (A; I) be a transversal prism. Using relative HHR norms, we propose
a prismatic analogue of Kaledin's polynomial Witt vectors, called prismatic Witt
vectors. More precisely, for every positive integer r2N>0, we define the r-truncated
prismatic Witt vectors functor

�r :D(A)¡!D(A/Ir)

Note: This article has been written using GNU TEXMACS [Hoe20].
1.1. In fact, they refine it to the syntomic Chern classes. We will not consider this refinement

in this brief note.
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to be a polynomial functor of degree pr¡1, which is compatible with base change.
It is an analogue since Kaledin's polynomial Witt vectors, as well as their gener-
alizations in [DKNP23, Rea23], can be constructed out of norms, which will be
explained in our forthcoming work [Mao]. As a consequence, these functors give
rise to a family of polynomial functors sending Hodge�Tate crystals to prismatic
crystals. This construction is closely related to our refined logarithm. Moreover,
when (A; I) is a transversal perfect prism, the functor �r coincides with the p-
typical polynomial Witt vector functorWr;p(A;¡) on finite free A-modules (viewed
as symmetric A-bimodules).

In [BMS19], the authors related topological Hochschild homology and its vari-
ants to the absolute prismatic cohomology. It is a natural question whether we
can relate some modified Hochschild homology to relative prismatic cohomology,
which suggests the former being noncommutative relative prismatic cohomology.
In [BMS19, §11], the authors gave a positive answer to this when the base prism
(A; I) is the Breuil�Kisin prism. In Section 3, based on prismatic Witt vectors, we
propose a candidate � the prismatic Hochschild homology HH�(R/A) for every
associative A/I-algebra R (even for every A/I-linear DG-category). We conjec-
ture an HKR type theorem for p-completely smooth A/I-algebras R, relating the
r-truncated prismatic Hochschild homology groups �n

¡
HH�(R/A)Cpr¡1

�
to the

relative prismatic cohomology �R/A. When r=1, this reduces to the usual HKR
theorem. We also sketch a proof of it for p-completed polynomial A/I-algebras.

Acknowledgments. We thank Yuri Sulyma for explaining and discussing his Tam-
bara functors associated to prisms, Wolfgang Steimle and Kaif Hilman for letting
us know the concept of the Hill�Hopkins�Ravenel norm and its relative version, and
Alexander Petrov for explaining the potential relation between Kaledin's polyno-
mial Witt vectors and crystalline Chern classes, and a proof in the special case of
the first crystalline Chern class. We would also like to thank Bastiaan Cnossen,
Matthew Morrow, and Maxime Ramzi. This project has received funding from
the European Research Council (ERC) under the European Union's Horizon 2020
research and innovation programme (grant agreement No. 864145).

2. Refined logarithm

In this section, we first review Yuri Sulyma's norm maps for transveral prisms
(A; I). Then we briefly explain Bhatt�Lurie's prismatic logarithm in [BL22, §2],
construct our refined prismatic logarithm, and compare it with Bhatt�Lurie's on
transversal prisms. Finally, we briefly indicate how to extend the constructions to
animated prisms.

2.1. Norms on transversal prisms. The main goal of this subsection is to recol-
lect Yuri Sulyma's norm on transversal prisms, to define the prismatic Teichmüller
map, in the same time introducing some technical lemmas for transversal prisms
which is needed later. For convenience of reader, we express it without Tambara
functors in Construction 2.3.

Let (A; I) be a transversal prism (that is to say, the quotient ring A/I is p-
torsion-free). We will denote by A the quotient ring A/I, by Ir the invertible ideal
I'�(I) � � � ('r¡1)�(I)�A (when r=0, it is the unit ideal) (cf. [BL22, Nota 2.2.2]),
and by Jr the invertible ideal Ip ('�(I) � � � ('r¡1)�(I))p¡1= I � Ir

p¡1 (when r=0, it
is I). We review [BL22, Lem 2.2.8] by strengthening it a bit:
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Lemma 2.1. Let (A; I) be a transversal prism. For every r 2N>0, the canonical
map

f : ('r)�(I)/Jr ('r)�(I)¡!A/Jr

is a monomorphism, whose image is the principal ideal (p)�A/Jr.

Proof. We adapt the proof of [BL22, Lem 2.2.8]. First, in the quotient ring A/p,
the image of ('r)�(I) coincides with the image of Ip

r
, which subsequently coincides

with the image of Jr. This implies2.1 that Im(f)� (p).
The proof of [BL22, Lem 2.2.5] implies that the quotient ring A/Jr is p-torsion-

free, thus there exists a unique map f0 : ('r)�(I)/Jr ('r)�(I)!A/Jr of A-modules
such that f= pf0. We now show that the map f0 is an isomorphism, or equivalently,
it is surjective. For every x2 I, we have

'r(x) = 'r¡1(xp+ p �(x))
= 'r¡1(x)p¡1 'r¡1(x)+ p'r¡1(�(x))
2 'r¡1(x)p¡1 (Jr¡1+(p))+ p'r¡1(�(x))
� Jr+ p ('r¡1)�(I)p¡1+ p'r¡1(�(x));

where the first containment uses the fact that Im(f)� (p) for r ¡ 1. It follows
that f0(x)� 'r¡1(�(x)) (mod ('r¡1)�(I)). Since (A; I) is a prism, the elements
f�(x) jx2 Ig generate the unit ideal of A/('r¡1)�(I), and hence also in A/Jr. �

Corollary 2.2. (cf. [Sul23, Lem 3.1]) Let (A; I) be a transversal prism. Then
the commutative diagram

A/Jr ('r)�(I) ¡! A/('r)�(I)

 
¡ �  
¡

A/Jr ¡! A/(Jr; ('r)�(I))

of commutative A-algebras is Cartesian in D(A). The same holds if we replace Jr
by Ir

j for 0� j � p¡ 1.

Now we construct the norm as follows.

Construction 2.3. ([Sul23, Cons 3.3]) Let (A; I) be a transversal prism, and
r 2N>0. Note that there is a multiplicative map

A/Ir ¡! A/Ir�A/(Ir;('r)�(I))A/('r)�(I)
x 7¡! (xp; '(x))

which is polynomial of degree � p (we tacitly invoked Lemma 2.1). Thanks to
Corollary 2.2 (for Ir), we obtain a multiplicative map

Nr :A/Ir¡!A/Ir+1;

the norm map, which is polynomial of degree� p as well. In particular, this gives
rise to a map

Nr :Gm(A/Ir)¡!Gm(A/Ir+1)

2.1. Note that, the proof of this inclusion only uses the fact that (A; I) is a pre-prism, which
is generalized in Construction 2.29.

PRISMATIC LOGARITHM AND PRISMATIC HOCHSCHILD HOMOLOGY VIA THE NORM 3



of abelian groups.

Remark 2.4. Let (A; I) be a transversal prism. In [Sul23, Cons 3.3], the author
constructed a T-Tambara functor (A; I), such that

(A; I)Cpr¡1=A/Ir

(a fortiori with trivial Weyl action) for r 2N>0. The norm maps (A; I)Cpr¡1!
(A; I)Cpr are given by the maps Nr in Construction 2.3, the restriction maps

(A; I)Cpr! (A; I)Cpr¡1 are given by the canonical quotient maps A/Ir+1!A/
Ir, and the transfer maps (A; I)Cpr¡1! (A; I)Cpr are given by

A/Ir ¡! A/Ir�A/(Ir;('r)�(I))A/('r)�(I)
x 7¡! (p x; 0);

invoking Corollary 2.2.

Definition 2.5. Let (A;I) be a transversal prism, and r2N>0. The (r-truncated)
prismatic Teichmüller map [¡]�r :A!A/Ir is the iterated norm map

Nr¡1 � � � � �N1 :A¡!A/Ir:

Construction 2.6. (cf. [Mol20, App A] & [Sul23, §4.1]) Let (A; I) be a trans-
versal prism. Then the universal property of Witt vectorsW (A/I) as a T-Tambara
functor gives rise to a map c(A;I) :W (A/I)! (A; I) of T-Tambara functors, which
is therefore compatible with restrictions, transfers, and norms. In particular, the
prismatic Teichmüller map [¡]�r :A!Wr(A/I) coincides with the composite map

A!!!!!!!!!!!!!!!!!!!!!![¡] Wr(A/I)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
c(A;I)

C
pr¡1

A/Ir:

Example 2.7. ([Sul23, Thm 3.19]) Let (A;I) be a transversal perfect prism. Then
the map c(A;I) :W (A/I)! (A; I) of T-Tambara functors in Construction 2.6 is an
isomorphism.

Question 1. How to extend the construction in [Sul23, Cons 3.3] (reviewed in
Remark 2.4) to derived prisms, giving rise to a functor from derived prisms to
derived T-Tambara functors?

2.2. Refining r-truncated logarithm. Bhatt�Lurie's prismatic logarithm log�
BL :

Tp(Gm(A))!Af1g is constructed out of its �r-truncated� versions, being the com-
posite

log�
(r);BL :Tp(Gm(A))¡! (1+ I)rk=1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)pr¡1¡1

Ir¡! Ir/Ir2:

In this subsection, we refine these maps.

Construction 2.8. Let R be a commutative ring. Then we have a map

d log :Gm(R) ¡! 
R/Z
1

f 7¡! f¡1df

of abelian groups. Left deriving this map, we get a map d log :Gm(R)!LR/Z for
any animated ring R.
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Construction 2.9. Let A be a commutative ring, and I �A a square-zero ideal.
Then we have a short exact sequence

0¡! I!!!!!!!!!!!!!!!!!!!!!!!!!!exp Gm(A)¡!Gm(A/I)¡! 1

where the first map exp : I!Gm(A) is given by x 7! 1 + x for x 2 I �A. Conse-
quently, we get a boundary map Gm(A/I)! I[1] in D>0(Z), which is understood
as a shifted version of logarithm (or y 7! y¡ 1). Left derive this construction from
(A; I) = (Z[xi; yj]/(yk yl); (yj)), we get a map Gm(A/I)! I[1] in D>0(Z) for any
animated square-zero ring-ideal pairs (A; I).

In particular, given an animated ring-ideal pair (A;I) (cf. [Mao21]), we can form
an animated square-zero ring-ideal pair (A/I2; I /I2), and in this case, the map
above is denoted by d log(A;I) :Gm(A/I)! (I /I2)[1].

Remark 2.10. The notation d log in Construction 2.9 is justified by the fact that
d log(A;I) is canonically identified with the composite

Gm(A/I)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
d log

L(A/I)/Z¡!L(A/I)/A' (I /I2)[1]

for any animated ring-ideal pair (A;I). Indeed, it suffices to produce this map func-
torially on the set f(Z[xi; yj]; (xi))g of compact projective generators (cf. [Mao21,
Thm 1.1]). In this case, the transitivity sequence

L(A/I)/A[¡1]¡!LA/Z
AL (A/I)¡!L(A/I)/Z

can be identified with the conormal sequence

0¡! I /I2!!!!!!!!!!d 
A/Z
1 
A (A/I)¡!
(A/I)/Z

1 ¡! 0

which fits into a morphism

0 ¡! I /I2 !!!!!!!!!!!!!!!!!!!!!!!!!!exp Gm(A/I2) ¡! Gm(A/I) ¡! 0==

 
¡

 
¡

0 ¡! I /I2 !!!!!!!!!!d 
A/Z
1 
A (A/I) ¡! 
(A/I)/Z

1 ¡! 0

;

of short exact sequences, where the middle vertical map is d log :Gm(A/I2)!

A/Z
1 
A (A/I); [f ] 7! df 
 [f ]¡1, and the right vertical map is d log :Gm(A/I)!


(A/I)/Z
1 in Construction 2.8. This realizes the extension class Gm(A/I)! (I /

I2)[1] as the composite Gm(A/I)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
dlog

L(A/I)/Z=
(A/I)/Z
1 ! (I/I2)[1]'L(A/I)/A,

functorially in ring ideal pairs (A; I) with both A and A/I being polynomial rings.
Left deriving this, we get the result for animated ring-ideal pairs (A; I).

Remark 2.11. (M. Ramzi) We can replace Gm by GL1 in Construction 2.9, and
the map for Gm can be obtained by composing with the canonical map Gm!GL1.
In fact, this construction works E1-ly. More precisely, let (A; I) be a connective
square-zero E1-ring-ideal pair. Then we can construct a fiber sequence

I[1]¡!pic(A)¡!pic(A/I)

of spectra, where pic(¡) is the Picard spectrum, as follows. First, we realize the
square-zero extension A of A/I by I as a pullback

A ¡! A/I

 
¡

 
¡

A/I ¡! A/I � I[1]
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by definition, where the bottom map is associated to the zero derivation, while the
right vertical map is part of data of the square-zero extension. This gives rise to a
Cartesian square

pic(A) ¡! pic(A/I)

 
¡

 
¡

pic(A/I) ¡! pic(A/I � I[1])

of spectra (cf. [Lur18, Prop 16.2.2.1]). The map A/I!A/I � I[1] of E1-rings fits
into a Cartesian square

S ¡! S� I[1]

 
¡

 
¡

A/I ¡! A/I � I[1]

of connective E1-rings. Taking pic(¡) (here we need the connectivity of I, not just
(¡1)-connectivity), we get a Cartesian square

pic(S) ¡! pic(S� I[1])

 
¡

 
¡

pic(A/I) ¡! pic(A/I � I[1])

of spectra. Now we have

fib(pic(A)!pic(A/I)) ' fib(pic(A/I)!pic(A/I � I[1]))
' fib(pic(S)!pic(S� I[1]))
' 
fib(pic(S� I[1])!pic(S))
' fib(GL1(S� I[1])!GL1(S))
' I[1];

where we use the fact that 
 �pic=GL1.

Construction 2.12. Let (A; I) be a transversal prism. Then we define the map
d log�

(r) to be the composite map

Gm(A)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
[¡]�r

Gm(A/Ir)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
dlog(A;Ir) (Ir/Ir2)[1]

in D(Z), where the first map is in Construction 2.3, and the second map is in
Construction 2.9. The map d log�

(r) is informally understood as a deformation of
y 7! yp

r¡1¡1. Since the object (Ir/Ir2)[1]2D(Z) is p-complete, we can identify the

p-completion of the map d log�
(r) as a map

d logd
�
(r) :Gm(A)p^¡! (Ir/Ir2)[1]

in D(Z).

We now show that the map d logd
�
(r) :Gm(A)p^! (Ir/Ir2)[1] refines Bhatt�Lurie's

map log�
(r);BL :Tp(Gm(A))! (Ir/Ir2)[1]. The key is Remark 2.15, which tells us how

to identify the first homology group H1(¡) of refined logarithm in a more general
context.

Remark 2.13. Let M be an abelian group. Then its derived p-completion Mp
^ can

be identified with the cofiber of the composite mapY
i2N>0

M !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(0;¡) Y
i2N

M!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !pshift¡id Y
i2N

M; (2.1)
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and the map Mp
^!M /Lpn can be identfied with the vertical map between hori-

zontal cofibers of the commutative diagramY
i2N>0

M ¡!
Y
i2N

M

 
¡

 
¡

M !!!!!!!!!!!!!!!!!!p
n

M

where the left vertical map is the n-th projection (xi)i2N>0 7! xn, and the right
vertical map is (yi) 7! y1+ p y2+ � � �+ pn yn.

Notation 2.14. Let R be a commutative ring. We will denote by R[ the sequential
limit

lim
�
� � � !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)p

R!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)p
R

�
of multiplicative monoids, and by R[� the invertible elements of R[.

Remark 2.15. Let A be a commutative ring, and I �A an ideal. Then the first
homology group H1(¡) of the p-completed map

(d log(A;I))p^ :Gm(A/I)p^¡! (I /I2)p^[1]

can be identified with the boundary map of the snake long exact sequence associated
to the morphism

0 ¡!
Y

i2N>0

I /I2 ¡!
Y

i2N>0

Gm(A/I2) ¡!
Y

i2N>0

Gm(A/I) ¡! 1

 
¡

 
¡

 
¡

0 ¡!
Y
i2N

I /I2 ¡!
Y
i2N

Gm(A/I2) ¡!
Y
i2N

Gm(A/I) ¡! 1

of short exact sequences, where vertical maps are of the form (2.1). Concretely,
given an element (xi)i2N2Tp(Gm(A/I)) with x0=1, we pick an A/I2-lift (yi)i2N2Q

i2NGm(A/I2) with y0=1, and the image of (xi)i2N2Tp(Gm(A/I)) under the
boundary map is given by¡

yi
pi¡ 1

�
i2N2 lim

i2N
(I /I2)/pi�

Y
i2N

(I /I2)/pi:

In particular, if there is an A/I2-lift (yi)i2N2 (A/I2)[�, then the image of (xi)2
Tp(Gm(A/I)) is simply given by y1¡ 12 I /I2.

In our applications, the canonical lift (yi)i2N2 (A/I2)[� for (xi)i2N2Tp(Gm(A/
I)) does exist:

Lemma 2.16. Let (A;I) be a prism, and J �Rad(A) an ideal lying in the Jacobson
radical which contains I. Then the quotient map A�A/J induces an isomorphism
A[�! (A/J)[� of abelian groups.

Proof. Since the ideal J �A lies in the Jacobson radical of A, it follows that the map
in question is surjective. Now we consider the composable maps A�A/J�A/I of
rings, which induces composable surjective maps A[�! (A/J)[�! (A/I)[�, whose
composite is an isomorphism by [BL22, Prop 2.7.3]. The result then follows. �
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Proposition 2.17. Let (A; I) be a transversal prism, and r2N>0. Then the first
homology group H1(¡) of the map

d logd
�
(r) :Gm(A)p^¡! (Ir/Ir2)[1]

in D(Z) can be identified with Bhatt�Lurie's map log�
(r);BL.

Proof. Applying Remark 2.15 and Lemma 2.16 to (A; Ir). �
Remark 2.18. We are not aware of the best comparison between our refined r-trun-
cated prismatic logarithm with the r-truncated prismatic logarithm (1+ I)rk=1!
Ir/Ir2. However, the prismatic logarithm (1 + I)rk=1! Ir/Ir2 can be related to
log(A;Ir) as follows. We examine the morphism

0 ¡! Ir/Ir2 ¡! Gm(A/Ir2) ¡! Gm(A/Ir) ¡! 1

 
¡

 
¡

 
¡

0 ¡! Ir/Ir2 ¡! Gm(A/Ir2) ¡! Gm(A/Ir) ¡! 1

of short exact sequences, where vertical maps are given by pr¡1-scaling. The
boundary map gives rise to a map �pr¡1(A/Ir)! (Ir/Ir2)/pr¡1, and the composite

map (1 + I)rk=1 !!!!!!!!!!!!!!
id

�pr¡1(A/Ir)! (Ir/Ir2)/ pr¡1 coincides with the prismatic
logarithm after modulo pr¡1. A shift of this can be rewritten as the composite

(1+ I)rk=1[1]¡!Gm(A/Ir)/Lpr¡1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
log(A;Ir)/Lp

r¡1

(Ir/Ir2)[1]/Lpr¡1:

2.3. Refining logarithm. Let (A;I) be a transversal prism. So far, we have con-
structed r-truncated refined logarithm

d logg
�
(r) :Gm(A)¡! (Ir/Ir2)[1]

in D(Z) for every r 2N>0. We now put them together to get a (non-truncated)
refined logarithm.

Recall that the Breuil�Kisin twist Af1g is the sequential limit

� � � !!!!!!!!!!!!!!!!!!!!!!!!!!!!p
¡1

Ir/Ir2!!!!!!!!!!!!!!!!!!!!!!!!!!!!
p¡1 � � � !!!!!!!!!!!!!!!!!!!!!!!!!!!!p

¡1

I2/I22!!!!!!!!!!!!!!!!!!!!!!!!!!!!
p¡1

I1/I12= I /I2

with surjective transition maps being p¡1 by Lemma 2.1, and Bhatt�Lurie's pris-
matic logarithm log�

BL : Tp(Gm(A))!Af1g is obtained by taking the sequential
limit along r 2N. In order to pass to the sequential limit along r 2N>0 for our
refined logarithm, we have to specify the compatibility data. It suffices to specify
a homotopy, for every r 2N>0, making the diagram

Gm(A/Ir) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
d logg

�
(r)

(Ir/Ir2)[1]

 
¡Nr ¡!p

¡1

Gm(A/Ir+1) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
d logg

�
(r+1)

(Ir+1/Ir+12 )[1]

commute. Unfortunately, we could only cook up these homotopies for odd primes
p > 2. The key is Lemma 2.1, which implies that the image of ('r)�(I) in the
quotient ring A/Ir2 since I Ir

p¡1� Ir
p¡1� Ir2 as p¡ 1� 2. We first recall that, the

map p¡1 : Ir+1/Ir+12 ! Ir/Ir2 factors as

Ir+1/Ir+12 ¡� Ir+1/Ir Ir+1!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
p¡1

Ir/Ir2;
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thus it suffices to produce a homotopy making the diagram

Gm(A/Ir) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
d logg

�
(r)

(Ir/Ir2)[1]

 
¡Nr ' ¡!p

¡1

Gm(A/Ir+1) ¡! (Ir+1/Ir Ir+1)[1]

where the bottom horizontal arrow is obtained by applying Construction 2.9 to the
square-zero extension (A/Ir Ir+1; Ir+1/Ir Ir+1). Since the right vertical map is an
equivalence, we could instead specify a homotopy making the diagram

Gm(A/Ir) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
d logg

�
(r)

(Ir/Ir2)[1]

 
¡Nr '  
¡p

Gm(A/Ir+1) ¡! (Ir+1/Ir Ir+1)[1]

(2.2)

commute.

Construction 2.19. Let (A;I) be a transversal prism, and p>2 an odd prime. Then
we construct a map

Gm(A/Ir2)¡!Gm(A/Ir Ir+1)

which fits into a morphism

0 ¡! Ir/Ir2 ¡! Gm(A/Ir2) ¡! Gm(A/Ir) ¡! 0
'  

¡p  
¡

 
¡Nr

0 ¡! Ir+1/Ir Ir+1 ¡! Gm(A/Ir Ir+1) ¡! Gm(A/Ir+1) ¡! 0

(2.3)

of short exact sequences. Note that Ir Ir+1= Ir
2 ('r)�(I), and by Corollary 2.2, it

suffices to produce two multiplicative maps A/Ir2!A/Ir2 and A/Ir2!A/('r)�(I)
which coincide after passing to the quotient ring A/(Ir2; ('r)�(I)). Indeed, the first
map is the p-th power map (¡)p, and the second map is the composite map

A/Ir2¡�A/('r¡1)�(I)!!!!!!!!!!!!' A/('r)�(I):

The two map coincides after passing to the quotient ring A/(Ir2; ('r)�(I)) by
Lemma 2.1 and the definition of �-rings. It is direct to check that this map fits
into (2.3).

The extension class of (2.3) in Construction 2.19 gives rise to a homotopy for
(2.2), which concludes our construction of refined logarithm d log� for odd primes
p> 2.

2.4. Extending to animated prisms. We note that the previous construction
extends directly to the relative case: let (A;I) be a transversal prism, considered as
a base prism. Then the above construction carries out for prsims (B(p;I)

^ ; I B(p;I)
^ )

where B is a free �-A-algebra B generated by a finite set. By left deriving this
construction, we get the (truncated) refined logarithm for every animated prisms
over (A;I). This is sufficient for the relative case when the base prism is transversal.
However, there are two main disadvantages:

1. It is a priori unclear how much this construction does not depend on the
base. More precisely, when we have two transversal prisms (A;I) and (B;J),
and an animated prism (C;K) over both (A;I) and (B;J), it is not obvious
that the refined logarithm obtained by left deriving the previous construction
does not depend on whether we choose (A; I) or (B; J) as the base prism.
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2. Closely related, the construction does not extend directly to non-transversal
prisms (and in particular, crystalline prisms). By [BL22, Prop 2.4.1], for
every prism (B; J) (and even for animated prisms, see Appendix A), there
exists a transversal prism (A;I) along with a map (A;I)! (B;J), but again
as in the first disadvantage, it is unclear whether switching to (A; I) would
give rise to the �correct� answer.

Thus instead of left deriving the previous construction, we sketch how to �translate�
the previous construction to the animated setting. The key is to find a derived
counterpart of Lemma 2.1. Then the construction of Breuil�Kisin twists, norm
maps, and the refined logarithm adapts.

First, it is technically convenient to introduce a derived version of preprisms in
[BL22, Def 2.1.1].

Definition 2.20. A derived preprism is a triple (A; I ; A I) (or a pair (A; I)
when there is no ambiguity), where

� A is a derived �-ring (d'après [ Hol23]). We will denote by 'A (or ' if without
ambiguity) the Frobenius lift A!A.

� (A; I) is a generalized Cartier divisor.

The 1-category of derived preprisms is DAlg� �DAlgGCart, where GCart is the
1-category of generalized Cartier divisors (A; I).

Recall that, for a �-ring A and a non-zero-divisor d2A, the generalized Cartier
divisor (A/d; (�(d))) does not depend on the orientation d of the effective Cartier
divisor (d), cf. [Mao21, Lem 5.32]. In fact, this generalizes to all derived preprisms.
To see this, we need the following technical lemma, which tells us when a map of
modules factors through the multiplication by a generalized Cartier divisor.

Lemma 2.21. Let B be a derived ring, (B; J) a generalized Cartier divisor, and
f :M!N a map in D(B). Then the datum of a factorization M!!!!!!!!!!9 N 
BLJ!N of
f in D(B) is equivalent to the datum of a nullhomotopy of the map M 
BL (B/J)!
N 
BL (B/J) in D(B/J).

Proof. Since there is a fiber sequence N 
BLJ!N!N 
BL (B/J), the datum of a

factorization of f as M !!!!!!!!!!9 N 
BL J!N in D(B) is equivalent to the datum of a
nullhomotopy of the composite map M !!!!!!!!f N!N 
BL (B/J) in D(B). Then the

result follows from the adjunction D(B)����������������������������������������������������������������������������������� �
�
BL (B/LJ)

D(B/J). �
Definition 2.22. Let A be a derived ring, and (A;I) a generalized Cartier divisor.

� A null-homotopy of the generalized Cartier divisor is simply a null-homotopy
of the structure map I!A in D(A).

� We say that (A; I) is a unit if the structure map I!A is an equivalence in
D(A).

Notation 2.23. Let A!B be a map of derived rings, and (A; I) a generalized
Cartier divisor. Then we will denote by (A; I)
ALB the base-changed generalized
Cartier divisor (B; I 
ALB).

Notation 2.24. Let A be a derived ring, (A; I) a generalized Cartier divisor, and
(A; J) a derived Smith ideal. Then we will denote by A/(I ; J) the tensor product
(A/I)
AL (A/J) (which could be understood as a �Koszul complex� as well).
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We use this to factorize the generalized Cartier divisor (A; '�(I))
AL (A/Ip)
through (p).

Construction 2.25. Let (A; I) be a derived preprism. We construct a generalized
Cartier divisor (A/Ip; �p(I)) as follows. Note that we have canonical equivalences

(A; '�(I))
AL (A/Lp) = (A; I)
A;'L A
AL (A/Lp)
= (A; I)
AL (A/Lp)
A/Lp;'L (A/Lp)

= (A; Ip)
AL (A/Lp)

of generalized Cartier divisors. This gives rise to a canonical null-homotopy of
the generalized Cartier divisor (A; '�(I))
AL (A/(p; Ip)). By Lemma 2.21, we get
a map (A; '�(I)) 
AL (A/Ip)! (A/Ip; p) of generalized Cartier divisors, i.e. a
generalized Cartier divisor (A/Ip; �p(I)) such that the generalized Cartier divisor
(A; '�(I))
AL (A/Ip) is the multiplication of generalized Cartier divisors (A/Ip; p)
and (A/Ip; �p(I)). We will denote by (A/I ; �(I)) the base-changed generalized
Cartier divisor (A/Ip; �p(I))
A/IpL (A/I).

Definition 2.26. We say that a derived preprism (A; I) is

� local if (p; �0(I)) lies in the Jacobson radical Rad(�0(A));

� distinguished if it is local and the generalized Cartier divisor (A/I ; �(I)) is
unit;

� a derived prism if it is distinguished and (p; I)-complete.

Notation 2.27. Let (A; I) be a derived preprism, and r2N>0. We will denote by
Ir the generalized Cartier divisor (A;I'�(I) ��� ('r¡1)�(I)) being the multiplication
of generalized Cartier divisors (A; ('s)�(I)) for integers 0� s < r, and by Jr the
generalized Cartier divisor (A; Ip ('�(I) � � � ('r¡1)�(I))p¡1= I � Ir

p¡1).

We now generalize Lemma 2.1 to distinguished derived preprisms. For this, we
first note that the multiplication of a Smith ideal by a generalized Cartier divisors
can be analyzed by the following lemma.

Lemma 2.28. Let A be a derived commutative ring, (A; I) a generalized Cartier
divisor, and (A; J) a derived Smith ideal. Then the canonical diagram

A/I J ¡! A/J

 
¡

 
¡

A/I ¡! A/(I ; J)

of derived commutative A-algebras2.2 is Cartesian.

Proof. It suffices to check that this is a Cartesian diagram in D(Z), which follows
from comparing the fibers of horizontal maps. �

We now explain how to translate the proof of Lemma 2.1 to distinguished derived
prisms. We start with the first part of the proof, namely, constructing f0= p¡1 f
by invoking Lemma 2.21, just as what we did in Construction 2.25.

2.2. We are mainly interested in the special case that A is an animated ring, and (A; J) is
a connective derived Smith ideal. However, we stress that the diagram is Cartesian in the 1-
category of derived rings, which is stronger than being Cartesian in the 1-category of animated
rings.
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Construction 2.29. Let (A;I) be a derived preprism. Then we construct a canonical
map

('r)�(I)
AL (A/Jr)¡! pA/Jr

of generalized Cartier divisors of A/Jr as follows. By Lemma 2.21, such a
map is equivalent to the null-homotopy of the generalized Cartier divisor (A;
('r)�(I))
AL (A/(p; Jr)). Now we have canonical equivalences

(A; ('r)�(I))
AL (A/Lp) = (A; Ip)
AL (A/Lp);
(Jr; A)
AL (A/Lp) = (A; I1+(p¡1)(p

r¡1+ � � �+1))
AL (A/Lp)
= (A; Ip)
AL (A/Lp);

which gives rise to the null-homotopy that we want.

The second part of the proof of Lemma 2.1 works verbatim.

Lemma 2.30. Let (A; I) be a distinguished derived preprism. Then the map in
Construction 2.29 is an equivalence.

Proof. We can check this by passing to a pro-Zariski cover, thus without loss of
generality, we may assume that the derived preprism (A; I) is orientable, and we
can pick an orientation I = (d). Now it follows from the computation of 'r(d) in
the proof of Lemma 2.1 (where we plug d into x there). �

The constructions of Breuil�Kisin twists, norm maps, and the refined logarithm
then extend directly to animated prisms.

3. Prismatic Witt vectors and prismatic Hochschild homology

Kaledin introduced polynomial Witt vectors as a version of Witt vectors with coef-
ficients. He used polynomial Witt vectors to define the Hochschild�Witt homology ,
as a non-commutative version of the de Rham�Witt complex. In this section, we
introduce the prismatic analogues of both of them, discuss the relation to the
prismatic Teichmüller map. Moreover, we indicate how to adapt the proof of Hes-
selholt's HKR theorem to establish an HKR-type theorem for prismatic Hochschild
homology for p-completed polynomial algebras.

Let (A;I) be a transversal prism. By [Sul23, Cons 3.3] (reviewed in Remark 2.4),

we have a Tp-Tambara functor (A; I) with (A; I)Cpr¡1=A/Ir with trivial Weyl
action.

Definition 3.1. Let (A; I) be a transversal prism, r 2N>0, and M 2D(A/I) an
A/I-module spectrum. The module �r(M /A) of r-truncated prismatic Witt vectors
is defined to be the A/Ir-module spectrum�

M

(A;I)L C

pr¡1
�
C
pr¡1

;

where (¡)
(A;I)
L C

pr¡1 :D(A/I)!Mod(A;I)
¡
SpgCpr¡1

�
is the Cpr¡1-norm relative to

the Tambara functor (A; I).

We now relate prismatic Witt vectors to refined logarithm. First, it follows from
a direct computation that

Lemma 3.2. Let G be a finite group, and T a G-Tambara functor. Then the map

T e=EndD(T e)(T e)!EndD(TG)(TG)=TG
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induced by the composite functor

D(T e)!!!!!!!!!!!!!!!!!!!!!!!!!!Ne
G

ModT(SpG)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)G
D(TG)

coincides with the norm map N :T e!TG.

Applying this to the Cpr+1-Tambara functor (A; I) (viewed as a Cps-Tambara
functor for every s� r+1), we get

Corollary 3.3. Let (A; I) be a transversal prism and r 2N>0. Then the map

A/I =EndD(A/I)(A/I)¡!EndD(A/Ir)(A/Ir)=A/Ir

induced by the r-truncted prismatic Witt vectors functor

�r :D(A/I)¡!D(A/Ir)

coincides with the prismatic Teichmüller map [¡]�r :A/I!A/Ir.

Another fact is that the r-truncated prismatic Witt vectors functor sends invert-
ible modules to invertible modules, thus on invertible modules, it is the same as
the map H1(Spf(A/I);Gm)!H1(Spf(A/Ir);Gm) induced by the prismatic Teich-
müller map A/I!A/Ir. To see this, we first notice that the construction of the
prismatic Witt vector functor is functorial in transversal prisms, by the rigidity of
prisms. We just formulate a 1-categorical functoriality (which is sufficient to deduce
the 1-categorical functorial, as we can restrict to connective compact projective
objects) as follows.

Lemma 3.4. Let (A; I)! (B;K) be a map of transversal prisms. Then we have
a commutative diagram

D(A/I) ¡! D(A/Ir)

 
¡

 
¡

D(B/K) ¡! D(B/Kr)

of 1-categories3.1, where the horizontal arrows are r-truncated prismatic Witt
vectors functors, and the vertical arrows are base changes.

Note that, given an element s2A/I, the (p-completed) localization A[s¡1]makes
sense (by picking an arbitrary lift s 2A of s, since I lies in the Jacobson radical
Rad(A). Now we apply Lemma 3.4 to such localizations of transversal prisms,
obtaining

Lemma 3.5. Let (A; I) be a transversal prism and r 2N>0. Then the r-truncted
prismatic Witt vectors functor

�r :D(A/I)¡!D(A/Ir)

sends an invertible A/I-module (in the heart) to an invertible A/Ir-module.

Now we define the prismatic Hochschild homology. In fact, the prismatic Witt
vectors give rise to a trace theory, and the prismatic Hochschild homology is the
corresponding twisted Hochschild homology. In our case, the trace theory comes3.2

from a Tambara functor, and in this case, the twisted Hochschild homology coin-
cides with the relative Hochschild homology:

3.1. Although the categories in the commutative diagram are stable, the horizontal functors
are not exact, thus it is not a commutative diagram of stable1-categories.

3.2. In our forthcoming work [Mao], we will explain how to produce a trace theory from a
normed category.
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Definition 3.6. Let (A; I) be a transversal prism, and C a dualizable presentable
stable A/I-linear 1-category. The prismatic Hochschild homology HH�(C /A)2
Mod(A;I)(SpgpT) is defined to be the topological Hochschild homology of C relative
to (A; I) (cf. [ ABG+18]), that is, by

HH�(C/A) :=THH(C)
THH(A/I)
L (A; I);

where the map THH(A/I)! (A; I) of T-normed rings is given by the universal
property of THH (cf. [ ABG+18]).

Example 3.7. Let S be a p-torsion-free perfectoid ring, and C a dualizable pre-
sentable stable S-linear 1-category. Let (A; I) denote the prism (Ainf(S); (�))
corresponding to the perfectoid ring S. Then the prismatic Hochschild homology
HH�(C/A) coincides with the relative Hochschild�Witt homology HH(C/S) in our
forthcoming work [Mao].

We now formulate a conjectural HKR type theorem for the prismatic Hochschild
homology. For this, we first have to introduce the prismatic de Rham complex . Such
a complex was implicitly considered in [Mol20, Prop 4.10] when the base prism is
oriented (also compare with Wr

n(D) in [BMS18, §11.1.2]).

Construction 3.8. Let (A;I) be a transversal prism, r2N>0, and R a p-completely
smooth A/I-algebra. We construct the r-truncated prismatic de Rham complex
(�r
R/A� ) as follows. For every n2Z, we define

�r
R/An :=Hn
�
�R/A
AL (Ir/Ir2)


A/Ir
L n

�
;

with differentials

d :�r
R/An ¡!�r
R/A
n+1

given by applying Hn((¡)fng) to the Bockstein map

�R/A
AL (A/Ir)¡!�R/A
AL (Ir/Ir2)[1]:

Remark 3.9. Let (A; I) be a transversal prism, r 2N>0, and R a p-completely
smooth A/I-algebra. Taking global sections on the (transversal) prismatic site of
R relative to (A; I) to the r-truncated refined logarithm, we get a map

R¡((R/A)�;O�)¡!�r
R/A1 ;

and which with the composite map

R¡((R/A)�;O�)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
[¡]�r R¡((R/A); (O/Ir)�)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

d log
�r
R/A1 ;

where the second map is precisely u 7!u¡1du, by virtue of Remark 2.10.

Conjecture 3.10. Let (A;I) be a transversal prism, r2N>0, and R a p-completely
smooth A/I-algebra. Recall that the T-action on HH�(R/A)Cpr¡1 gives rise to a
cochain complex

¡
��HH�(R/A)

C
pr¡1;dHH

�
. Then we have an isomorphism¡

��HH�(R/A)
C
pr¡1;dHH

�
=� (�r
R/A� ;d)

of cochain complexes, which is functorial with respect to the data (A; I ;R).
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We could produce a non-functorial comparison isomorphism in Conjecture 3.10
for p-completed polynomial A/I-algebras R. In fact, it is functorial with respect
to permutations of chosen generators. In fact, this is a consequence of the proof of
Hesselholt's HKR theorem, which we now sketch. We are unable to give any insight
on this argument, thus we omit the combinatorial details.

Notation 3.11. Let R be an E1-ring, and S a finite set. Then we will denote by
R[xs j s2S] the flat polynomial R-algebra generated by S.

Remark 3.12. Let S be a finite set. Then we have

THH(S[xs j s2S]) =�T
1 [Bcy(N[S])]+

as cyclonic spectra, where N[S] is the free monoid generated by S. Let T be a T-
Tambara functor. Then

THH(T e[xs j s2S])
THH(T e)T = (THH(T e)
THH(S[xs j s2S]))
THH(T e)T

= T 
�T
1 [Bcy(N[S])]+

where Bcy(¡) is the cyclic bar construction on E1-monoids.

We first review the description of the T-anima Bcy(N[S]) in [Hes96, §2.2]. Let
T(0) denote the point with trivial T-action. For every l 2Z n 0, let T(l) denote
the T-anima �l

�T, where �l :T!T corresponds to l 2Z= �1(T) (represented by
(¡)l :S1!S1). Then the T-anima BcyN can be identfied with the disjoint union`

l2NT(l).
Now for every map l : S!Z, let T(l) denote the product

Q
s2ST(l(s)). Then

the T-anima Bcy(N[S]) is equivalent to the disjoint union
`

l:S!NT(l). We will
also denote v(l) :=min fvp(l(S))g.

The proof of [Hes96, Prop 2.2.5] implies that, for every Cpr-spectrum T , and
every map l :S!N, up to p-localization, the spectrum

(T 
�T
1T(l)+)Cpr

can be identfied with TCpw
 (T� ����T), where w :=minfr; v(l)g. The argument
in [Hes96, §2.3] essentially implies that

Proposition 3.13. Let T be a T-Mackey functor, r 2N>0, and l :S!N a map.
Let a : S!N be the map s 7! l(s)¡ r. Then up to p-completion, for every n2N,
the n-th homotopy group

�n
¡
(T 
�T

1T(l)+)
C
pr¡1

�
can be identified with M

(I0; : : : ;In)2Pa

T
C
pr¡1¡u(a);

where u(a) :=max f¡v(a); 0g, and the set Pa is as defined in [ BMS18, §10.4].

Now let (A; I) be a transveral prism, and S a finite set. Then [Mol20, Prop 4.9]
shows that the n-th relative prismatic cohomology Hn(�(A/I)hxsjs2Si/A) of the p-
completed polynomial A/I-algebra (A/I)hxs j s2S i has the same form.

Appendix A. Transversal approximation of derived prisms

In this appendix, we briefly explain that the transversal approximation in [BL22,
§2.4] works well for derived prisms. First, every derived prism admits a connective
cover, thus we may replace �derived� by �animated�.
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The following smooth spreadout works verbatim.

Lemma A.1. ([BL22, Lem 2.4.2]) Let R be an animated ring, and M a finite
projective R-module. Then there exist a smooth Z-algebra R0, a finite projective R0-
module M0, a map R0!R of animated rings, and an isomorphism M 'M0
R0L R.

To adapt the proof of [BL22, Prop 2.4.1], one has to establish a slightly stronger
universal property than [BL22, Prop 2.1.10].

Lemma A.2. The fully faithful functor

fanimated prismsg ,¡!fanimated preprismsg

admits a left adjoint. Let (A; I) be an animated preprism, and (B;J) the image of
(A;I) under the left adjoint above. Then the map A!B underlying the unit natural
transformation (A; I)! (B; J) is (p; I)-completely flat. In particular, if (A; I) is
a transversal preprism, then (B; J) is a transversal prism.

Proof. Let (A; I) be an animated preprism. We work internally in the (p; I)-com-
plete derived category D(A)(p;I)

^ . Let C be the site fA[f¡1] j f 2�0(A)gop of basic
Zariski open subsets of Spf(�0(A)). Then the presheaves

C 7¡! f(p; I)-complete animated preprisms over (C; IC)g; and
C 7¡! fanimated prisms over (C; IC)g

of 1-categories are sheaves, thus it suffices to reduce to the case that I = (d) is
principal, in which case B =A[�(d)¡1] is A-flat. Then the result follows from the
Zariski descent. �

Then the proof in [BL22, §2.4] leads to

Proposition A.3. ([BL22, Prop 2.4.1]) Let (A;I) be an animated prism. Then
there exists a transversal prism (B;J) along with a map (B;J)!(A;I) of animated
prisms, such that jB j � 2@0.

Proposition A.4. ([BL22, Prop 2.4.5 & Rem 2.4.6]) Let (A; I) be a trans-
versal prism. Then for every animated prism (B; J), the canonical map (B; J)!
(A; I)q (B; J) is flat.

Proof. Note that the pushout (A; I)q (B; J) is the animated prismatic envelope
of A
Z

LB! (A/I)
Z
L (B/J) over the animated prism (B; J). The result follows

immediately from the Hodge�Tate comparison of the animated prismatic envelope,
cf. [Mao21, §5.3]. �

Corollary A.5. ([BL22, Cor 2.4.7]) Let � be a regular cardinal. Then any �-
small coproduct of transversal prisms, taken in the 1-category of animated prisms,
is also transversal.
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