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Abstract. In [Ill79], Illusie constructed de Rham�Witt complex of smooth
Fp-algebras R, which computes the crystalline cohomology of R, a Zp-lift
of the de Rham cohomology of R. There are two different extensions of de
Rham�Witt complex: a relative version discovered by Langer�Zink, and a
noncommutative version, called Hochschild�Witt homology, constructed by
Kaledin. The key to Kaledin's construction is his polynomial Witt vectors.

In this article, we introduce a common extension of both: relative
Hochschild�Witt homology. It is simply defined to be topological Hochschild
homology relative to the Tambara functorW (Fp). Adopting Hesselholt's proof
of his HKR theorem, we deduce an HKR theorem for relative Hochschild�Witt
homology, which relates its homology groups to relative de Rham�Witt com-
plex. We also identify Kaledin's polynomial Witt vectors as the relative
Hill�Hopkins�Ravenel norm, which allows us to identify our Hochschild�Witt
homology relative to Fp with Kaledin's Hochschild�Witt homology. As a con-
sequence, we deduce a comparison between Hochschild�Witt homology and
topological restriction homology, fulfilling a missing part of [Kal19].

1. Introduction

Let k be a perfect Fp-algebra, and A a smooth k-algebra. Suppose that the
smooth k-algebra A admits a smooth lift to the ring W (k) of Witt vectors1.1. In
this case, Grothendieck observed that the p-completed de Rham cohomology of A~
over W (k) does not depend on the choice of smooth lift A~. Berthelot, following
Grothendieck's ideas in [GGK+68], gives an intrinsic (i.e. without choice of A~),
site-theoretic description of the p-completed de Rham cohomology of A~ overW (k),
called the crystalline cohomology , in [Ber74]. In [Ill79], Illusie constructed an F-
V-pro-complex (W�
A� ; d), called the (absolute) de Rham�Witt complex1.2, which
roughly consists of the following data:

1. for every r 2N>0, a cochain complex (Wr
A� ;d) of Wr(k)-modules;

2. for every r2N>0, a map R : (Wr+1
A� ;d)! (Wr
A� ;d), called the restriction,
of cochain complexes of Wr+1(k)-modules;

3. for every r2N>0, two maps F :Wr+1
A�!Wr
A� and V :Wr
A�!Wr+1
A� ,
called the Frobenius map and the Verschiebung map respectively, of graded
abelian groups;

4. for every r 2N>0, a map �r :Wr(A)!Wr
A0 of Wr(k)-algebras,

which satisfy certain conditions. When r=1, the cochain complex (W1
A� ;d) coin-
cides with the de Rham complex (
A� ; d), thus the de Rham�Witt complex can be
viewed as a thickening of the de Rham complex. The key property is that, for every
r 2N>0, the complex (Wr 
A� ; d) represents the crystalline cohomology of A over

1.1. Such a lift always exists, by a theorem of Arabia, cf. [Sta21, Tag 07M8]. However, such
a existence is not essential to our discussion.

1.2. It is absolute in the sense that it does not quite depend on the base perfect Fp-algebra k.
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Wr(k), and the map R : (Wr+1
A� ;d)! (Wr
A� ;d) represents the canonical reduction
map between crystalline cohomologies of A induced by the map R :Wr+1(k)!
Wr(k) of PD-thickenings of k.

There are two different extensions of this picture:

1. Langer�Zink extended de Rham�Witt complex to mixed characteristic rela-
tive situation in [LZ04]. More precisely, for every p-completely smooth map
k!A of (p-complete) commutative algebras, they defined the relative de
Rham�Witt complex (W�
A/k� ;d) with a similar F -V -pro-complex structure
as above.

2. Let k be a commutative ring, and A a smooth k-algebra. Then the
Hochschild�Kostant�Rosenberg theorem tells us that, for every n2Z, the n-
th Hochschild homology HHn(A/k) coincides with the module 
A/k

n of differ-
ential n-forms. Moreover, for every n2Z, the map HHn(A/k)!HHn+1(A/
k) induced by the T-action on the Hochschild homology HH(A/k) coin-
cides with the de Rham differential 
A/k

n ! 
A/k
n+1. Since the Hochschild

homology is well defined for every associative k-algebra, we can understand
Hochschild homology as a noncommutative version of de Rham complex.

In [Kal19], Kaledin found a noncommutative version of (absolute) de
Rham�Witt complex, called Hochschild�Witt homology . More precisely, let
A be an associative Fp-algebra. For every r 2N>0, there is a W (k)-module
spectrum Wr HH(A) with T-action, such that, letting k be a perfect Fp-
algebra andA a smooth k-algebra, for every r2N>0 and every n2Z, the n-th
r-truncated Hochschild�Witt homology �n(WrHH(A)) is isomorphic to the
Wr(k)-moduleWr
An. Moreover, the map �n(WrHH(A))!�n+1(WrHH(A))
induced by theT-action onWrHH(A) coincides with the differentialWr
An!
Wr+1 
An. There are also analogues maps R, Frobenius and Verschiebung
on Hochschild�Witt homology.

At this point, there is already a natural question: is there a noncommutatve version
of relative de Rham�Witt complex à la Langer�Zink? The goal of this article is to
give and explain an affirmative answer to this question:

Definition 1.1. (Definition 4.1) Let k be a commutative ring, and A an asso-
ciative k-algebra. Then the Hochschild�Witt homology W HH(A/k) of A relative
to k is defined to be the topological Hochschild homology

THH(A)
THH(k)
L W (k)

relative to the pre-p-cyclotomic base W (k), and WrHH(A/k) :=W HH(A/k)Cpr¡1.

We now explain why this coincides with Kaledin's notion when k=Fp. We first
summarize Kaledin's construction briefly. The key to Kaledin's Hochschild�Witt
complex is his polynomial Witt vectors. Let M~ be a free abelian group, and let
M denote its base change M~ 
Z Fp along the quotient map Z! Fp. Then the
module Wr(Fp;M) of r-truncated polynomial Witt vectors is given by the Cpr-
Tate cohomology Ĥ0(Cpr;M~ 
p

r¡1), where the Cpr-action on M
pr¡1 is inflated
from the Cpr¡1-action of permutation of tensor factors. Kaledin proved that this
construction does not depend on the choice of free Z-lift M~ . Moreover, there is
a trace theory structure on polynomial Witt vector functors, which allows us to
talk about twisted Hochschild homology with respect to them. They give rise to
(truncated) Hochschild�Witt homology.
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Our first observation is that, similarly to crystalline cohomology, the polynomial
Witt vector functor can be intrinsically described without free Z-lift M~ :

Proposition 1.2. (Corollary 6.6) Let M be an Fp-vector space, and r 2N>0.
Then the group of r-truncated polynomial Witt vectors can be functorially identified
with the Cpr¡1-fixed points �

M

W (Fp)

L C
pr¡1

�
C
pr¡1

of the (Hill�Hopkins�Ravenel) Cpr¡1-norm M

W (Fp)

L C
pr¡1 relative to the Tambara

functor W (Fp).

The key to this identification is a fairly simple description of the norm relative
to the constant Tambara functor Z:

Proposition 1.3. (Proposition 5.6 and Lemma 5.11) Let M be a free abelian

group, and G a finite group. Then the G-norm M
Z
LG relative to the Tambara

functor Z coincides with the cohomological Mackey functor corresponding to the G-
module M
ZG.

Moreover, modifying Kaledin's �first� nontrivial example of trace theory, we
show that every Tambara functor gives rise to a trace theory in Section 7. Com-
bining these two, we see that Kaledin's Hochschild�Witt homology can be easily
read from our relative Hochschild�Witt homology. More precisely, let A be an
associative Fp-algebra, then the r-truncated Hochschild�Witt homology WrHH(A)
is equivalent to the genuine Cpr¡1-fixed points

(THH(A)
THH(Fp)
L W (Fp))

C
pr¡1

of the Hochschild�Witt homology W HH(A/Fp) of A relative to Fp.
This description also makes the Frobenius map and the Verschiebung map trans-

parent: they simply come from the restriction map and the transfer map of the gen-
uine equivariant homotopy structure. The restriction map on the Hochschild�Witt
homology, on the other hand, comes from the pre-p-cyclotomic structure on the
Hochschild�Witt homology.

This is indeed a noncommutative version of relative de Rham�Witt homology,
by the following HKR-type theorem.

Proposition 1.4. (Proposition 4.9) Let k be a commutative ring, and A a
smooth commutative k-algebra. Then we have isomorphism

�nWrHH(A/k)=�Wr
A/k
n

which is compatible with the Verschiebung V, the Frobenius F, the restriction R,
and the T/Cpr¡1-action on the left hand side corresponds to the differential on the
right hand side.

We basically follow the proof of the HKR theorem in [Hes96] (replacing facts in
char p by their counterparts in mixed characteristic): first to produce a structure
of F -V -procomplex on the left hand side, then the universal property of relative de
Rham�Witt complex gives rise to a map from the right hand side to the left hand
side. Hesselholt's original proof shows that this map is an equivalence on polynomial
algebras, and then conclude by the fact that both sides satisfy étale descent and
étale base change.
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Finally, the direct occurrence of topological Hochschild homology in this descrip-
tion makes it much easier to establish an equivalence between topological restriction
homology and (non-truncated) Hochschild�Witt homology for associative Fp-alge-
bras:

Proposition 1.5. (Corollary 4.2) Let A be an associative Fp-algebra. Then there
is a canonical equivalence

TR(A)¡! lim
r;R

WrHH(A/Fp)

of topological Cartier modules.

This addresses one of missing comparisons mentioned at the end of [Kal19, §0].

Notation. Let G be a finite group. We will denote by SpgBG the 1-category of
G-spectra1.3, by SpgpBT the 1-category of p-cyclonic spectra (defined in [ BG16]).

Acknowledgments. We would like to thank Wolfgang Steimle for informing us
the Hill�Hopkins�Ravenel norm, and Kaif Hilman for explaining us the relative
norm, without which this article cannot appear. We would also like to thank Victor
Saunier for explaining trace theory, which is also essential in this article. In addi-
tion, we would like to thank Lukas Brantner, Bastiaan Cnossen, Marc Hoyois,
Guchuan Li, Sil Linskens, Jonas McCandless, Maxime Ramzi, and Mingcong
Zeng. This project has received funding from the European Research Council
(ERC) under the European Union's Horizon 2020 research and innovation pro-
gramme (grant agreement No. 864145).

2. Relative p-cyclotomic spectra

In [BMY23], the authors introduce the concept of pre-p-cyclotomic base, which
should be a correct home to talk about relative cyclotomic structures. In this
section, we mainly discuss a weaker version of this, namely, that of pre-p-cyclotomic
rings, which simply omits the norm structure on pre-p-cyclotomic bases. This con-
cept is enough for us to talk about relative cyclotomic and polygonic modules.

Definition 2.1. (([BM15, §4] & [BG16, Def 3.20]) )

1. A pre-p-cyclotomic spectrum (or a p-typical pre-cyclotomic spectrum) is a
p-cyclonic spectrum X equipped with a map X�Cp!X of p-cyclonic spectra.
The 1-category CycSpp

pre of pre-p-cyclotomic spectra (or) is the 1-cat-
egory Alg(¡)�Cp(Sp

gpBT) of (¡)�Cp-algebras in p-cyclonic spectra. Commu-
tative ring objects there are called pre-p-cyclotomic rings.

Since the endofunctor (¡)�Cp carries a symmetric monoidal structure, the
1-category CycSpp

pre inherits a symmetric monoidal structure from SpgpBT.

2. A pre-p-polygonic spectrum (or a p-typical pre-polygonic spectrum) is a
sequence (Xr 2 SpgBCpr)r2N of genuine Cp�-spectra along with transition
maps Xr+1

�Cp!Xr for every r 2N. The symmetric monoidal 1-category
PgcSpp

pre of pre-p-polytonic spectra is the lax sequential limit of the tower

� � � !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp
SpgBCp2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp

SpgBCp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)�Cp
Sp

1.3. This is usually denoted by SpG, SpG or SpgG in the literature, but we need the concept
of genuine X-spectra for every groupoid X, thus we opt for the cumbersome notation SpgBG in
this article.
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of symmetric monoidal 1-categories. Commutative ring objects there are
called pre-p-polygonic rings.

3. Let A be a pre-p-cyclotomic ring. We say that an A-module M in pre-p-
cyclotomic spectra is A-cyclotomic if the canonical map

M�Cp

A�Cp
L A¡!M

of p-cyclonic spectra is an equivalence. We will denote by CycSpp;A the 1-
category of p-typical A-cyclotomic spectra.

4. Let A be a pre-p-polygonic ring. We say that an A-module M in pre-p-
polygonic spectra is A-polygonic if, for every r 2N, the canonical map

Mr+1
�Cp


Ar+1
�Cp

L Ar¡!Mr

of Cpr-spectra is an equivalence. We will denote by PgcSpp;A the 1-category
of p-typical A-polygonic spectra.

Remark 2.2. There is a forgetful functor CycSpp
pre!PgcSpp

pre; X 7! (Xr=X)r2N
which carries a canonical symmetric monoidal structure. Thus a pre-p-cyclotomic
ring gives rise to a pre-p-polygonic ring.

Remark 2.3. Unravelling definitions (and using the symmetric monoidal structure
on (¡)�Cp), a pre-p-cyclotomic ring can be alternatively given by a commutative
algebra in p-cyclonic spectra R equipped with a map R�Cp!R of commutative
algebras in p-cyclonic spectra. In a private conversation, Allen Yuan told us that,
the model-independent language, a pre-p-cyclomic base is given by a T-E1-ring R
equipped with a map R�Cp!R of T-E1-rings.

Remark 2.4. ([McC21, Ex 3.1.12]) Recall that there is an adjunction

SpgpBT����������������������������������������������������� �
Inflp

(¡)�Cp

SpgpB(T/Cp) (2.1)

where the left adjoint (¡)�Cp is symmetric monoidal. Thus the symmetric
monoidal 1-category CycSpp

pre can be alternatively described as the symmetric
monoidal 1-category CoAlgInflp(Sp

gpBT) of Inflp-coalgebras in p-cyclonic spectra,
i.e. a p-cyclonic spectrum X 2 SpgpBT equipped with a map X! InflpX of p-
cyclonic spectra. Since the functor Inflp is t-exact, it follows that the 1-cate-
gory CycSpp

pre inherits a t-structure from that on SpgpBT, such that the forgetful
functor CycSpp

pre!SpgpBT is t-exact. Moreover, the fully faithful functor CycSpp!
CycSpp

pre carries the connective part to the connective part.
Similarly, a pre-p-polygonic spectrum can be alternatively described as a

sequence (Xr 2 SpgBCpr)r2N of genuine Cp�-spectra along with transition maps
Xr+1! InflpXr for every r 2N, and it carries a t-structure such that the for-
getful functor PgcSpp

pre!SpgBCpr is t-exact for every r 2N.

Example 2.5. By definition, every p-cyclotomic spectrum is a pre-p-cyclotomic
spectrum, and every p-cyclotomic ring is a pre-p-cyclotomic ring.
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The pre-p-cyclotomic structure is enough to talk about its topological restriction
homology (TR).

Construction 2.6. ([ABG+18, §3.2]) Let X be a pre-p-cyclotomic spectrum.
Then for every r 2N>0, we have a composite map

R :XC
pr+1=(XCp)Cpr¡! (X�Cp)Cpr¡!XCpr

of p-cyclonic spectra, which gives rise to a tower

� � � !!!!!!!!!!!!!!R XCpr!!!!!!!!!!!!!!R � � � !!!!!!!!!!!!!!R XCp!!!!!!!!!!!!!!R X

of p-cyclonic spectra. The topological restriction homology TR(X) is defined to be
the limit of this tower. Note that, by construction, there is a canonical equivalence
TR(X)Cp'TR(X), which gives rise to a topological p-Cartier module structure on
TR(X). This gives rise to a functor TR :CycSpp

pre!TCartp.
More formally, let C be an 1-category with sequential limits, and F )G a

natural transformation between two endofunctors F and G of C. Then we have a
functor AlgG(C)!FixF(C) concretely given by

X 7¡! lim (� � � !FX!X);

where the map FX!X is the composite map FX!GX!X (cf. [AN21, Prop 5.2]).
We apply this recipe to the case that C=SpgpBT, F =(¡)Cp, and G=(¡)�Cp.

Construction 2.7. (Cartier modules) Recall that a p-Cartier module is an abelian
group M equipped with two endomorphisms (V ;F )2EndAb(M)2 of M , called the
Verschiebung and the Frobenius, such that FV = p. Let Cartp[ denote the category
of p-Cartier modules with injective Verschiebung. We have a composite functor

Cartp[ ,¡!TCartp¡!CycSpp
gen ,¡!CycSpp

pre!!!!!!!!!!!!!!!!!!�0 CycSpp
pre;~;

where TCartp is the1-category of topological p-Cartier modules [AN21]. We denote
byM the pre-p-cyclotomic spectrum associated to the p-Cartier moduleM . Unrav-

elling definitions, we get M
C
pr¡1 := coker

�
M !!!!!!!!!!!!!!!!!!!!V

r

M
�

:=M /V r, with the Lewis
diagram of M! InflpM depicted as

M /V r+1 !!!!!!!!!!!!!!!!!!!!!!!!!!can M /V r

F  
¡
¡!V F  
¡
¡!V

M /V r !!!!!!!!!!!!!!!!!!!!!!!!!!can M /V r¡1

��� ���
M /V 2 !!!!!!!!!!!!!!!!!!!!!!!!!!can M /V
F  
¡
¡!V 0  
¡
¡!0

M /V !!!!!!!!0 0

:

This functor carries a symmetric monoidal structure, where Cartp[ is equipped with
the box product, and in particular, a p-Cartier commutative algebra with injective
Verschiebung2.1 will give rise to a pre-p-cyclotomic ring.

2.1. This construction works without injectivity of Verschiebung, but the result is morally
correct only under this assumption.
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Example 2.8. (Witt vectors) Let A be an associative ring. Recall that p-typical
Witt vectors W (A) of A form a p-Cartier module, and as such, it is isomorphic to
�0TR(A) (established in [Hes97], cf. [AN21, Thm 6.1]). Let W (A) denote the pre-
p-cyclotomic spectrum corresponding to the p-Cartier module W (A) obtained by
Construction 2.7, Concretely, we haveW (A)Cpr¡1=�Wr(A), with the Lewis diagram
of W (A)! InflpW (A) depicted as

Wr+1(A) !!!!!!!!!!!!!!
R

Wr(A)
F  

¡
¡!V F  
¡
¡!V

Wr(A) !!!!!!!!!!!!!!R Wr¡1(A)
��� ���

W2(A) !!!!!!!!!!!!!!R A

F  
¡
¡!V 0  
¡
¡!0

A !!!!!!!!0 0

:

Since the inclusion CycSpp!CycSpp
pre preserves 1-connective part, we haveW (A)'

�0(THH(A)) as pre-p-cyclotomic spectra. Moreover, the association Alg(Ab)!
CycSpp

pre;~ is symmetric monoidal, thus carries a commutative ring to a pre-p-
cyclotomic ring. In particular, the pre-p-cyclotomic spectrum W (k) is canono-
cially a pre-p-cyclotomic ring. In fact, this argument also shows that W (k) has
a canonical pre-p-cyclotomic base structure (as defined in Remark 2.3).

Example 2.9. ([BMY23, §7.3]) There is a canonical pre-p-cyclotomic ring struc-
ture on Fp. We give a slightly different aspect to [BMY23, §7.3]. Indeed, let k be a
perfect Fp-algebra. As a special case of Example 2.8, the T-Mackey functor W (k)
is canonically a pre-p-cyclotomic ring, thus so is its modulo p reduction W (k)/Lp
and its zero homotopy group �0(W (k)/Lp), which is precisely k. In particular, this
gives rise to a map W (k)! k of pre-p-cyclotomic rings (and as in Example 2.8, it
is also a map of pre-p-cyclotomic bases).

Unwinding definitions, and the symmetric monoidal structure on (¡)�Cp, we get

Lemma 2.10. Let A!B be a map of pre-p-cyclotomic (resp. pre-p-polygonic)
rings. Then the base change functor

ModA(CycSpp
pre)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
ALB ModB(CycSpp

pre)
(resp.

ModA(PgcSpp
pre)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
ALB ModB(PgcSpp

pre)

) restricts to a functor CycSpp;A!CycSpp;B (resp. PgcSpp;A!PgcSpp;B).

3. p-cyclotomic spectra relative to W (Fp)

In this section, we will show that the TR of pre-p-cyclotomic spectra is invariant
under base change along THH(Fp)!W (Fp), which is the key to compare our
Hochschild�Witt homology relative to Fp with TR in Section 4.

Notation 3.1. Let M be a p-cyclonic spectrum. Then we denote by TF(M) the
sequential limit of the tower

� � � ¡!M
Cp2¡!MCp¡!M
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along the restriction maps3.1. In particular, for any ring spectrum R, we will denote
by TF(R) the spectrum TF(THH(R)).

Proposition 3.2. Let M be a THH(Fp)-module in pre-p-cyclotomic spectra (resp.
pre-p-polygonic spectra). Then the canonical map

M ¡!M 
THH(Fp)
L W (Fp)

of pre-p-cyclotomic spectra becomes an equivalence of topological Cartier mod-
ules (resp. spectra) after applying TR. In particular, we have an equivalence
TR(W (Fp))'TR(Fp) of topological Cartier modules.

Proof. We prove the statement in the cyclotomic case. The polygonic case is similar.
By [HM97] (cf. [Sul20, Prop 4.7] for a perfectoid generalization), the Bökstedt
element �2�2THH(Fp) lifts to a Bökstedt element �2�2TF(Fp), and the map on
homotopy groups induced by the restriction map

R :TF(Fp)¡!TF(Fp)
is given by the map

Zp[�] ¡! Zp[�]
� 7¡! p ��

of graded Zp-algebras for some unit �2Zp�. It follows that, the restriction maps fit
into a commutative diagram

THH(Fp)Cp[2] !!!!!!!!!!
�

THHCp(Fp)

 
¡p�R  
¡R

THH(Fp)[2] !!!!!!!!!!� THH(Fp)

in SpgpBT. It follows that the Postnikov truncation THH(Fp)! �60(THH(Fp)) =
W (Fp) in CAlg(CycSpp

pre) fits into a fiber sequence

THH(Fp)[2]!!!!!!!!!!
�

THH(Fp)¡!W (Fp) (3.1)

in ModTHH(Fp)(CycSpp
pre), where the pre-p-cyclotomic structure on THH(Fp)[2] is

given by the composite map

THH(Fp)�Cp[2]!!!!!!!!!!!!!!
'

THH(Fp)[2]!!!!!!!!!!!!!!!!!!!!
p�

THH(Fp)[2] (3.2)

in ModTHH(Fp)(Sp
gpBT). We note that, the tower

� � �! (M 
THH(Fp)
L THH(Fp)[2])

C
pr+1! (M 
THH(Fp)

L THH(Fp)[2])Cpr! �� � (3.3)

of spectra computing TR(M 
THH(Fp)
L THH(Fp)[2]) is pro-truncated zero, since

(N 
THH(Fp)
L THH(Fp)[2])Cpr is a THH(Fp)Cpr-module for every THH(Fp)-module

N in pre-p-cyclotomic spectra, thus the graded abelian group

�� (N 
THH(Fp)
L THH(Fp)[2])Cpr

is a pr+1-torsion. Applying TR(M 
THH(Fp)
L (¡)) to the fiber sequence (3.1), we

get a fiber sequence

0=TR(M 
THH(Fp)
L THH(Fp)[2])¡!TR(M)¡!TR(M 
THH(Fp)

L W (Fp))

3.1. WhenM =THH(R), the restriction maps coming from the cyclonic structure are referred
to as Frobenius maps, not the restriction maps coming from the pre-cyclotomic structure.
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of spectra, and the result follows. �

Remark 3.3. In Proposition 3.2, if we only need to prove that the map in question
becomes an equivalence after p-completion, we do not have to pass to homotopy
groups. Indeed, after modulo p, the transition maps in (3.3) are not only phantom
but zero, since the composite map (3.2) is zero after modulo p. As a consequence,
the p-completion of TR(THH(Fp)[2]) is zero as well, where THH(Fp)[2] is equipped
with the pre-p-cyclotomic structure as in the proof of Proposition 3.2. This argu-
ment works in slightly more general contexts, e.g. in non-Postnikov-complete topoi.

Remark 3.4. A similar argument, with slightly more efforts, proves a relative, mixed
characteristic version of Proposition 3.2. We will address this in the future.

4. Relative Hochschild�Witt homology

In this section, we first define relative Hochschild�Witt homology, and then
briefly explain that Hesselholt's proof of his HKR theorem in [Hes96] leads to an
HKR theorem for relative Hochschild�Witt homology.

Definition 4.1. Let k be a commutative ring, and C a dualizable stable k-linear 1-
category. Then the Hochschild�Witt homology W HH(C/k) relative to k is defined
to be the topological Hochschild homology

THH(C)
THH(k)
L W (k)

of C relative to the pre-p-cyclotomic base W (k). Let r 2N>0. The r-truncated
Hochschild�Witt homology WrHH(C /k) relative to k is defined to be the genuine
Cpr¡1-fixed points

(W HH(C/k))Cpr¡1

of the relative Hochschild�Witt homology.

It follows directly from Proposition 3.2 that

Corollary 4.2. Let C be a dualizable stable Fp-linear 1-category. Then we have
an equivalence

TR(C)¡!TR(W HH(C/Fp))

of topological Cartier modules.

In particular, combining with Hesselholt's HKR theorem, we see that, for
a smooth commutative Fp-algebra, we can identify Hochschild�Witt homology
groups relative to Fp with de Rham�Witt forms. After identification with Kaledin's
Hochschild�Witt homology, this recovers the limit case of Kaledin's HKR the-
orem. We now generalize this to the relative situation. We first construct an F -
V -procomplex structure on ��(WrHH(A/k))r2N>0 for commutative k-algebras A.

Let k!A be a map of commutative rings. Recall that, as in [LZ04, Def 1]
(reformulated in [BMS18, Def 10.5]), an F-V-procomplex over k!A consists of the
following data:

1. for every r 2N>0, a commutative differential (N-)graded Wr(k)-algebra
(abbrev. Wr(k)-CDGA) Pr�=(Prn)n2N.

2. for every r 2N>0, a map F :Pr+1� !F�Pr
� of graded Wr+1(k)-algebras (not

CDGA's!), where the second F is the Frobenius F :Wr+1(k)!Wr(k);
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3. for every r 2N>0, a map V :F�Pr�!Pr+1
� of graded Wr+1(k)-modules;

4. for every r2N>0, a map �r :Wr(A)!Pr
0 of Wr(k)-algebras, compatible with

the maps F , V , and R,

5. for every r 2N>0, a map R :Pr+1� !R�Pr
� of Wr+1(k)-CDGA's, where the

second R is the restriction map R :Wr+1(k)!Wr(k);

which satisfies the following properties:

1. FV = p;

2. F dV =d;

3. Frobenius reciprocity: V (F (x) y)=xV (y);

4. Teichmüller identity: F d�r+1([x]) = �r([x])p¡1 d�r([x]) for x 2A and r 2
N>0.

5. RF =FR, RV =VR;

Construction 4.3. (Hesselholt) Let k!A be a map of commutative rings. Then
the sequence (��WrHH(A/k))r2N>0 carries an F -V -procomplex (over k!A) struc-
ture.

Indeed, given any E1-W (k)-algebra B in SpgpBT, the homotopy groups¡
��B

C
pr¡1

�
r2N>0

has the first three items of data:

1. for each r 2N>0, the T/Cpr¡1-equivariant E1-Wr(k)-structure on BC
pr¡1

gives rise to a Wr(k)-CDGA structure on
¡
�nB

C
pr¡1

�
n2N;

2. for each r 2N>0, the map F : (�n BCpr)!
¡
F� �n B

C
pr¡1

�
is induced by

the restriction E1-map BCpr!B
C
pr¡1, which is over the Frobenius map

Wr+1(k)=W (k)Cpr!W (k)Cpr¡1=Wr(k);

3. for each r 2N>0, the map V :
¡
F��nB

C
pr¡1

�
! (�nBCpr) is induced by the

transfer map BC
pr¡1!BCpr,

and the first three properties are satisfied: the first and the last are direct con-
sequences of graded (anti-commutative) Green functors; the second follows from
[Hes96, Lem 1.5.1] (all cyclonic spectra here are over W (Z), and there the Hopf
element � vanishes).

The �-map and the Teichmüller identity essentially follows from the norm struc-
ture on W HH(A/k). Here we give an elementary argument: we know that

�0W HH(A/k) = �0(THH(A)
THH(k)
L �0THH(k))

= �0(THH(A))
= W (A)

which gives rise to the maps �r (which are even isomorphisms). Moreover, the
Teichmüller identity follows directly from [Hes96, Lem I.5.6], and the fact that the
canonical map (��TRr(A))r2N>0! (��WrHH(A/k))r2N>0 preserves the maps F ,
d, �.

Finally, the map R follows from the map R :Wr+1HH(A/k)!Wr HH(A/k)
as in Construction 2.6, and the compatibility follows from the E1-cyclonic ring
structure on R.
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Construction 4.4. Let k!A be a map of commutative rings. Then the universal
property of relative de Rham�Witt complexes in [LZ04] induces a unique map

(Wr
A/k� )r2N>0¡! (��WrHH(A/k))r2N>0

of F -V -procomplexes.

Now the proof in [Hes96, §2] (where the key is the computational results in
Prop 2.2.5 & 2.3.3) implies that

Lemma 4.5. Let k be a commutative ring, and A a finite polynomial k-algebra.
Then the map

(Wr
A/k� )r2N>0¡! (��WrHH(A/k))r2N>0

in Construction 4.4 is an isomorphism.

Remark 4.6. Let A!B be an étale map of commutative k-algebras, and r 2N>0.
Then by [Bor11b, 15.4], the map

W (A)
Wr(A)
L Wr(B)¡!W (B)

in D(Wr(A)) 
 SpgBCpr¡1 induced by the map W (A)!W (B) in D(Wr(B)) 

SpgBCpr¡1 is an equivalence. Furthermore, by [Bor11a, Thm B], the map Wr(A)!
Wr(B) is étale. It follows that the map W (A)!W (B) of E1-cyclonic rings is
étale as well.

It follows from Remark 4.6 and [HLL20, Add 3.2] that

Lemma 4.7. Let A!B be an étale map of commutative k-algebras. Then the map

THH(A/k)¡!THH(B/k)

in CAlg(SpgpBT) is flat (and even étale).

Corollary 4.8. Let k be a commutative ring, and A!B an étale map of commu-
tative k-algebras. Then the map

W HH(A/k)¡!W HH(B/k)

in CAlg(SpgpBT) is flat (and even étale).

We are ready to establish the HKR theorem:

Proposition 4.9. Let k be a commutative ring, and A a smooth commutative k-
algebra. Then the map

(Wr
A/k� )r2N>0¡! (��WrHH(A/k))r2N>0

in Construction 4.4 is an isomorphism.

Proof. By [BMS18, Lem 10.8], given an étale map B!C of k-algebras, the canon-
ical map

Wr
B/k� 
Wr(B)Wr(C)¡!Wr
C/k�

is an isomorphism, and by Corollary 4.8, the canonical map

��WrHH(B/k)
Wr(B)Wr(C)¡!��WrHH(C /k)
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is an isomorphism as well. It follows that, the map in Construction 4.4 is an iso-
morphism for étale extensions of polynomial k-algebras. Now by smoothness of
A, there exists a (finite) Zariski cover A!

Q
i2IAi such that each Ai is an étale

extension of a polynomial k-algebra, where I is a finite set. Then we examine the
commutative diagram

Wr
A/k� 
Wr(A)

 Y
i2I

Wr(Ai)
!
¡! ��WrHH(A/k)
Wr(A)

 Y
i2I

Wr(Ai)
!

 
¡

 
¡Y

i2I
Wr
Ai/k

� ¡!
Y
i2I

��WrHH(Ai/k)

where the bottom horizontal arrow and the vertical arrows are isomorphisms, thus
the top horizontal arrow is an isomorphism as well. Now the result follows from
[Bor11a, Prop 6.9], which implies that the map Wr(A)!

Q
i2IWr(Ai) is faithfully

flat. �

5. The norm over Z

Let G be a finite group, and X 2D(Z)BG a G-equivariant object in D(Z). Then
we can talk about homotopy orbits and homotopy fixed points of X. However,
sometimes one needs a stricter notion of orbits and fixed points. For example, let
d2N be a natural number. Then we have the d-th derived symmetric power

LSymZ
d :D(Z)¡!D(Z)

obtained by right-left extending ([BM19, §3.2], see also [Rak20, §4.2]) the �usual�
symmetric power functor

LattZ ¡! D(Z)
M 7¡! (M
d)�d

polynomial of degree d, defined on the category LattZ of finite free abelian groups.
It would be desirable if, for every Z-module spectrum M 2D(Z), we can define
M
d in a world where we can talk about stricter �d-orbits. In [BCN21, Ex 2.15
& 2.51 & 3.68], the authors showed that the 1-category ModZ(Sp�d) of derived
cohomological �d-Mackey functors is such a world: we have functors

(¡)
d :D(Z) ¡! ModZ(Sp�d)
(¡)�d :ModZ(Sp�d) ¡! D(Z)

where the first functor is a sifted-colimit-preserving polynomial functor of degree d,
and the second functor preserves small colimits. In this section, we will show that
the first functor (¡)
d is in fact a special case of norms relative5.1 to Z. For this,
we first recall that, letting X be a finite groupoid, then a finite X-set [BH21, §9.1]
is a functor X!Fin, and an X-module is a functor X!Ab.

Definition 5.1. Let X be a finite groupoid5.2. A finite permutationX-module is an
X-module freely generated by a finite X-set, and the category of finite permutation
X-modules is denoted by PermX.

5.1. We learnt this notion from Kaif Hilman, and this observation was formulated during a
discussion with him.

5.2. A groupoid is finite if it is finite as a 1-category (not as an1-category in general).
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In [BCN21, Ex 2.15], the authors showed that we have an equivalence

ModZ(SpgX)' Sp(P�(PermX)) :=DMackXcoh

of 1-categories when X is a groupoid. We now upgrade5.3 it to an equiva-
lence between the global symmetric monoidal 1-category ModZ(Spg (¡)) :X 7!
ModZ(SpgX) of Z-modules and the global symmetric monoidal 1-category
DMack(¡)

coh of derived cohomological Mackey functors, with the following defin-
ition of global symmetric monoidal categories.

Definition 5.2. A global symmetric monoidal 1-category C is a finite-product-
preserving functor

C
 :Span(Gpdfin; all; faith)¡!Cat1:

We will denote C
(BG) by CG for every finite group G.

We start with the construction of the global symmetric monoidal categories
Perm(¡) and DMack(¡)

coh.

Remark 5.3. Let C be an 1-category. It is known that there is a canonical global
symmetric monoidal 1-category

C(¡) :Span(Gpdfin; all; faith) ¡! Cat1
X 7¡! CX:

Apply this to C=Ab, we obtain the global symmetric monoidal (1-)category Ab(¡),
which is globally presentable and additive.

Construction 5.4. The global symmetric monoidal (1-)category Ab(¡) admits a full
global subcategory Perm(¡)�Ab(¡) which is additive and inherits a globally addi-
tive symmetric monoidal structure as well. Consequently, we get another globally
presentably stable symmetric monoidal1-category DMack(¡)

coh :=Sp(P�(Perm(¡)))
obtained by taking fiberwise stablized non-abelian derived categories.

Construction 5.5. Note that the unit in DMack(¡)
coh is globally compact by construc-

tion, thus we get a globally presentable adjunction

Spg(¡)������������DMack(¡)
coh : (5.1)

In particular, the unit in DMack(¡)
coh defines a global E1-ring, denoted by Z (we

will soon justify this notation), via the global lax symmetric monoidal right adjoint
DMack(¡)

coh! Spg(¡), and we obtain a globally presentable adjunction

ModZ(Spg (¡))������������DMack(¡)
coh : (5.2)

It follows from the equivariant symmetric monoidal Schwede�Shipley theorem
that

Proposition 5.6. The adjunction ( 5.2) is an equivalence of globally presentably
stable symmetric monoidal 1-categories.

Now we show that the global E1-ring Z coincides with the constant global
Tambara functor Z. We first show that it lies in the heart.

5.3. This formulation and basic ideas of the argument were proposed by Marc Hoyois. We
also thank Kaif Hilman and Sil Linskens for discussions.
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Lemma 5.7. Let X be a finite groupoid. Then the spectrum Z(X)2 SpgX lies in
the heart SpgX;~=MackX(Ab). The global E1-ring Z is (the Eilenberg�MacLane
spectrum of) a global Tambara functor, whose underlying Mackey functor is the
constant Mackey functor Z.

Proof. For every finite X-set S, by adjunction (5.1), the anima

HomSpgX(�X
1S+;Z(X)) = HomDMackXcoh(Z[S];Z)

= HomPermX(Z[S];Z)

is a set. �
Remark 5.8. The adjunction (5.1) induces a globally presentably additive adjunc-
tion

Mack(¡)(Ab)������������Fun�(PermX
op;Ab) :=Mack(¡)

coh (5.3)

on the hearts.

Corollary 5.9. The global E1-ring Z can be identified with the image of the unit
in Mack(¡)

coh under the right adjoint Mack(¡)
coh!Mack(¡)(Ab).

Remark 5.10. The canonical inclusion Perm(¡)�Ab(¡) induces an globally additive
adjunction

Mack(¡)
coh������������Ab(¡):

Moreover, the right adjoint carries the unit in Ab(¡) to the unit in Mack(¡)
coh, since

it is a unit in Perm(¡). Consequently, we can identify the global E1-ring Z with
the image of the unit in Ab(¡) under the right adjoint Ab(¡)!Mack(¡)(Ab).

Now the identification of the global E1-ring Z with the constant global Tam-
bara functor Z follows from the following general statement.

Lemma 5.11. Let k be a commutative ring, viewed as a global E1-algebra in the
global symmetric monoidal category Ab(¡). Then its image under the right adjoint
G :Ab(¡)!Mack(¡)(Ab) can be identified with the constant global Tambara functor
k.

Proof. We compute the norm along an inclusion H �H 0 of groups as an example,
and this is a special case of [Hil22, Thm 2.4.10]: the norm on G(k) is given by the
map

�0(NHH
0
k)¡! k
(H

0/H)¡! k

of H -Mackey functors, which corresponds to the jH 0 /H j-th power map
G(k)(BH)H!G(k)(BH)H 0, i.e. the norm map k(BH)H! k(BH 0)H 0. �
Example 5.12. Let n2N>0 be a positive integer. Then the norm i
 of the global
symmetric monoidal category Ab(¡) along the inclusion i :feg ,!Cn of finite groups
is concretely given by the tensor power functor

Ab ¡! AbBCn

M 7¡! M
n;

where Cn acts on M
n by permuting factors, and consequently, the norm i
 of the
global symmetric monoidal1-category DMack(¡) is the right-left-extension of this
tensor power functor on finite free abelian groups. We will denote the norm i
 by
(¡)
Z

LCn (or (¡)
LCn when there is no ambiguity).
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Example 5.13. More generally, let G be a finite group, and S a finite G-set. Then
the norm of the global symmetric monoidal category Ab(¡) along the span � 
ShG!BG5.4 of finite groupoids is given by

Ab ¡! AbG

M 7¡! M
S ;

where G acts on M
S by permuting factors, and consequently, the norm of the
global symmetric monoidal 1-category DMack(¡) along the span � ShG!BG
is the right-left-extension of this tensor power functor on finite free abelian groups.
In particular, when G=�n and S=f1; : : : ; ng where G acts canonically, we recover
a simplified version of [BCN21, Rem 3.68].

6. The norm over W (Fp)

In this section, we relate Kaledin's polynomial Witt vectors [Kal18] to norms
over the (p-typical) T-E1-Z-algebra W (Fp), whose definition will be reviewed
below. More precisely, we identify Kaledin's Mackey-valued polynomial Witt vec-

tors W~r(M) with the norm M

W (Fp)

L C
pr¡1 relative to W (Fp), functorially in Fp-

vector spacesM (Proposition 6.5). Consequently, Kaledin's polynomial Witt vector

Wr(M) admits an �explicit� formula
�
M

W (Fp)

L C
pr¡1

�
C
pr¡1 (Corollary 6.6). In fact,

we establish a parametrized version of this formula (Lemma 6.4), which allows us
to identify the polynomial Witt trace theory in Section 7.

We start with an alternative construction of Kaledin's Mackey-valued Tate-
construction Q.

Construction 6.1. Let G be a finite group. The constant map G!� of finite G-
sets induces the augmentation map augG :Z[G]!Z of permutation G-modules,
and its cokernel coker(augG), taken in the abelian category MackBGcoh, gives rise to
an endofunctor

(¡)
Z
L coker(augG) :DMackBGcoh¡!DMackBGcoh:

Lemma 6.2. Let G be a finite group. Then the endofunctor (¡)
Z
L coker(augG)

in Construction 6.1 coincides with Kaledin's functor Q in [ Kal18, Def 1.3] after
restriction to permutation G-modules.

Proof. Since permutation G-modules are flat in MackBGcoh, it suffices to identify the
non-derived composite functor

(¡)
Z coker(augG) :PermBG ,¡!MackBGcoh¡!MackBGcoh

with Kaledin's functor Q in [Kal18, Def 1.3]. By definition, the functor (¡)
ZZ[G]
coincides with Kaledin's  :=  feg, and the natural transformation

augG : (¡)
ZZ[G]¡! (¡)

induced by the augmentation map augG :Z[G]!Z factors through  (¡)G, thus
coker(augG)=coker(tr) where tr : (¡)G!(¡) is the natural transformation [Kal18,
(1.25)]. �

5.4. More generally, given two finite groups H, G, and an H-G-biset S, we can form a span
BH [H nS/G]!BG of finite groupoids. We learned this generality from Marc Hoyois.
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When G is a finite cyclic p-group, the cokernel coker(augG) can be related to
the cohomological T-Mackey functor W (Fp). More precisely,

Lemma 6.3. Let r 2N>0 be a positive integer. Then we have identifications

W (Fp) ' coker(p augCpr)

InflC
pr¡1

Cpr W (Fp) ' coker(augCpr)

in DMackC
pr¡1

coh . In other words, Kaledin's functor Q on finite cyclic p-groups can
be read off from the T-symmetric monoidal functor

ModZ(SpgpBT)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
(¡)
Z

LW (Fp)
ModW (Fp)(Sp

gpBT):

Proof. It follows from an explicit computation. In fact, [Zen17, Ex 3.19] gives an
explicit resolution

0¡!Z¡!Z[Cpr¡1]¡!Z[Cpr¡1]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
paugC

pr¡1
Z¡!W (Fp)¡! 0

of W (Fp) in the abelian category MackC
pr¡1

coh . �

The comparison with Kaledin's polynomial Witt vectors essentially follows from
combining Lemma 6.3 and the following Lemma 6.4, which we will explain soon.

Lemma 6.4. Let f :X!Y be a map in FinBT, viewed as a map of finite groupoids
over BT. Then we have a commutative diagram

ModZ(SpgX) !!!!!!!!!!!!!!!!!!!!
f
 ModZ(SpgY )

 
¡

 
¡

ModW (Fp)(Sp
gX) !!!!!!!!!!!!!!!!!!!!

f
 ModW (Fp)(Sp
gY )

:

In particular, letting r 2N>0 be a positive integer, and taking X = � and Y =
BCpr¡1, we get a commutative diagram

D(Z) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

Z

LC
pr¡1

DMackBC
pr¡1

coh

 
¡

 
¡

D(Fp) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

W (Fp)

L C
pr¡1

ModW (Fp)

¡
SpgBCpr¡1

�
:

Now we restrict to the full subcategories ModZ
free�D(Z) and ModFp

free�D(Fp)
(not necessarily finite, but functors in question do preserve filtered colimits). Note
that the base change functor ModZ

free!ModFp
free is essentially surjective, and epi-

morphic on Hom's. Combining with [Kal18, Prop 2.3], we get

Proposition 6.5. Let r 2N>0 be a positive integer. Then there is a commutative
diagram

Modfree
Fp

MackBC
pr−1 (Ab) SpgBC

pr−1

D(Fp) ModW (Fp)(Sp
gBC

pr−1 )

W̃r

(−)
⊗L

W (Fp)
C
pr−1
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of 1-categories. In particular, Mackey-valued polynomial Witt vectors are coho-
mological Mackey functors.

Corollary 6.6. Let r 2N>0. The composite functor

ModFp
free ,¡!D(Fp)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)


W (Fp)
L C

pr¡1

ModW (Fp)

¡
SpgBCpr¡1

�
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

C
pr¡1

D(Wr(Fp))

coincides with r-truncated polynomial Witt vectors.

7. From norms to trace theories

Let C be a symmetric monoidal7.1 1-category, and E a 1-category. Recall that an
E-valued trace theory on C, as defined in [Kal15, Def 2.1]7.2, is a functor T : C!E
equipped with a natural isomorphism (�M;N)(M;N)2C2 between functors (M;N) 7!
F (M 
N) and (M;N) 7!F (N 
M), such that

Unity. for every M 2 C, we have �1;M = id, where we use unity equivalences
1
M 'M 'M 
 1;

Acyclicity. for every triple (L;M ;N)2C3, we have

�L;M;N � �N;L;M � �M;N;L= id;

where for (A;B; C)2 C3, we denote �A;B;C := �A;B
C, and we use associa-
tivity equivalences (A
B)
C'A
 (B 
C).

The symmetric monoidal structure on C gives rise to a canonical C-valued trace
theory on C, [Kal15, Ex 2.2]. A nontrivial important trace theory is given in [Kal15,
Ex 2.4], which we recall as follows. Let k be a commutative ring,m2N>0 a positive
integer, and we consider the category C=Projk

fg of finite projective k-modules. Then
we have a Modk-valued trace theory on C given by the functor T :C!Modk;M 7!
(M
s)Cm, the Cm-orbits of the s-th tensor power, with the natural isomorphism �
concretely induced by the isomorphism

(M 
N)
m = M 
N 
 � � � 
M 
N
= M 
 (N 
 � � � 
M 
N)
!!!!!!!!!!!!!!' (N 
 � � � 
M 
N)
M
= N 
M 
 � � � 
N 
M
= (N 
M)
m:

In fact, the functor T factors as C !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)
m
Fun(BCm;Modk)!!!!!!!!!!!!!!!!!!!!!!!!!!

(¡)
Modk. However,

the first tensor power functor does not have a trace theory structure in general.
Indeed, for trace theories on C, one can verify that, for every pair (M;N)2C2, we
have �M;N � �N;M = id (as a consequence of unity and acyclicity), which is false in
general unless m=1. However, the tensor power admits a subdivided trace theory ,
a concept which is already implicit in [Kal15, Ex 2.7] and [Kal18] as well. In this
section, we first review an1-categorical generalization of these concepts. Then we
show that, as a generalization of the tensor power functor admitting a subdivided
trace theory structure, the norm (or Cm-symmetric monoidal) structure gives rise
to subdivided trace theories. We refer to [KMN23, §6.2] and [Nik] for relevant 1-
categorical accounts.

7.1. In fact, we can talk about trace theories on (E1-)monoidal1-categories. We do not need
this generality.

7.2. Kaledin call them trace functors.
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Definition 7.1. Let C be a symmetric monoidal 1-category, m2N>0 a positive
integer, and E an 1-category. An E-valued m-subdivided trace theory on C is a
functor

�m
op�Fin� C
¡!E

which maps every coCartesian edges of the coCartesian fibration �m
op�Fin�C
!�m

op

to an equivalence in E, where the functor �m
op!Fin� is the composite

�m
op!!!!!!!!!!!!!!!!!!!!!!!!!!!!Cut

�m!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !S 7![S/Z]
Fin!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

(¡)+ Fin�:

When m=1, we omit the adjective � 1-subdivided�.

Remark 7.2. In Definition 7.1, when E is a 1-category, an E-valued m-subdivided
trace theory T : �m

op�Fin� C
!E is completely determined by the composite

C !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
([1]�m;¡) �m

op�Fin� C
!!!!!!!!!!
T E

along with a natural isomorphism (�M;N : T (M 
 N)! T (N 
M))(M;N)2C�C.
Under this description, an m-subdivided trace theory descent to a trace theory
is a condition (unlike in the 1-categorical setting, it comprises extra data).

Roughly speaking, [NS18, Prop III.3.6 & Lem III.3.7 & Cor III.3.8] (summarized
in [KMN23, Thm 6.29]) gives us a BCp-equivariant version of the functor (¡)
p :
Sp! SpBCp. We now give a genuine equivariant analogue.

Notation 7.3. Let G be a finite group, and C a G-symmetric monoidal 1-category.
Then we will denote Cact
 :=FinG�Span(FinG) C
.

Construction 7.4. Let G be a finite group, and C a G-symmetric monoidal 1-
category. We construct a functor

Free(G)�Fin (Ce)act
 ¡! (CG)act


such that the composite

(Ce)act
 ¡!Free(G)�Fin (Ce)act
 ¡! (CG)act


is simply given by

(S; (Xs)s2S) 7¡! (S; (NeGXs)s2S):

Indeed, recall that (Ce)act
 =Fin�free;FinGCact
 , and (CG)act
 =Fin�triv;FinGC
. Con-
sequently, Free(G)�Fin (Ce)act
 =Free(G)�FinG Cact
 , and the functor in question is
given by the parallel transport of the coCartesian fibration Cact
 !FinG along the
natural transformation from the inclusion Free(G) ,!FinG to the composite functor

Free(G)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ![(¡)/G]
Fin!!!!!!!!!!!!!!!!!!!!!!!!!!triv FinG:

This natural transformation is pointwisely given by the map X! [X/G]triv of finite
G-sets. By construction, the functor Free(G)�Fin (Ce)act
 ! (CG)act
 carries coCarte-

sian edges over Free(G) to coCartesian edges over Fin, via Free(G)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ![(¡)/G]
Fin.

Example 7.5. Let G be a finite group, and C an1-category. Then the construction
[G/H ] 7! CBH upgrades to a G-symmetrc monoidal 1-category, cf. [Hil22, §2].
Construction 7.4 gives rise to a functor

Free(G)�Fin Cact
 ¡! (CBG)act
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which carries (G;X) to X
jGj2CBG for every X 2C. In fact, this functor is BG-
equivariant when G is abelian.

Slightly more generally, let A be a commutative ring in CBG, which gives rise
to a G-E1-algebra in the G-symmetric monoidal 1-category [G/H] 7! CBH, and
thus the construction [G/H] 7!ModA(CBH) carries a G-symmetric monoidal 1-
structure. Then Construction 7.4 gives rise to a functor

Free(G)�Fin

 ModA(C)act
 ¡!ModA(CBG)act


which carries (G; M) to M
jGj 
A
jGj A 2ModA(CBG) for every M 2ModA(C),
where the map A
jGj!A is informally given by

N
g2G ag 7!

Q
g2G gag, cf. [NS18,

after Cor IV.2.4]. However, in general, the1-category ModA(CBG)act
 does not carry
a BG-action when G is abelian.

Construction 7.6. Let m 2N>0 be a positive integer, and C a Cm-symmetric
monoidal 1-category. Construction 7.4 along with the commutative diagram

�m
op ¡! �op

 
¡

 
¡

Free(Cm) ¡! Fin

gives rise to a composite functor

�m
op�Fin (Ce)act
 ¡! (CCm)act


 !!!!!!!!!!!!!!
 CCm

which maps coCartesian edges over �m
op to coCartesian edges over Fin, then to

equivalences, thus it is an m-subdivided trace theory.

Example 7.7. Let r 2N, and m := pr. Apply Construction 7.6 to the inclusion
Perm(¡) �ModZ(Spg (¡)) of Cpr-symmetric monoidal 1-category, we get a pr-
subdivided trace theory

�m
op�Fin�D(Z)
¡!ModZ(SpgBCpr)

whose restriction to the symmetric monoidal full subcategory ModZ
free;fg�D(Z) is

the m-divided trace theory

�m
op�Fin� (ModZ

free;fg)
¡!PermBCpr

which corresponds to the functor

ModZ
free;fg ¡! PermBCpr

M 7¡! M
pr

along with isomorphisms

�M;N : (M 
N)
p
r

= M 
N 
 � � � 
M 
N
= M 
 (N 
 � � � 
M 
N)
!!!!!!!!!!!!!!' (N 
 � � � 
M 
N)
M
= N 
M 
 � � � 
N 
M
= (N 
M)
pr

for every pair (M;N)2 (ModZ
free;fg)2 under the description in Remark 7.2, which is

denoted by i(r)�T \ in [Kal18, §4.1].
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Example 7.8. Let r 2N>0, and m := pr¡1. Apply Construction 7.6 to the Cpr¡1-
symmetric monoidal base change functor

ModZ(Spg(¡))¡!ModW (Fp)(Sp
g(¡));

we get two m-subdivided trace theories

�m
op�Fin�D(Z)
 ¡! ModZ

¡
SpgBCpr¡1

�
�m
op�Fin�D(Fp)
 ¡! ModW (Fp)

¡
SpgBCpr¡1

�
which fit into a commutative diagram

�m
op�Fin�D(Z)
 ¡! ModZ

¡
SpgBCpr¡1

�
 
¡

 
¡

�m
op�Fin�D(Fp)
 ¡! ModW (Fp)

¡
SpgBCpr¡1

� :
We now upgrade Corollary 6.6 to an equivalence of trace theories.

Proposition 7.9. Let r 2N>0 and m := pr¡1. The m-subdivided trace theory

�m
op�Fin�D(Fp)
¡!ModW (Fp)

¡
SpgBCpr¡1

�
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !(¡)

C
pr¡1

D(Wr(Fp));

where the first functor is the m-subdivided trace theory associated to the Cpr¡1-
symmetric monoidal 1-category ModW (Fp)(Sp

g (¡)) by Construction 7.6 (cf.
Example 7.8), descends canonically to a trace theory

�op�Fin�D(Fp)
¡!D(Wr(Fp));

and its restriction to the symmetric monoidal full subcategory ModFp
free;fg�D(Fp)

coincides with Kaledin's trace theory Wr
\ in [ Kal18, Prop 4.3].

Proof. Them-subdivided trace theory in question preserves fiberwise sifted colimits
and is fiberwise polynomial separately in each variable, thus we could simply restrict
to the full subcategory �m

op�Fin�ModFp
free;fg, that is to say, it is an m-subdivided

trace theory on the 1-category ModFp
free;fg of finite free Fp-modules. Moreover, them-

subdivided trace theory in question takes values in a 1-category (Corollary 6.6). In
this case, an m-subdivided trace theory descending to a trace theory is a property
(in place of an extra structure), and one can check the coincidence with Kaledin's
Wr

\ by explicit computations. �
Now we deduce a consequence for the (Hochschild�)Witt trace theory.

Remark 7.10. (cf. [DKNP23, Ex 2.3]) Let r2N. Then the pr-subdivided trace
theory obtained by applying Construction 7.6 to the Cpr-symmetric monoidal 1-
category Spg(¡) coincides with the pr-subdivided polygonic THH(S;¡). By con-
sidering the Cpr-symmetric monoidal functor Spg(¡)!ModW (Fp)(Sp

g(¡)), we see
that the pr-subdivided trace theory

�m
op�Fin�D(Fp)
¡!ModW (Fp)(Sp

g(¡))

coming from the Cpr-symmetric monoidal 1-category ModW (Fp)(Sp
g(¡)) can be

identified with the the pr-subdivided trace theory

THH(S;¡)
THH(S;Fp)
L W (Fp)'THH(Fp;¡)
THH(Fp)

L W (Fp)
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(this equivalence follows from the parametrized symmetric monoidal structure on
the trace theory THH) on D(Fp). Arguing as in Proposition 7.9 (namely, restricting
to the full subcategory ModFp

free;fg�D(Fp), and using the polynomiality of func-
tors), we see that the pr-subdivided trace theory (THH(Fp;¡)
THH(Fp)

L W (Fp))Cpr

descends to a trace theory, which coincides with Kaledin's trace theory Wr+1
\ as

well.

Then it follows from the trace-theory formalism that

Proposition 7.11. Let A be an E1-Fp-algebra, and r2N>0. Then the r-truncated
Hochschild�Witt homology Wr HH(A) of A (defined in [ Kal19, Def 4.1]) can be
identified with the r-truncated Hochschild�Witt homology

WrHH(A/Fp)2D(Wr(Fp))
B
¡
T/C

pr¡1
�

of A relative to Fp.

To complete the comparison, in view of Corollary 4.2 and Proposition 7.11, it
suffices to identify the map R :Wr+1HH(¡)!WrHH(¡) with the map

(THH(¡)
THH(Fp)
L W (Fp))Cpr¡! (THH(¡)
THH(Fp)

L W (Fp))
C
pr¡1

out of the pre-cyclotomic structure on THH(¡)
THH(Fp)
L W (Fp). As for Proposi-

tion 7.11, we identify the map Wr+1
\ !Wr

\ of trace theories with the map

(THH(Fp;¡)
THH(Fp)
L W (Fp))Cpr¡! (THH(Fp;¡)
THH(Fp)

L W (Fp))
C
pr¡1

of trace theories, on ModFp
free;fg, and thus it suffice to identify this map with the map

(THH(Fp;¡)
THH(Fp)
L W (Fp))Cpr¡! (THH(Fp;¡)
THH(Fp)

L W (Fp))
C
pr¡1 (7.1)

coming from the pre-polygonic structure on THH(Fp;¡)
THH(Fp)
L W (Fp) as natural

transformations of functors out of ModFp
free;fg.

By previous computations, on ModFp
free;fg, we can replace the map (7.1) by

applying �0 to it, and thus we can identify it with taking �0 to the map

THH(Fp;¡)Cpr¡!THH(Fp;¡)
C
pr¡1

coming from the polygonic structure on THH(Fp;¡), which is subsequently iden-
tified with Wr+1

\ !Wr
\ in [DKNP23].

In summary, we have

Proposition 7.12. Let A be an E1-Fp-algebra. Then the sequential system of
Hochschild�Witt homology (WrHH(A))r2N>0 of A (defined in [ Kal19, Def 4.1]),
with restriction maps are transition maps, can be identified with Hochschild�Witt
homology �

WrHH(A/Fp)2D(Wr(Fp))
B
¡
T/C

pr¡1
��
r2N>0

relative to Fp, with transition maps coming from the pre-p-cyclotomic structure.

Remark 7.13. The identification above of maps R is dirty. In the future, we will give
another argument by seeking a suitable generalization without the identification of
�0THH

C
pr¡1 in [DKNP23].
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Appendix A. G-typical Witt vectors as the relative norm

In this appendix, we briefly show that Thomas Read's G-typical Witt vectors
with coefficients [Rea23] can be identified with the relative norm under flatness,
as a simple consequence of base-change formulae. For sake of simplicity, we only
consider finite groups G, and without truncation sets. We start with the case that
the commutative ring is Z.

Construction A.1. Let M be a connective Z-module spectrum. Then the 0th Post-
nikov truncation map NeGM! �60(NeGM) in ModNeGZ(SpgBG) induces a map

Ne
GM 
NeGZ

L �60(NeGZ)¡! �60(NeGM)

in Mod�0(NeGZ)(SpgBG) which is functorial in M 2D(Z)>0, and becomes an equiv-
alence after taking �60.

Lemma A.2. Let M be a flat Z-module. Then the map in Construction A.1
becomes an equivalence.

Proof. It suffices to see that theG-spectrumNe
GM 
NeGZ

L �60(NeGZ) is concentrated
in degree 0. Since every flat module is a filtered colimit of finite free modules
(Lazard's theorem), without loss of generality, we may assume that the Z-module
M is finite free. We write M =Z[S] for a finite set S. Then

Ne
GM 
NeGZ

L �60(NeGZ) ' (S�G
NeGZ)
NeGZ
L ��0(NeGZ)

' S�G
 ��0(NeGZ)

is concentrated in degree 0, where S�G is viewed as a finite G-set, and S�G
NeGZ
is the FinG-action on SpgBG. �

It follows from [Rea23, Thm A] that

Corollary A.3. Let M be a flat Z-module. Then there is an equivalence

Ne
GM 
NeGZ

L WG(Z)!!!!!!!!!!!!!!
'
WG(Z;M)

in ModWG(Z)(Sp
gBG), which is functorial in M 2ModZ

[ .

Now we deduce the general result.

Proposition A.4. Let R be a commutative ring, and M a flat R-module. Then
there is an equivalence

Ne
GM 
NeGR

L WG(R)!!!!!!!!!!!!!!
'
WG(R;M) (A.1)

in ModWG(R)(Sp
gBG), which is functorial in (R;M)2Mod[.

Proof. By Corollary A.3, we can rewrite the map as

WG(Z;M)
WG(Z;R)
L WG(R)¡!WG(R;M):

By [Rea23, Cor 4.21], this map becomes an equivalence after taking �60. It suffices
to show that the source of (A.1) is concentrated in degree 0. Since every R-module
is a filtered colimit of finite free R-modules, without loss of generality, we may
assume that M is finite free. We write R=Z[S] for a finite set G. Then

Ne
GM 
NeGR

L WG(R) ' S�G
NeGR
NeGR
L WG(R)

' S�G
WG(R)
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is concentrated in degree 0 since so is WG(R). �
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