|
|
|||
|
Dr. Zhiming
Zhao home page |
|
||
|
Multiscale Networked Systems (MNS) University of Amsterdam Email: z.zhao[at]uva.nl Tel: +31 641265121 Office: Room L5.40, Lab 42 Science Park 900, 1098XH Amsterdam the Netherlands |
We are looking for 1. Part time programmers 2. Post doctors 3. PhD
students... |
||
|
|
|||
I received my Ph.D. in computer science in
2004 from the University
of Amsterdam (UvA).
I am an associate professor and the chair of the Multiscale Network Systems (MNS) research group in the Informatics
Institute (IvI)
at UvA.
I am the technical
manager of the Virtual Lab and Innovation Center (VLIC)
of LifeWatch ERIC, a European
research infrastructure in ecology and biodiversity science. My research focuses on
quality-critical distributed computing, data-intensive workflow management, virtual
research environments, and digital twins. I am the Co-PI of the Dutch LTER-LIFE project and coordinate the UvA effort in EU projects ENVRI-HUB
next, EVERSE, OSCARS and BlueCloud 2026
to develop Digital Twin Virtual Research Environment, research assets search
engine, and Cloud automation and optimization solutions. I coordinated the
project SWITCH (Software
Workbench for interactive time-critical and highly self-adaptive cloud
applications). I led the Data for Science theme in the
environmental science cluster project ENVRIPLUS, and the technical
development work packages in ENVRI-FAIR, ARTICONF and CLARIFY projects. I am an IEEE Senior member
and the managing editor of the Journal of Cloud
Computing. |
||||
|
Research: Quality Critical Applications on Programmable
Infrastructures |
|
|
|
In both scientific and
industrial contexts, there are distributed application systems which 1. have very high
business value (e.g., on-demand business collaboration platforms), or social
impact (e.g., for early warning of disasters); and 2. have very critical
requirements for Quality of Service (QoS) (e.g., tsunami emergency response
time) or quality of experience (QoE) (e.g.,
delivery of ultra-high-definition television or collaborative business
interactions); but 3. are very difficult to
develop and operate because of their distributed nature and the high
requirements for the runtime environment, and in particular, the
sophisticated optimization mechanisms needed for developing and integrating
the system components. Cloud environments provide
virtualized, elastic, controllable, and quality on-demand services for
supporting complex application systems. However, developing, deploying, and
executing quality-critical applications in programmable infrastructure is
still difficult and challenging due to a lack of effective programming and
control mechanisms. My research interests have
revolved around modeling, developing,
controlling, and optimizing such Distributed Quality-Critical
Systems. I specifically focus on novel models for programming, executing,
and optimizing such applications on programmable infrastructures,
such as Cloud- and software-defined networking technologies. My basic
approach is to use autonomous agent technologies to decompose system
complexity, to develop distributed control and optimization intelligence by
combining both application logic and infrastructure programmability, and to
investigate self-adaptable cooperative control models for Cloud-based
quality-critical systems. |
|
|
||
|
Leader: Dr. Zhiming Zhao Postdoc researchers and developers: ·
Nafis Islam, ENVRI community knowledge base (2024-) ·
Koen Greuell, VRE
developer (2024-) ·
Dr. Nafiseh Soveizi, Digital twin
composition and optimization (2024-) · Dr. Gabriel Pelouze, NaaVRE, VL (2023-) ·
Dr. Spiros Koulouzis,
DRIP, CONF, VRE and use cases (2017-) Ph.D. students: ·
Paul Daniëlse, AI enhanced
quality critical cloud native applications (2024-) ·
Stefanie Boss, legal anomalies in decentralized
infrastructure (2023-) ·
Yuandou Wang, Distributed data processing
(2020-) ·
Na Li, Knowledge discovery (2020-) Former members: ·
Dr. Peide Zhu, VRE search
engine (2024-2024) ·
Dr. Siamak Farshidi,
Cognitive digital twins (2024-2024) ·
HongYun Liu, Cloud resource management
(2019-2024) ·
Zijie Liu, Machine learning and job scheduling
(2023-) ·
Yi Chen, Machine learning and job scheduling (2023-) ·
Ruyue Xin, Virtual Infrastructure control
and adaptation (2019-)[thesis] ·
Dr. Yangjun Zhang, Knowledge discovery (2023-2023) · J.M. van der Stoep, NaaVRE developer (2022-2023) ·
Zhengqiu Zhu, Incentive models in crowd applications
(2020-2022) ·
Dr. Uraz Odyurt, AI and
cloud computing (2021-2022) ·
Zeshun Shi, Trustworthy Virtual
infrastructure (2018-2022) [thesis] ·
Mr. Ning Chen, Sensor network and robustness
(2021-2022) ·
Riccardo Bianchi (M.Sc), DevOps (2020-2022) ·
Dr. Peng Chen, Cloud infrastructure optimization
(2020-2021) ·
Dr. Xiaofeng Liao, Alignment, annotation
(2017-2020) ·
Dr. Paul Martin, Semantic information linking
(2015-2018) ·
Dr. Arie Taal, Time critical applications
(2016-2019) ·
Junchao Wang, Virtual Infrastructure
planning (2015-2020) ·
Hu Yang, Time critical application deployment
(2015-2019) [thesis] ·
Huan Zhou, Virtual infrastructure provisioning
and DevOps (2015-2019) [thesis] |
|
|
|
|
Funding and
projects |
|
|
|
|
Via University of Amsterdam Via LifeWatch
ERIC Virtual Lab and Innovation Center (VLIC) |
|
|
|
Via UvA 1.
NWO LTER-LIFE
(a research infrastructure to develop Digital Twins of ecosystems in a
changing world), Large-Scale Research Infrastructure (LSRI), Duration August
2023-August 2032. 2.
EU H-Europe ENVRI-Hub
Next (ENVironmental Research
Infrastructures delivering an open access Hub and NEXT-level
interdisciplinary research framework providing services for advancing science
and society). Grant No. 101131141. HORIZON-INFRA-2023-DEV-01
call. Duration 2024-2027. 3.
EU H-Europe EVERSE
(European Virtual Institute for Research Software Excellence). Grant No.
101129744. HORIZON-INFRA-2023-EOSC-01-02
call. Duration 2024-2027. 4.
EU H-Europe OSCARS
(Open Science Clusters’ Action for Research and Society). Grant No.
101129751. HORIZON-INFRA-2023-EOSC-01 call. Duration 2024-2027. (Third party
via LifeWatch ERIC) 5.
EU H-Europe BlueCloud-2026 (A
federated European FAIR and Open Research Ecosystem for Oceans, Seas, and
inland waters). Grant No. 101094227. HORIZON-INFRA-2022-EOSC-01-03
call. Duration: Jan 2023-June 2026. Via LifeWatch 6.
EU H-Europe BioDT (Biodiversity Digital Twin for Advanced
Modelling, Simulation and Prediction Capabilities) Grant No. 101057437.
HORIZON-INFRA-2021-TECH-01-01 call. Duration: June 2022- May 2025. (as
LifeWatch VLIC) Finished
projects 7.
EU H2020 CLARIFY (CLoud
ARtificial Intelligence For pathologY).
Grant No. 860627. H2020-MSCA-ITN-2019
call. Duration: Nov 2019-Oct 2023. 8.
EU H2020 ENVRIFAIR (ENVironmental Research
Infrastructures building Fair services Accessible for society, Innovation and
Research). Grant No 824068. H2020-INFRAEOSC-2018-2
call. Duration: January 2019-December 2022. 9.
EU H2020 BLUECLOUD (Blue-Cloud: Piloting
innovative services for Marine Research & the Blue Economy).H2020-BG-2018-2020.
Grant No. 862409. Duration: Nov 2019-Oct 2022. 10. EU H2020 ARTICONF (smART socIal media eCOsytstem in a blockchaiN Federated
environment). Grant No 825134. H2020-ICT-2018-2
call. Duration: January 2019-December 2021. 11. EU H2020 ENVRIPLUS (ENVironmental Research Infrastructures Providing
shared soLUtions for Science
and society). Leader of the Data for Science Theme. Grant No. 654182 (INFRADEV-4-2014-2015).
Duration: May 2015- April 2019, Project website: www.envriplus.eu. 12. EU H2020 VRE4EIC (A
Europe-wide interoperable Virtual Research Environment to Empower
multidisciplinary research communities and accelerate Innovation and
Collaboration). Grant number 676247. H2020-EINFRA-2015-1.
Duration October 2015- September 2018. 13. EU H2020 SWITCH (Software
Workbench for Interactive, Time Critical and Highly self-adaptive cloud
applications). Grant No 643963. H2020-ICT
9-2014-1 call: Tools and methods for software development. Duration:
February 2015- January 2018. (SWITCH project). Participated projects 14. EU FP7 ENVRI.
Task leader, task 3.4: linking data and infrastructure - Common operations of
Environmental Research Infrastructure (ENVRI). Grant number 283465, |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
Community |
|
|
|
Editorial board 1.
Managing editor, Journal of cloud computing,
advances, systems and applications 2.
International journal of: Blockchains:
research and applications Organizer/co-organizer
1. Special session: Using heterogeneous environmental data
for system-level science, 2018, Vienna, EGU
1. in Digital
Infrastructure for research 2016, Krakow, Poland 2. in Digital Infrastructure for research 2017,
Brussels, Belgium
Summer school 1. International summer school on data
management in environmental and earth sciences (2018
| 2019
| 2020
| 2021
| 2022) Workshop/Panel
chair
Program
committee
|
|
|||
|
|
|
||
|
|
|
||
|
|
|||
|
|
|
||
|
Journals 1.
Li, N., Qi, Y.,
Xin, R., Zhu, P. & Zhao, Z. Leveraging active learning for ocean
data quality assessment: reducing labeling workload
and addressing severe data imbalance challenges. International Journal Data
Science and Analytics (2025) https://doi.org/10.1007/s41060-025-00751-w. 2.
Xin, R., Wang,
J., Chen, P. & Zhao, Z. Trustworthy AI-based Performance Diagnosis
Systems for Cloud Applications: A Review. ACM Comput.
Surv. 57, 1–37 (2025) https://doi.org/10.1145/3701740. 3.
Li, N., Farshidi, S. & Zhao, Z. Search Multiple Types
of Research Assets From Jupyter
Notebook. Softw Pract Exp
spe.3406 (2025) https://doi.org/10.1002/spe.3406
4.
Wang, Y.,
Tripathi, S., Farshidi, S., Zhao, Z.: D-VRE: From a Jupyter-enabled
Private Research Environment to Decentralized Collaborative Research
Ecosystem. Blockchain: Research and Applications. 100244 (2024). https://doi.org/10.1016/j.bcra.2024.100244. 5.
Li, N., Qi, Y.,
Li, C., Zhao, Z.: Active Learning
for Data Quality Control: A Survey. J. Data and Information Quality. 3663369
(2024). https://doi.org/10.1145/3663369
[OA]. 6.
Petzold, A.,
Bundke, U., Hienola, A., Laj, P., Lund Myhre, C.,
Vermeulen, A., Adamaki, A., Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao, Z., Asmi, A.: Opinion: New directions
in atmospheric research offered by research infrastructures combined with
open and data-intensive science. Atmos. Chem. Phys. 24, 5369–5388 (2024). https://doi.org/10.5194/acp-24-5369-2024.
7.
Xin, R., Chen,
P., Grosso, P., Zhao, Z.:
A fine-grained robust performance diagnosis framework for run-time cloud
applications. Future Generation Computer Systems. 155, 300–311 (2024). https://doi.org/10.1016/j.future.2024.02.014.
8.
Song, Y., Xin,
R., Chen, P., Zhang, R., Chen, J., Zhao,
Z.: Autonomous selection of the fault classification models for
diagnosing microservice applications. Future Generation Computer Systems.
153, 326–339 (2024). https://doi.org/10.1016/j.future.2023.12.005. 9.
Jiang, W., Luo,
T., Liang, Z., Chen, K., He, J., Zhao,
Z., Wen, J., Zhao, L., Song, W.: FBENet:
Feature-Level Boosting Ensemble Network for Hashimoto’s Thyroiditis
Ultrasound Image Classification. IEEE J. Biomed. Health Inform. 28, 5360–5369
(2024). https://doi.org/10.1109/jbhi.2024.3414389.
10. Yuan, S., Chen, J., Jiang, W., Zhao, Z., Guo,
S.: LHN etV2: A Balanced L ow-cost H ybrid Network
for Single Image Dehazing. IEEE Trans. Multimedia. 1–14 (2024). https://doi.org/10.1109/TMM.2024.3377133.
11. Cheng, L., Wang, Y., Cheng, F., Liu, C., Zhao,
Z., Wang, Y.: A Deep Reinforcement Learning-Based Preemptive
Approach for Cost-Aware Cloud Job Scheduling. IEEE Trans. Sustain. Comput. 1–12 (2023). https://doi.org/10.1109/TSUSC.2023.3303898.
12. Jiang, W., Chen, K., Liang, Z., Luo, T., Yue, G., Zhao,
Z., Song, W., Zhao, L., Wen, J.: HT-RCM: Hashimoto’s Thyroiditis
Ultrasound Image Classification Model based on Res-FCT and Res-CAM. IEEE J.
Biomed. Health Inform. 1–11 (2023). https://doi.org/10.1109/JBHI.2023.3331944.
13. Tabatabaei, Z., Wang, Y., Colomer, A., Oliver Moll,
J., Zhao, Z., Naranjo, V.: WWFedCBMIR:
World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering.
10, 1144 (2023). https://doi.org/10.3390/bioengineering10101144
14. Rito Lima, I., Filipe, V., Marinho, C., Ulisses, A.,
Chakravorty, A., Hristov, A., Saurabh, N., Zhao, Z., Xin, R., Prodan,
R.: ARTICONF decentralized social media platform for democratic crowd
journalism. Soc. Netw. Anal. Min. 13, 116 (2023). https://doi.org/10.1007/s13278-023-01110-y.
15. Zhang, J., Cheng, L., Liu, C., Zhao, Z., Mao,
Y.: Cost-aware scheduling systems for real-time workflows in cloud: An approach
based on Genetic Algorithm and Deep Reinforcement Learning. Expert Systems
with Applications. 234, 120972 (2023). https://doi.org/10.1016/j.eswa.2023.120972
16. Li, J., Li, J., Xie, C., Liang, Y., Qu, K., Cheng,
L., Zhao, Z.: PipCKG-BS: A Method to Build
Cybersecurity Knowledge Graph for Blockchain Systems via the Pipeline
Approach. J CIRCUIT SYST COMP. 2350274 (2023). https://doi.org/10.1142/S0218126623502742
17. Xin, R., Chen, P., Zhao, Z.: CausalRCA: Causal inference based precise fine-grained
root cause localization for microservice applications. Journal of Systems and
Software. 111724 (2023). https://doi.org/10.1016/j.jss.2023.111724. 18. Liu, H., Xin, R., Chen, P., Gao, H., Grosso, P., Zhao,
Z.: Robust-PAC time-critical workflow offloading in edge-to-cloud
continuum among heterogeneous resources. J Cloud Comp. 12, 58 (2023). https://doi.org/10.1186/s13677-023-00434-6. 19.
Liu, H., Chen, P., Ouyang, X., Gao, H., Yan, B., Grosso, P., Zhao,
Z.: Robustness challenges in Reinforcement Learning based time-critical
cloud resource scheduling: A Meta-Learning based solution. Future Generation
Computer Systems. 146, 18–33 (2023). https://doi.org/10.1016/j.future.2023.03.029. 20. Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., Zhao,
Z.: Identifying performance anomalies in fluctuating cloud environments:
A robust correlative-GNN-based explainable approach. Future Generation
Computer Systems. 145, 77–86 (2023). https://doi.org/10.1016/j.future.2023.03.020.[OA]. 21. Xin, R., Liu, H., Chen, P., Zhao, Z.: Robust
and accurate performance anomaly detection and prediction for cloud
applications: a novel ensemble learning-based framework. J Cloud Comp. 12, 7
(2023). https://doi.org/10.1186/s13677-022-00383-6.
22. Launet, L., Wang, Y., Colomer, A., Igual,
J., Pulgarín-Ospina, C., Koulouzis,
S., Bianchi, R., Mosquera-Zamudio, A., Monteagudo, C., Naranjo, V., Zhao,
Z.: Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Applied
Sciences. 13, 919 (2023). https://doi.org/10.3390/app13020919.
23. Shi, Z., de Laat, C., Grosso, P., Zhao, Z.: Integration
of Blockchain and Auction Models: A Survey, Some Applications, and
Challenges. IEEE Commun. Surv. Tutorials. 1–1
(2022). https://doi.org/10.1109/COMST.2022.3222403. 24. Zhu, Z., Ai, C., Chen, H., Chen, B., Duan, W., Qiu,
X., Lu, X., He, M., Zhao, Z., Liu, Z.: Understanding the Necessity and
Economic Benefits of Lockdown Measures to Contain COVID-19. IEEE Trans. Comput. Soc. Syst. 1–13 (2022). https://doi.org/10.1109/TCSS.2022.3194639
25. Xiao, H., Li, P., Zeng, H., Liang, T., Jiang, W., Zhao,
Z.: Metric learning-based whole health indicator model for industrial
robots. Int J of Intelligent Sys. int.23008 (2022). https://doi.org/10.1002/int.23008
26. Yuan, S., Wang, Y., Liang, T., Jiang, W., Lin, S., Zhao,
Z.: Real‐time recognition and warning of mask wearing based on improved
YOLOv5 R6.1. Int J of Intelligent Sys. 37, 9309–9338 (2022). https://doi.org/10.1002/int.22994.
27. Shi, Z., Ivankovic, V., Farshidi,
S., Surbiryala, J., Zhou, H., Zhao, Z.:
AWESOME: an auction and witness enhanced SLA model for decentralized cloud
marketplaces. J Cloud Comp. 11, 27 (2022). https://doi.org/10.1186/s13677-022-00292-8 28. Zhu, Z., Chen, B., Chen, H., Qiu, S., Fan, C., Zhao,
Y., Guo, R., Ai, C., Liu, Z., Zhao, Z., Fang, L., Lu, X.: Strategy
evaluation and optimization with an artificial society toward a Pareto
optimum. The Innovation. 3, 100274 (2022). https://doi.org/10.1016/j.xinn.2022.100274
29. Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J.,
Xia, Y., Zhao, Z.: Effectively Detecting Operational Anomalies In Large-Scale IoT Data Infrastructures By
Using A GAN-Based Predictive Model. The Computer Journal. 65, 2909–2925
(2022). https://doi.org/10.1093/comjnl/bxac085
30. Shi, Z., Zhou, H., De Laat, C., Zhao, Z.: A
Bayesian game-enhanced auction model for federated cloud services using
blockchain. Future Generation Computer Systems. 136, 49–66 (2022). https://doi.org/10.1016/j.future.2022.05.017 31. Zhao, Z., Koulouzis, S., Bianchi, R., Farshidi,
S., Shi, Z., Xin, R., Wang, Y., Li, N., Shi, Y., Timmermans, J., Kissling,
W.D.: Notebook-as-a-VRE (NaaVRE): From private
notebooks to a collaborative cloud virtual research environment. Softw Pract Exp. spe.3098
(2022). https://doi.org/10.1002/spe.3098. 32. Wang, Y., Koulouzis, S.,
Bianchi, R., Li, N., Shi, Y., Timmermans, J., Kissling, W.D., Zhao, Z.:
Scaling Notebooks as Re-configurable Cloud Workflows. Data Intelligence. 4,
409–425 (2022). https://doi.org/10.1162/dint_a_00140. 33. Wittenburg, P., Hardisty, A., Franc, Y.L.,
Mozaffari, A., Peer, L., Skvortsov, N.A., Zhao, Z., Spinuso, A.: Canonical Workflows to Make Data FAIR. Data
Intelligence. 1–20 (2022). https://doi.org/10.1162/dint_a_00132 34. Jiang, W., Pan, S., Lu, C., Zhao, Z., Lin,
S., Xiong, M., He, Z.: Label entropy-based cooperative particle swarm
optimization algorithm for dynamic overlapping community detection in complex
networks. Int J Intell Syst. int.22673 (2021). https://doi.org/10.1002/int.22673. 35. Farshidi, S., Liao, X., Li, N., Goldfarb, D., Magagna, B.,
Stocker, M., Jeffery, K., Thijsse, P., Pichot, C.,
Petzold, A., Zhao, Z.: Knowledge sharing and discovery across
heterogeneous research infrastructures. Open Res Europe. 1, 68 (2021). https://doi.org/10.12688/openreseurope.13677.1.
36. Karandikar, N., Abhishek, R., Saurabh, N., Zhao,
Z., Lercher, A., Marina, N., Prodan, R., Rong, C., Chakravorty, A.:
Blockchain-based prosumer incentivization for peak mitigation through
temporal aggregation and contextual clustering. Blockchain: Research and
Applications. 2, 100016 (2021). https://doi.org/10.1016/j.bcra.2021.100016 37. Saurabh, N., Rubia, C., Palanisamy, A., Koulouzis, S., Sefidanoski, M., Chakravorty, A., Zhao,
Z., Karadimce, A., Prodan, R.: The ARTICONF
Approach to Decentralized Car-Sharing. Blockchain: Research and Applications.
100013 (2021). https://doi.org/10.1016/j.bcra.2021.100013.
38. Zhou, H., Shi, Z., Ouyang, X. Zhao, Z.,
Building a blockchain-based decentralized ecosystem for cloud and edge
computing: an ALLSTAR approach and empirical study. Peer-to-Peer Network
Application. (2021). https://doi.org/10.1007/s12083-021-01198-z
[OA] 39. Calyam, P., Wilkins-Diehr, N., Miller, M., Brookes, E.H.,
Arora, R., Chourasia, A., Jennewein, D.M., Nandigam, V., Drew LaMar, M.,
Cleveland, S.B., Newman, G., Wang, S., Zaslavsky, I., Cianfrocco,
M.A., Ellett, K., Tarboton, D., Jeffery, K.G., Zhao, Z., González -
Aranda, J., Perri, M.J., Tucker, G., Candela, L., Kiss, T., Gesing, S.:
Measuring success for a future vision: Defining impact in science
gateways/virtual research environments. Concurrency Computat
Pract Exper. cpe.6099
(2020). https://doi.org/10.1002/cpe.6099. 40. Zhu, Z., Chen, B., Liu, W., Zhao, Y., Liu, Z., and Zhao Z., A Cost-Quality Beneficial
Cell Selection Approach for Sparse Mobile Crowdsensing With Diverse Sensing
Costs, in IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3831-3850, 1 March1, 2021, https://doi.org/10.1109/JIOT.2020.3024833.[OA]. 41. Zhang, L., Jiang, W., Zhao, Z.: Short -text
feature expansion and classification based on nonnegative matrix
factorization. Int Journal of Intelligent Systems. int.22290 (2020)https://doi.org/10.1002/int.22290[OA]. 42. Uriarte, R.B., Zhou, H., Kritikos, K., Shi, Z., Zhao, Z., De Nicola, R.: Distributed
service- level agreement management with smart contracts and blockchain.
Concurrency Computat Pract
Exper. (2020). https://doi.org/10.1002/cpe.5800. 43. Hu, Y., de Laat, C., Zhao, Z.: Optimizing Service Placement for Microservice
Architecture in Clouds. Applied Sciences. 9, 4663 (2019). https://doi.org/10.3390/app9214663. 44. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on heterogeneous
clusters with multi-resource constraints. Future Generation Computer Systems.
102, 562–573 (2020). https://doi.org/10.1016/j.future.2019.08.025. 45. Remy, L., Ivanovic, D., Theodoridou, M., Kritsotaki, A., Martin, P., Bailo, D., Sbarra, M., Zhao, Z., Jeffery, K.: Building an
Integrated Enhanced Virtual Research Environment Metadata Catalogue. The
Electronic Library. (2019) https://doi.org/10.1108/EL-09-2018-0183
[OA]. 46. Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., Laat, C., Zhao, Z.: CloudsStorm: A framework for
seamlessly programming and controlling virtual infrastructure functions
during the DevOps lifecycle of cloud applications. Softw:
Pract Exper. 49,
1421–1447 (2019). https://doi.org/10.1002/spe.2741. 47. Tanhua, T., Pouliquen, S., Hausman, J., O’Brien, K.,
Bricher, P., de Bruin, T., Buck, J.J.H., Burger, E.F., Carval, T., Casey,
K.S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat,
V., Kinkade, D., Muelbert, J.H., Novellino, A.,
Pfeil, B., Pulsifer, P.L., Van de Putte, A., Robinson, E., Schaap, D.,
Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M.,
Wyborn, L., Zhao,
Z.: Ocean FAIR Data Services. Front. Mar. Sci. 6, 440 (2019). https://doi.org/10.3389/fmars.2019.00440. 48. Martin, P., Remy, L., Theodoridou, M., Jeffery, K., Zhao, Z.: Mapping heterogeneous
research infrastructure metadata into a unified catalogue for use in a
generic virtual research environment. Future Generation Computer Systems.
101, 1–13 (2019). https://doi.org/10.1016/j.future.2019.05.076.
[OA] 49. Zhou, H., Ouyang, X., Su, J., Laat, C., Zhao, Z.: Enforcing trustworthy cloud
SLA with witnesses: A game theory–based model using smart contracts.
Concurrency Computation: Practice Experience (2019). https://doi.org/10.1002/cpe.5511. 50. Taal, A., Wang, J., de Laat, C., Zhao, Z.: Profiling the scheduling decisions
for handling critical paths in deadline-constrained cloud workflows. Future
Generation Computer Systems. 100, 237–249 (2019). https://doi.org/10.1016/j.future.2019.05.002. 51. Štefanič, P., Cigale, M.,
Jones, A.C., Knight, L., Taylor, I., Istrate, C., Suciu, G., Ulisses, A., Stankovski, V., Taherizadeh,
S., Salado, G.F., Koulouzis, S., Martin, P., Zhao, Z.: SWITCH workbench: A novel
approach for the development and deployment of time-critical
microservice-based cloud-native applications. Future Generation Computer
Systems. 99, 197–212 (2019). https://doi.org/10.1016/j.future.2019.04.008. 52. Liao, X., Zhao,
Z.: Unsupervised Approaches for Textual Semantic Annotation, A Survey.
ACM Comput. Surv. 52,
1–45 (2019). https://doi.org/10.1145/3324473. 53. Liao, X., Bottelier, J., Zhao, Z.: A Column Styled Composable
Schema Matcher for Semantic Data-Types. Data Science
Journal. 18-25 (2019). https://doi.org/10.5334/dsj-2019-025. 54. Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J.,
Carval, T., Grenier, B., Heikkinen, J., Laat, C., Zhao, Z.: Time-critical data management in clouds: Challenges and
a Dynamic Real-Time Infrastructure Planner (DRIP) solution. Concurrency Computat Pract Exper. e5269 (2019). https://doi.org/10.1002/cpe.5269. 55. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring
self-adaptive applications within edge computing frameworks: A
state-of-the-art review. Journal of Systems and Software. 136, 19–38 (2018). https://doi.org/10.1016/j.jss.2017.10.033. 56. Li, J., Yang, Y., Wang, X., Zhao, Z., Li, T.: A novel parallel distance metric-based approach
for diversified ranking on large graphs. Future Generation Computer Systems.
88, 79–91 (2018). https://doi.org/10.1016/j.future.2018.05.031. 57. Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., Liu, J.-B.: Vertex
Labelling and Routing for Farey-Type Symmetrically-Structured
Graphs. Symmetry. 10, 407 (2018). https://doi.org/10.3390/sym10090407. 58. Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., Liu, J.-B.: An Efficient
Method of Generating Deterministic Small-World and Scale-Free Graphs for
Simulating Real-World Networks. IEEE Access. 6, 59833–59842 (2018). https://doi.org/10.1109/ACCESS.2018.2875928. 59. Jiang, W., Zhai, Y., Martin, P., Zhao, Z.: Structure Properties of
Generalized Farey graphs based on Dynamical Systems for Networks. Sci Rep. 8,
12194 (2018). https://doi.org/10.1038/s41598-018-30712-2. 60. Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H.,
Pang, J., de Laat, C., Zhao, Z.:
Planning virtual infrastructures for time critical applications with multiple
deadline constraints. Future Generation Computer Systems. 75, 365–375 (2017).
https://doi.org/10.1016/j.future.2017.02.001,
[Zenodo]. 61. Koulouzis, S., Belloum, A.S.Z.,
Bubak, M.T., Zhao, Z., Živković,
M., de Laat, C.T.A.M.: SDN-aware federation of distributed data. Future
Generation Computer Systems. 56, 64–76 (2016). https://doi.org/10.1016/j.future.2015.09.032. 62. Zhu, H., van der Veldt, K., Zhao, Z., Grosso, P., Pavlov, D., Soeurt,
J., Liao, X., de Laat, C.: A semantic enhanced Power Budget Calculator for
distributed computing using IEEE 802.3az. Cluster Comput.
18, 61–77 (2015). https://doi.org/10.1007/s10586-014-0395-7. 63. Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu,
H., Zhao, Z., de Laat, C.: A
semantic-web approach for modelling computing infrastructures. Computers
& Electrical Engineering. 39, 2553–2565 (2013). https://doi.org/10.1016/j.compeleceng.2013.08.011. 64. Zhao,
Z., Grosso, P., van der Ham,
J., Koning, R., de Laat, C.: An agent-based network resource planner for
workflow applications. MGS. 7, 187–202 (2011). https://doi.org/10.3233/MGS-2011-0180. 65. Belloum, A., Inda, M.A., Vasunin,
D., Korkhov, V.,
Zhao, Z., Rauwerda, H., Breit, T.M., Bubak, M., Hertzberger,
L.O.: Collaborative e-Science Experiments and Scientific Workflows. IEEE
Internet Comput. 15, 39–47 (2011). https://doi.org/10.1109/MIC.2011.87. 66. Zhao,
Z., van Albada,
D., Sloot, P.: Agent-Based Flow Control for HLA Components. SIMULATION. 81,
487–501 (2005). https://doi.org/10.1177/0037549705058060. 67. Kommers, P. and Zhao, Z.: Conceptual
Support with Virtual Reality in Web-based Learning, International Journal
of Continuing Engineering Education and Life-Long Learning, vol. 8, nr 1
1998. ISSN 0957-4344 (1998). https://www.inderscienceonline.com/doi/abs/10.1504/IJCEELL.1998.030134. Editorial (special issues
and proceedings) 68. Cheng, L., Chen, X., Zhao, Z.: Preface
of special issue on Artificial Intelligence for time-critical computing
systems. Future Generation Computer Systems. 159, 102–104 (2024). https://doi.org/10.1016/j.future.2024.05.011. 69. Wittenburg, P., Hardisty, A., Mozzafari, A., Peer, L., Skvortsov, N., Spinuso, A., Zhao, Z.: Editors’ Note: Special
Issue on Canonical Workflow Frameworks for Research. Data Intelligence. 4,
149–154 (2022). https://doi.org/10.1162/dint_e_00122. 70. Rong, C., Zhao, Z.: Welcome to the
new Journal of Cloud Computing by Springer. J Cloud Comp. 10, 49,
s13677-021-00263–5 (2021). https://doi.org/10.1186/s13677-021-00263-5.
71. Zhao, Z., Taylor, I., Prodan, R.: Editorial for
FGCS Special issue on “Time-critical Applications on Software-defined
Infrastructures.” Future Generation Computer Systems. 112, 1170–1171 (2020). https://doi.org/10.1016/j.future.2020.07.056.[OA] [Content]
72. Zhao, Z., Altmeyer, S., Keith J., Atkinson,
M. and Ulisses A.: Nearly
real time data processing and time critical cloud applications. Proceedings
of the 2nd International workshop
on Interoperable infrastructures for interdisciplinary big data sciences
(IT4RIs 16), in the context of IEEE Real-time System Symposium (RTSS), Porto,
Portugal, November 29-December 2, (2016). [doi:10.5281/zenodo.204685] 73. Lu, S., Deelman,
E. & Zhao, Z.: Scientific
workflows special issue. International journal of business process
integration and management (pp. 1-2). Inder science Enterprises
Ltd. (2010). [Full text] 74. Zhao, Z., Belloum, A., Bubak,
M.: Special section on workflow systems and applications in e-Science. Future
Generation Computer Systems. 25, 525–527 (2009). https://doi.org/10.1016/j.future.2008.10.011. 75. Belloum, A., Deelman,
E. & Zhao, Z.: Scientific
workflows. Scientific Programming, 14(3-4), 171-171 (2006). [Full text] Book (Eds) 76. Zhao, Z., Hellström, M. eds: Towards
Interoperable Research Infrastructures for Environmental and Earth Sciences:
A Reference Model Guided Approach for Common Challenges. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4.
[ENVRI archive][Book interview] Book chapters 77. Jeffery, K., Pursula, A., Zhao, Z.: ICT Infrastructures for
Environmental and Earth Sciences. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 17–29. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_2. 78. Magagna, B., Martin, P., de la Hidalga,
A.N., Atkinson, M., Zhao, Z.:
Common Challenges and Requirements. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 30–57. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_3. 79. de la Hidalga, A.N.,
Hardisty, A., Martin, P., Magagna, B., Zhao,
Z.: The ENVRI Reference Model. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 61–81. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_4. 80. Zhao, Z., Jeffery, K.: Reference
Model Guided Engineering. In: Zhao, Z. and Hellström, M. (eds.) Towards
Interoperable Research Infrastructures for Environmental and Earth Sciences.
pp. 82–99. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_5. 81. Martin, P., Liao, X., Magagna, B., Stocker, M., Zhao, Z.: Semantic and Knowledge
Engineering Using ENVRI RM. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 100–119. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_6. 82. Quimbert, E., Jeffery, K., Martens, C., Martin, P., Zhao, Z.: Data Cataloguing. In: Zhao, Z. and Hellström, M. (eds.)
Towards Interoperable Research Infrastructures for Environmental and Earth
Sciences. pp. 140–161. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_8. 83. Koulouzis, S., Martin, P., Zhao, Z.: Virtual Infrastructure Optimisation. In: Zhao, Z. and Hellström, M. (eds.)
Towards Interoperable Research Infrastructures for Environmental and Earth
Sciences. pp. 192–207. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_11. 84. Magagna, B., Goldfarb, D., Martin, P., Atkinson, M.,
Koulouzis, S., Zhao,
Z.: Data Provenance. In: Zhao, Z.
and Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 208–225. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_12. 85. Martin, P., Magagna, B., Liao, X., Zhao, Z.: Semantic Linking of
Research Infrastructure Metadata. In: Zhao,
Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 226–246. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_13. 86. Koulouzis, S., Carval, T., Heikkinen, J., Pursula,
A., Zhao, Z.: Case Study: Data
Subscriptions Using Elastic Cloud Services. In: Zhao, Z. and Hellström, M. (eds.) Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences. pp. 293–306. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_16. 87. Zhao,
Z., Jeffery, K., Stocker, M., Atkinson,
M., Petzold, A.: Towards Operational Research Infrastructures with FAIR Data
and Services. In: Zhao, Z. and
Hellström, M. (eds.) Towards Interoperable Research Infrastructures for
Environmental and Earth Sciences. pp. 360–372. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-52829-4_20. 88. Martin, P., Chen, Y. Hardisty, A., Jeffery, K., and Zhao,
Z.: Computational
Challenges in Global Environmental Research Infrastructures. in
the book Terrestrial Ecosystem Research Infrastructures: Challenges, New
Developments and Perspectives (2017). [ISBN 9781498751315] [OA]. 89. Zhao, Z., Grosso, P., Ham, J. van der, Koning, R.
& de Laat, C.: Quality guaranteed media delivery over
advanced network. Chapter in book Next Generation Content Delivery
Infrastructure: Emerging Paradigms and Technologies, IGI, (2012). ISBN
978-1-4666-1794-0 [doi: 10.4018/978-1-4666-1794-0.ch006]. Conferences 90. Cheng, L., He, H., Gu, Y., Liu, Q., Zhao, Z.,
Fang, F.: MARS: Multi-Agent Deep Reinforcement Learning for Real-Time
Workflow Scheduling in Hybrid Clouds with Privacy Protection. In: 2024 IEEE
30th International Conference on Parallel and Distributed Systems (ICPADS).
pp. 657–666. IEEE, Belgrade,
Serbia (2024). https://doi.org/10.1109/ICPADS63350.2024.00091.
(Best paper) 91. Hou, S., Wang, Y., Zhao, Z.: CrowdAL: Towards a Blockchain-empowered Active Learning
System in Crowd Data Labeling. In: 2024 IEEE 20th International Conference on
e-Science (e-Science). pp. 1–2. IEEE, Osaka, Japan (2024). https://doi.org/10.1109/e-Science62913.2024.10678683. 92. Krishnasamy, A., Wang, Y., Zhao, Z.: A
Collaborative Framework for Facilitating Federated Learning among Jupyter Users. In: 2024 IEEE 20th International
Conference on e-Science (e-Science). pp. 1–2. IEEE, Osaka, Japan (2024). https://doi.org/10.1109/e-Science62913.2024.10678679.
93. Wang, Y., Kanwal, N., Engan, K., Rong, C., Grosso,
P., Zhao, Z.: PriCE: Privacy-Preserving and
Cost-Effective Scheduling for Parallelizing the Large Medical Image
Processing Workflow over Hybrid Clouds. In: Carretero, J., Shende, S.,
Garcia-Blas, J., Brandic, I., Olcoz,
K., and Schreiber, M. (eds.) Euro-Par
2024: Parallel Processing. pp. 210–224. Springer Nature Switzerland, Cham
(2024). https://doi.org/10.1007/978-3-031-69577-3_15[OA]. 94. Pan, R., Shi, Z., Belloum,
A., Zhao, Z.: Operating ZKPs on Blockchain: A Performance Analysis Based
on Hyperledger Fabric. In: 2024 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPS). pp. 69–78. IEEE,
Shanghai, China (2024). https://doi.org/10.1109/DAPPS61106.2024.00018
[OA](Best paper). 95. Zhu, P., Li, N., Zhao, Z.:
Retrieval-augmented Query Reformulation for Heterogeneous Research Asset
Retrieval in Virtual Research Environment. In: Companion Proceedings of the
ACM on Web Conference 2024. pp. 907–910. ACM, Singapore (2024). https://doi.org/10.1145/3589335.3651553. 96. Van De Kamp, R., Bakker, K., Zhao, Z.: Paving
the Path Towards Platform Engineering Using a Comprehensive Reference Model. In:
Sales, T.P., De Kinderen, S., Proper, H.A., Pufahl,
L., Karastoyanova, D., and
Van Sinderen, M. (eds.) Enterprise Design, Operations, and Computing. EDOC
2023 Workshops. pp. 177–193. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-54712-6_11
[OA] 97. Ashraf, A., Belleman, R.G., Zhao, Z.:
Visualization Techniques and Tools for Developing Digital Twins of
Ecosystems: State-of-the-Art and Selection. In: 2023 IEEE Smart World
Congress (SWC). pp. 1–8. IEEE, Portsmouth, United Kingdom (2023). https://doi.org/10.1109/SWC57546.2023.10448753
[OA] 98. Li, N., Qi, Y., Xin, R., Zhao, Z.: Ocean Data
Quality Assessment through Outlier Detection-enhanced Active Learning. In:
2023 IEEE International Conference on Big Data (BigData).
pp. 102–107. IEEE, Sorrento, Italy (2023). https://doi.org/10.1109/BigData59044.2023.10386969
[OA]. 99. Li, N., Zhang, Y., Zhao, Z.: A Dense
Retrieval System and Evaluation Dataset for Scientific Computational
Notebooks. In: 2023 IEEE 19th International Conference on e-Science (e-Science).
pp. 1–10. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254859[OA]. 100.
Christou,
V., Wang, Y., Zhao, Z.: Towards a Knowledge Graph Enhanced Automation
and Collaboration Framework for Digital Twins. In: 2023 IEEE 19th
International Conference on e-Science (e-Science). pp. 1–2. IEEE, Limassol,
Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254845
[OA]. 101.
Kontomaris, C., Wang, Y., Zhao, Z.: CWL-FLOps: A Novel Method for Federated Learning Operations
at Scale. In: 2023 IEEE 19th International Conference on e-Science
(e-Science). pp. 1–2. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254788[OA]. 102.
Marra,
M.L., Henkemans, D.B., Titocci,
J., Koulouzis, S., Rosati, I., Zhao, Z.:
Integrating R in a Distributed Scientific Workflow via a Jupyter-Based
Environment. In: 2023 IEEE 19th International Conference on e-Science
(e-Science). pp. 1–2. IEEE, Limassol, Cyprus (2023). https://doi.org/10.1109/e-Science58273.2023.10254945[OA]. 103.
Blanco,
A.F., Shi, Z., Roy, D., Zhao, Z.: Improving the Resiliency of
Decentralized Crowdsourced Blockchain Oracles. In: Mikyška,
J., De Mulatier, C., Paszynski,
M., Krzhizhanovskaya, V.V., Dongarra, J.J., and
Sloot, P.M.A. (eds.) Computational Science – ICCS 2023. pp. 3–17. Springer
Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-35995-8_1
104.
Wang,
Y., Kanwal, N., Engan, K., Rong, C., Zhao, Z.: Towards a
Privacy-Preserving Distributed Cloud Service for Preprocessing Very Large
Medical Images. In: 2023 IEEE International Conference on Digital Health
(ICDH). pp. 325–327. IEEE, Chicago, IL, USA (2023). https://doi.org/10.1109/ICDH60066.2023.00055
[OA] 105.
Wang,
Y., Janse, N., Bianchi, R., Koulouzis, S., Zhao,
Z.: Towards a Service-based Adaptable Data Layer for Cloud Workflows. In:
2023 IEEE 47th Annual Computers, Software, and Applications Conference
(COMPSAC). pp. 904–911. IEEE, Torino, Italy (2023). https://doi.org/10.1109/COMPSAC57700.2023.00121
[OA] 106.
Li,
N., Zhang, Y., Zhao, Z.: CNSVRE: A Query Reformulated Search System
with Explainable Summarization for Virtual Research Environment. In:
Companion Proceedings of the ACM Web Conference 2023. pp. 254–257. ACM,
Austin TX USA (2023). https://doi.org/10.1145/3543873.3587360
[OA]. 107.
Song,
Y., Xin, R., Zhang, R., Chen, J., Zhao, Z.: A Robust and Accurate
Multivariate Time Series Anomaly Detection in Fluctuating Cloud-Edge
Computing Systems. In: 2022 IEEE 24th Int Conf on High-Performance Computing
& Communications; 8th Int Conf on Data Science & Systems; 20th Int
Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCity/DependSys). pp. 357–365. IEEE, Hainan, China (2022). https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00077
108.
Lima,
I.R., Marinho, C., Filipe, V., Ulisses, A., Saurabh, N., Chakravorty, A., Zhao,
Z., Hristov, A., Prodan, R.: MOGPlay: A
Decentralized Crowd Journalism Application for Democratic News Production.
In: 2022 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). pp. 462–469. IEEE, Istanbul, Turkey (2022). https://doi.org/10.1109/ASONAM55673.2022.10068697. 109.
Xin,
R., Stallinga, S., Liu, H., Chen, P., Zhao, Z.:
Provenance-enhanced Root Cause Analysis for Jupyter
Notebooks. In: 2022 IEEE/ACM 15th International Conference on Utility and
Cloud Computing (UCC). pp. 327–333. IEEE, Vancouver, WA, USA (2022). https://doi.org/10.1109/UCC56403.2022.00058[OA]. 110.
Geng,
J., Chen, Z., Wang, Y., Woisetschlaeger, H., Schimmler, S., Mayer, R., Zhao, Z., Rong, C.: A Survey
on Dataset Distillation: Approaches, Applications and Future Directions. In:
Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence. pp. 6610–6618. International Joint Conferences on Artificial
Intelligence Organization, Macau, SAR China (2023). https://doi.org/10.24963/ijcai.2023/741
[OA]. 111.
Chen,
S., Huang, G., Lin, S., Jiang, W., Zhao, Z.: Overlapping Community
Discovery Algorithm Based on Three-Level Neighbor
Node Influence. In: Xu, Y., Yan, H., Teng, H., Cai, J., and Li, J. (eds.)
Machine Learning for Cyber Security. pp. 335–344. Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-20099-1_28.
112.
Li,
N., Farshidi, S., Bianchi, R., Koulouzis,
S., Zhao, Z.: Context-Aware Notebook Search in a Jupyter-Based
Virtual Research Environment. In: 2022 IEEE 18th International Conference on
e-Science (e-Science). pp. 393–394. IEEE, Salt Lake City, UT, USA (2022). https://doi.org/10.1109/eScience55777.2022.00054[OA]. 113.
Li,
M., Su, J., Liu, H., Zhao, Z., Ouyang, X., Zhou, H.: The Extreme
Counts: Modeling the Performance Uncertainty of
Cloud Resources with Extreme Value Theory. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., and Ruiz-Cortés, A.
(eds.) Service-Oriented Computing. pp. 498–512. Springer Nature Switzerland,
Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_35. 114.
Launet, L., Amor, R. del, Colomer, A., Mosquera-Zamudio,
A., Moscardó, A., Monteagudo, C., Zhao, Z., Naranjo,
V.: Federating Unlabeled Samples: A Semi-supervised
Collaborative Framework for Whole Slide Image Analysis. In: Yin, H., Camacho,
D., and Tino, P. (eds.) Intelligent Data Engineering and Automated Learning –
IDEAL 2022. pp. 64–72. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-21753-1_7
115.
Ivankovic,
V., Shi, Z., Zhao, Z.: A Customizable dApp
Framework for User Interactions in Decentralized Service Marketplaces. In:
2022 IEEE International Conference on Smart Internet of Things (SmartIoT). pp. 224–231. IEEE, Suzhou, China (2022). https://doi.org/10.1109/SmartIoT55134.2022.00043.[OA][Best paper]. 116.
Liu,
H., Xin, R., Chen, P., Zhao, Z.: Multi-Objective Robust Workflow
Offloading in Edge-to-Cloud Continuum. In: 2022 IEEE 15th International
Conference on Cloud Computing (CLOUD). pp. 469–478. IEEE, Barcelona, Spain
(2022). https://doi.org/10.1109/CLOUD55607.2022.00070.[OA] 117.
Boyko,
A., Farshidi, S., Zhao, Z.: An Adaptable
Framework for Entity Matching Model Selection in Business Enterprises. In:
2022 IEEE 24th Conference on Business Informatics (CBI). pp. 90–99. IEEE,
Amsterdam, Netherlands (2022). https://doi.org/10.1109/CBI54897.2022.00017 [OA] 118.
Farshidi, S., Zhao, Z.: An Adaptable Indexing
Pipeline for Enriching Meta Information of Datasets from Heterogeneous
Repositories. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., and Teng, F.
(eds.) Advances in Knowledge Discovery and Data Mining. pp. 472–484. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-05936-0_37
[OA]. 119.
Hoogenkamp, B., Farshidi, S., Xin,
R., Shi, Z., Chen, P., Zhao, Z.: A Decentralized Service Control
Framework for Decentralized Applications in Cloud Environments. In: Montesi,
F., Papadopoulos, G.A., and Zimmermann, W. (eds.) Service-Oriented and Cloud
Computing. pp. 65–73. Springer International Publishing, Cham (2022). [https://doi.org/10.1007/978-3-031-04718-3_4][OA] 120.
Bergers,
J., Shi, Z., Korsmit, K., Zhao, Z.: DWH-DIM:
A Blockchain Based Decentralized Integrity Verification Model for Data
Warehouses. In: 2021 IEEE International Conference on Blockchain
(Blockchain). pp. 221–228. IEEE, Melbourne, Australia (2021). https://doi.org/10.1109/Blockchain53845.2021.00037
[OA] 121.
Poon,
L., Farshidi, S., Li, N., Zhao, Z.:
Unsupervised Anomaly Detection in Data Quality Control. In: 2021 IEEE
International Conference on Big Data (Big Data). pp. 2327–2336. IEEE,
Orlando, FL, USA (2021). https://doi.org/10.1109/BigData52589.2021.9671672
[OA] 122.
Liu
H., Chen P., Zhao, Z.,: Towards A Robust Meta-Reinforcement
Learning-Based Scheduling Framework for Time Critical Tasks in Cloud
Environments, IEEE Cloud (2021), Online, [10.1109/CLOUD53861.2021.00082]
[OA](Best student paper) 123.
Shi
Ze., Farshidi S., Zhou H., Zhao Z., An
Auction and Witness Enhanced Trustworthy SLA Model for Decentralized Cloud Marketplaces, The
2021 ACM International Conference on Information Technology for Social Good (GoodIT 2021), Rome Italy [https://doi.org/10.1145/3462203.3475876]
[OA] 124.
Xin
R., Mohazzab J., Shi Z., and Zhao Z.: CBProf: Customisable Blockchain-as-a-service Performance
Profiler in Cloud Environments, International Conf. on Blockchain (2021),
Online [https://doi.org/10.1007/978-3-030-96527-3_9][OA] 125.
Koulouzis, S., Bianchi, R., der Linde, R. van, Wang, Y., Zhao,
Z.: SPIRIT: A Microservice-Based Framework for Interactive Cloud
Infrastructure Planning. In: Chaves, R., B. Heras, D., Ilic, A., Unat, D., Badia, R.M., Bracciali,
A., Diehl, P., Dubey, A., Sangyoon, O., L. Scott,
S., and Ricci, L. (eds.) Euro-Par 2021: Parallel Processing Workshops. pp.
405–416. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06156-1_32
[OA]. 126.
Zhao, Z., Rong, C., Jaatun, M.G.: A Trustworthy Blockchain-based Decentralised
Resource Management System in the Cloud. In: 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS). pp. 617–624. IEEE,
Hong Kong (2020). https://doi.org/10.1109/ICPADS51040.2020.00086
[OA]. 127.
Wang,
Y., Zhao, Z.: Decentralized
workflow management on software defined infrastructure, Workshop on The 1st
Workshop On Data-Centric Workflows On Heterogeneous Infrastructures:
Challenges And Directions (DAWHI), in the context of IEEE Service Congress,
(2020), [https://doi.org/10.1109/SERVICES48979.2020.00059][OA]. 128.
de
Jong, K., Fahrenfort, C., Younis, A., Zhao, Z.: Sharing digital object across
data infrastructures using Named Data Networking (NDN). 2nd
workshop on Network Aware Big Data Computing (NEAC), In: 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID).
pp. 873–880. IEEE, Melbourne, Australia (2020). https://doi.org/10.1109/CCGrid49817.2020.00013.
[OA]. 129.
Zhou,
H., Ouyang, X., Zhao, Z.: ALLSTAR:
A Blockchain Based Decentralized Ecosystem for Cloud and Edge Computing. In:
2020 IEEE International Conference on Joint Cloud Computing. pp. 55–62. IEEE,
Oxford, United Kingdom (2020). https://doi.org/10.1109/JCC49151.2020.00018
[OA]. 130.
Shi,
Z., Zhou, H., Surbiryala, J., Hu, Y., de Laat, C., Zhao, Z.: An Automated Customization
and Performance Profiling Framework for Permissioned Blockchains in a
Virtualized Environment. In: 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). pp. 404–410.
IEEE, Sydney, Australia (2019). https://doi.org/10.1109/CloudCom.2019.00069,
[OA]. 131.
Petzold,
A., Asmi, A., Vermeulen, A., Pappalardo, G., Bailo, D., Schaap, D., Glaves,
H.M., Bundke, U., Zhao, Z.:
ENVRI-FAIR - Interoperable Environmental FAIR Data and Services for Society,
Innovation and Research. In: 2019 15th International Conference on eScience
(eScience). pp. 277–280. IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00038,
[OA]. 132.
Fahrenfort, C., Zhao,
Z.: Effective Digital Object Access and Sharing Over a Networked
Environment using DOIP and NDN. In: 2019 15th International Conference on
eScience (eScience). pp. 632–633. IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00092,
[OA]. 133.
Demchenko,
Y., Zhao, Z., Surbiryala,
J., Koulouzis, S., Shi, Z., Liao, X., Gordiyenko,
J.: Teaching DevOps and Cloud Based Software Engineering in University
Curricula. In: 2019 15th International Conference on eScience (eScience). pp.
548–552. IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00075,
[OA]. 134.
Ahanach, E. el K., Koulouzis, S., Zhao,
Z.: Contextual Linking between Workflow Provenance and System Performance
Logs. In: 2019 15th International Conference on eScience (eScience). pp.
634–635. IEEE, San Diego, CA, USA (2019). https://doi.org/10.1109/eScience.2019.00093,
[OA]. 135.
Prodan,
R., Saurabh, N., Zhao, Z., Orton-Johnson, K., Chakravorty,
A., Karadimce, A., and Ulisses, A.: ARTICONF:
Towards a Smart Social Media Ecosystem in a Blockchain Federated Environment,
in the 7th Workshop on Large Scale Distributed Virtual Environments, in the
context of Euro-Par conference 2019, Gottingen, Germany (2019) https://doi.org/10.1007/978-3-030-48340-1_32
[OA]. 136.
Shi,
Z., Zhou, H., Hu, Y., Koulouzis, S., Rubia, C., and
Zhao, Z.: Co-located and
Orchestrated Network Fabric (CONF): An Automated Cloud Virtual Infrastructure
for Social Network Applications. in the 7th Workshop on Large Scale
Distributed Virtual Environments, in the context of Euro-Par conference 2019,
Gottingen, Germany (2019) https://doi.org/10.1007/978-3-030-48340-1_36,
[OA]. 137.
Zhou,
H., Shi, Z., Hu, Y., Donkers, P., Afanasyev, A., Koulouzis,
S., Taal, A., Ulisses, A., Zhao, Z.:
Large Distributed Virtual Infrastructure Partitioning and Provisioning Across
Providers. In: 2019 IEEE International Conference on Smart Internet of Things
(SmartIoT). pp. 56–63. IEEE, Tianjin, China (2019).
https://doi.org/10.1109/SmartIoT.2019.00018,
[OA] (Best student paper candidate). 138.
Zhao, Z., Liao, X., Martin, P., Maduro, J., Thijsse, P., Schaap, D., Stocker, M., Goldfarb, D.,
Magagna, B.: Knowledge-as-a-Service: A Community Knowledge Base for Research
Infrastructures in Environmental and Earth Sciences. In: 2019 IEEE World
Congress on Services (SERVICES). pp. 127–132. IEEE, Milan, Italy (2019). https://doi.org/10.1109/SERVICES.2019.00041,
[OA]. 139.
Hu,
Y., de Laat, C., Zhao, Z.:
Learning Workflow Scheduling on Multi-Resource Clusters. In: 2019 IEEE
International Conference on Networking, Architecture and Storage (NAS). pp.
1–8. IEEE, EnShi, China (2019). https://doi.org/10.1109/NAS.2019.8834720,
[OA]. 140.
Ahanach, E. el K., Koulouzis, S., Zhao,
Z.: Linking provenance with system logs: a context aware information
integration and exploration framework for analyzing
workflow execution. 10th International Workshop on Science Gateways (IWSG
2019), pp. 13-15 June 2019 (2019). [OA] 141.
Zhou,
H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A Blockchain based Witness Model for Trustworthy Cloud Service
Level Agreement Enforcement. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. pp. 1567–1575. IEEE, Paris, France (2019). https://doi.org/10.1109/INFOCOM.2019.8737580,
[OA] Best presentation in the session. 142.
Shi,
Z., Zhou, H., Hu, Y., Jayachander, S., de Laat, C.,
Zhao, Z.: Operating Permissioned
Blockchain in Clouds: A Performance Study of Hyperledger Sawtooth. In: 2019
18th International Symposium on Parallel and Distributed Computing (ISPDC).
pp. 50–57. IEEE, Amsterdam, Netherlands (2019). https://doi.org/10.1109/ISPDC.2019.00010,
[OA]. 143.
Hu,
Y., De Laat, C., Zhao, Z.:
Multi-objective Container Deployment on Heterogeneous Clusters. In: 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). pp. 592–599. IEEE, Larnaca, Cyprus
(2019). https://doi.org/10.1109/CCGRID.2019.00076,
[OA] Best paper award. 144.
Zhou,
H., Koulouzis, S., Hu, Y., Wang, J., de Laat, C.,
Ulisses, A., Zhao, Z.: Migrating
Live Streaming Applications onto Clouds: Challenges and a CloudStorm
Solution. In: 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion). pp. 321–326. IEEE, Zurich (2018). https://doi.org/10.1109/UCC-Companion.2018.00075,
[OA]. 145.
Zhou,
H., de Laat, C., Zhao, Z.:
Trustworthy Cloud Service Level Agreement Enforcement with Blockchain Based
Smart Contract. In: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). pp. 255–260.
IEEE, Nicosia (2018). https://doi.org/10.1109/CloudCom2018.2018.00057,
[OA]. 146.
Hu,
Y., Zhou, H., de Laat, C., Zhao, Z.: ECSched: Efficient Container Scheduling on Heterogeneous
Clusters. In: Aldinucci, M., Padovani, L., and Torquati, M. (eds.) Euro-Par 2018: Parallel Processing.
pp. 365–377. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_26
[OA]. 147.
Qin,
Y., Chi, M., Liu, X., Zhang, Y., Zeng, Y., Zhao, Z.: Classification of High Resolution Urban Remote Sensing
Images Using Deep Networks by Integration of Social Media Photos. In: IGARSS
2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. pp.
7243–7246. IEEE, Valencia (2018). https://doi.org/10.1109/IGARSS.2018.8518538. 148.
Zhou,
H., Hu, Y., Su, J., Chi, M., de Laat, C., Zhao, Z.: Empowering Dynamic Task-Based Applications with Agile
Virtual Infrastructure Programmability. In: 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). pp. 484–491. IEEE, San Francisco, CA,
USA (2018). https://doi.org/10.1109/CLOUD.2018.00068. 149.
Zhou,
H., Hu, Y., Su, J., de Laat, C., Zhao,
Z.: CloudsStorm: An Application-Driven
Framework to Enhance the Programmability and Controllability of Cloud Virtual
Infrastructures. In: Luo, M. and Zhang, L.-J. (eds.) Cloud Computing – CLOUD
2018. pp. 265–280. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_18. 150.
Martin,
P., Remy, L., Theodoridou, M., Jeffery, K., Zhao, Z.: Mapping metadata
from different research infrastructures into a unified framework for use in a
virtual research environment. 10th International Workshop on Science Gateways
(IWSG 2018), 13-15 June 2018, (2018). [PDF] 151.
Zhou,
H., Taal, A., Koulouzis, S., Wang, J., Hu, Y.,
Suciu, G., Poenaru, V., de Laat, C., Zhao,
Z.: Dynamic Real-Time Infrastructure Planning and Deployment for Disaster
Early Warning Systems. In: Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya,
V.V., Lees, M.H., Dongarra, J., and Sloot, P.M.A. (eds.) Computational
Science – ICCS 2018. pp. 644–654. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-93701-4_51. 152.
Koulouzis, S., Mousa, R., Karakannas,
A., de Laat, C., Zhao, Z.:
Information Centric Networking for Sharing and Accessing Digital Objects with
Persistent Identifiers on Data Infrastructures. In: 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). pp.
661–668. IEEE, Washington, DC, USA (2018). https://doi.org/10.1109/CCGRID.2018.00098. 153.
Zhou,
H., de Laat, C., Zhao, Z.: Cloudsstorm: An Application-Driven Devops
Framework For Managing Networked Infrastructures On Federated Clouds. (2018). https://doi.org/10.5281/ZENODO.1162914. 154.
Zhao, Z., Martin, P., Jones, A., Taylor, I., Stankovski, V., Salado, G.F., Suciu, G., Ulisses, A., de
Laat, C.: Developing, Provisioning and Controlling Time Critical Applications
in Cloud. In: Mann, Z.Á. and Stolz, V. (eds.) Advances in Service-Oriented
and Cloud Computing. pp. 169–174. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-79090-9_14. 155.
Wang,
J., Zhou, H., Hu, Y., De Laat, C., Zhao, Z.: Deadline-Aware Coflow Scheduling in a DAG. In: 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
pp. 341–346. IEEE, Hong Kong (2017). https://doi.org/10.1109/CloudCom.2017.55. 156.
Wang,
J., de Laat, C., Zhao, Z.: QoS-aware virtual SDN network planning. In:
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
pp. 644–647. IEEE, Lisbon, Portugal (2017). https://doi.org/10.23919/INM.2017.7987350. 157.
Taherizadeh, S., Taylor, I., Jones, A., Zhao, Z., Stankovski, V.: A Network Edge Monitoring Approach for
Real-Time Data Streaming Applications. In: Bañares, J.Á., Tserpes,
K., and Altmann, J. (eds.) Economics of Grids, Clouds, Systems, and Services.
pp. 293–303. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-61920-0_21. 158.
Koulouzis, S., Martin, P., Carval, T., Grenier, B., Judeau, G., Heikkinen, J., Wang, J., Zhou, H., Hu, Y., De
Laat, C., Zhao, Z.: Seamless Infrastructure Customisation and
Performance Optimisation for Time-critical Services in Data Infrastructures.
(2017). https://doi.org/10.5281/ZENODO.1570919. 159.
Hu,
Y., Wang, J., Zhou, H., Martin, P., Taal, A., de Laat, C., Zhao, Z.: Deadline-Aware
Deployment for Time Critical Applications in Clouds. In: Rivera, F.F., Pena,
T.F., and Cabaleiro, J.C. (eds.) Euro-Par 2017: Parallel Processing. pp.
345–357. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_25. 160.
Elzinga,
O., Koulouzis, S., Taal, A., Wang, J., Hu, Y.,
Zhou, H., Martin, P., de Laat, C., Zhao, Z.: Automatic Collector for
Dynamic Cloud Performance Information. In: 2017 International Conference on
Networking, Architecture, and Storage (NAS). pp. 1–6. IEEE, Shenzhen, China
(2017). https://doi.org/10.1109/NAS.2017.8026845. 161.
Zhou,
H., Wang, J., Hu, Y., Su, J., Martin, P., De Laat, C., Zhao, Z.: Fast
Resource Co-provisioning for Time Critical Applications Based on Networked
Infrastructures. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). pp. 802–805. IEEE, San Francisco, CA, USA (2016). https://doi.org/10.1109/CLOUD.2016.0111. 162.
Zhou,
H., Martin, P., Su, J., De Laat, C., Zhao, Z.: A Flexible Inter-Locale
Virtual Cloud For Nearly Real-Time Big Data
Applications. (2016). https://doi.org/10.5281/ZENODO.204774. 163.
Zhou,
H., Hu, Y., Wang, J., Martin, P., De Laat, C., Zhao, Z.: Fast and
Dynamic Resource Provisioning for Quality Critical Cloud Applications. In:
2016 IEEE 19th International Symposium on Real-Time Distributed Computing
(ISORC). pp. 92–99. IEEE, York, United Kingdom (2016). https://doi.org/10.1109/ISORC.2016.22. 164.
Zhao,
Z., Martin, P., De Laat, C.,
Jeffery, K., Jones, A., Taylor, I., Hardisty, A., Atkinson, M., Zuiderwijk,
A., Yin, Y., Chen, Y.: Time Critical Requirements And
Technical Considerations For Advanced Support
Environments For Data-Intensive Research. (2016). https://doi.org/10.5281/ZENODO.204756. 165.
Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Martin, P.,
Stankovski, V.: Runtime Network-Level Monitoring
Framework. In The Adaptation Of Distributed
Time-Critical Cloud Applications. Zenodo (2016). https://doi.org/10.5281/ZENODO.53869. 166.
Petcu,
D., Fazio, M., Prodan, R., Zhao, Z.,
Rak, M.: On the Next Generations of Infrastructure-as-a-Services: In:
Proceedings of the 6th International Conference on Cloud Computing and
Services Science. pp. 320–326. SCITEPRESS - Science and and
Technology Publications, Rome, Italy (2016). https://doi.org/10.5220/0005912503200326. 167.
Martin,
P., Taal, A., Quevedo, F., Rogers, D., Evans, K., Jones, A., Stankovski, V., Taherizadeh,
S., Trnkoczy, J., Suciu, G., Zhao, Z.: Information Modelling and Semantic Linking for a
Software Workbench for Interactive, Time Critical and Self-Adaptive Cloud
Applications. In: 2016 30th International Conference on Advanced Information
Networking and Applications Workshops (WAINA). pp. 127–132. IEEE,
Crans-Montana, Switzerland (2016). https://doi.org/10.1109/WAINA.2016.38. 168.
Casale,
G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S., Stankovski, V., Symeonidis, A., Vlassiou,
V., Zafeiropoulos, A., Zhao, Z.:
Current and Future Challenges of Software Engineering for Services and
Applications. Procedia Computer Science. 97, 34–42 (2016). https://doi.org/10.1016/j.procs.2016.08.278. 169.
Zhao, Z., Taal, A., Jones, A., Taylor, I., Stankovski, V., Vega, I.G., Hidalgo, F.J., Suciu, G.,
Ulisses, A., Ferreira, P., Laat, C. de: A Software Workbench for Interactive,
Time Critical and Highly Self-Adaptive Cloud Applications (SWITCH). In: 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
pp. 1181–1184. IEEE, Shenzhen, China (2015). https://doi.org/10.1109/CCGrid.2015.73. 170.
Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor,
I., Stankovski, V., Vega, I.G., Suciu, G., Ulisses,
A., de Laat, C.: Developing and Operating Time Critical Applications in
Clouds: The State of the Art and the SWITCH Approach. Procedia Computer
Science. 68, 17–28 (2015). https://doi.org/10.1016/j.procs.2015.09.220. 171.
Zhao, Z., Martin, P., Grosso, P., Los, W., Laat, C. de,
Jeffrey, K., Hardisty, A., Vermeulen, A., Castelli, D., Legre, Y., Kutsch,
W.: Reference Model Guided System Design and Implementation for Interoperable
Environmental Research Infrastructures. In: 2015 IEEE 11th International
Conference on e-Science. pp. 551–556. IEEE, Munich, Germany (2015). https://doi.org/10.1109/eScience.2015.41. 172.
Mork,
R., Martin, P., Zhao, Z.: Contemporary
challenges for data-intensive scientific workflow management systems. In:
Proceedings of the 10th Workshop on Workflows in Support of Large-Scale
Science - WORKS ’15. pp. 1–11. ACM Press, Austin, Texas (2015). https://doi.org/10.1145/2822332.2822336. 173.
Martin,
P., Grosso, P., Magagna, B., Schentz, H., Chen, Y.,
Hardisty, A., Los, W., Jeffery, K., Laat, C. de, Zhao, Z.: Open Information Linking for Environmental Research
Infrastructures. In: 2015 IEEE 11th International Conference on e-Science.
pp. 513–520. IEEE, Munich, Germany (2015). https://doi.org/10.1109/eScience.2015.66. 174.
Jeferry, K., Kousiouris, G.,
Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis, I., Nesi, P., Suzic,
B., Zhao, Z.: Challenges Emerging
from Future Cloud Application Scenarios. Procedia Computer Science. 68,
227–237 (2015). https://doi.org/10.1016/j.procs.2015.09.238. 175.
Evans,
K., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P.,
Wang, J., Zhao, Z., Jones, A.,
Preece, A., Quevedo, F., Rogers, D., Spasić, I.,
Taylor, I., Stankovski, V., Taherizadeh,
S.: Dynamically reconfigurable workflows for time-critical applications. In:
Proceedings of the 10th Workshop on Workflows in Support of Large-Scale
Science - WORKS ’15. pp. 1–10. ACM Press, Austin, Texas (2015). https://doi.org/10.1145/2822332.2822339. 176.
Zhao, Z., Wibisono, A., Grosso, P., Los, W., De Laat, C.,
Chen, Y., Hardisty, A., Martin, P., Atkinson, M., Schentz,
H., Magagna, B.: Oeilm: A Semantic Linking
Framework For Environmental Research
Infrastructures. (2013). https://doi.org/10.5281/ZENODO.205781. 177.
Jiang,
W., Zhao, Z., Wibisono, A.,
Grosso, P., Laat, C. de: Dynamic Workflow Planning on Programmable
Infrastructure. In: 2013 IEEE Eighth International Conference on Networking,
Architecture and Storage. pp. 326–330. IEEE, Xi’an, Shaanxi, China (2013). https://doi.org/10.1109/NAS.2013.53. 178.
Jiang,
W., Zhao, Z., Laat, C. de: An
Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud
Computing. In: 2013 IEEE 9th International Conference on e-Science. pp.
369–372. IEEE, Beijing, China (2013). https://doi.org/10.1109/eScience.2013.31. 179.
Chen,
Y., Martin, P., Schentz, H., Magagna,
B., Zhao, Z., Hardisty, A., Preece, A., Atkinson, M.,
Huber, R., and Legre. R.: A common
reference model for environmental science research infrastructures. In
Proceedings of EnviroInfo2013, (2013). [Full text] 180.
Chen,
Y., Hardisty, A., Preece, A., Atkinson, M., Martin, P., Zhao,
Z., Schentz, H., Magagna,
B. and Legre. R., (2013) Analysis of Common Requirements
for Environmental Science Research Infrastructures. In Proceedings
of The International Symposium on Grids and Clouds (ISGC). [Full
text] 181.
Dumitru,
C., Zhao, Z., Grosso, P., de Laat,
C.: HybridFlow: Towards intelligent video delivery
and processing over hybrid infrastructures. In: 2013 International Conference
on Collaboration Technologies and Systems (CTS). pp. 473–478. IEEE, San
Diego, CA, USA (2013). https://doi.org/10.1109/CTS.2013.6567271. 182.
Zhu,
H., van der Veldt, K., Grosso, P., Zhao, Z., Liao, X., and
de Laat, C.: Energy aware Semantic
modelling in large scale infrastructure, International conference on
Green Com, France, (2012) [Fulltext]. 183.
Belloum, A.S.Z., Cushing, R., Koulouzis,
S., Korkhov, V., Vasunin,
D., Guevara-Masis, V., Zhao, Z., Bubak, M.: Support for Cooperative Experiments in
e-Science: From Scientific Workflows to Knowledge Sharing. In: Roterman-Konieczna, I. (ed.) Identification of Ligand
Binding Site and Protein-Protein Interaction Area. pp. 135–159. Springer
Netherlands, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5285-6_7. 184.
Zhao, Z., Ham, J. van der, Taal, A., Koning, R., Dumitru, C.,
Wibisono, A., Grosso, P., Laat, C. de: Planning Data Intensive Workflows on
Inter-domain Resources Using the Network Service Interface (NSI). In: 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis. pp.
150–156. IEEE, Salt Lake City, UT (2012). https://doi.org/10.1109/SC.Companion.2012.30. 185.
Zhao, Z., Grosso, P., de Laat, C.: OEIRM: An Open Distributed
Processing Based Interoperability Reference Model for e-Science. In: Park,
J.J., Zomaya, A., Yeo, S.-S., and Sahni, S. (eds.) Network and Parallel
Computing. pp. 437–444. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35606-3_52. 186.
Zhao, Z., Dumitru, C., Grosso, P., de Laat, C.: Network
Resource Control for Data Intensive Applications in Heterogeneous
Infrastructures. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. pp. 2069–2076. IEEE,
Shanghai, China (2012). https://doi.org/10.1109/IPDPSW.2012.243. 187.
Pavlov,
D., Soeurt, J., Grosso, P., Zhao, Z., Veldt, K. van der, Zhu, H., Laat, C. de: Towards Energy
Efficient Data Intensive Computing Using IEEE 802.3az. In: 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. pp. 806–810.
IEEE, Salt Lake City, UT (2012). https://doi.org/10.1109/SC.Companion.2012.112. 188.
Demchenko,
Y., Zhao, Z., Grosso, P.,
Wibisono, A., de Laat, C.: Addressing Big Data challenges for Scientific Data
Infrastructure. In: 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings. pp. 614–617. IEEE, Taipei, Taiwan (2012).
https://doi.org/10.1109/CloudCom.2012.6427494. 189.
Zhao, Z., Taal, A., Grosso, P., de Laat, C.: Resource
Discovery in Large Scale Network Infrastructure. In: 2011 IEEE Sixth
International Conference on Networking, Architecture, and Storage. pp.
186–190. IEEE, Dalian, China (2011). https://doi.org/10.1109/NAS.2011.43. 190.
Zhao, Z., Grosso, P., Koning, R., van der Ham, J., de Laat,
C.: An agent based planner for including network QoS
in scientific workflows. In: Proceedings of the International Multiconference
on Computer Science and Information Technology. pp. 231–238. IEEE, Wisla
(2010). https://doi.org/10.1109/IMCSIT.2010.5680060,
Best paper award. 191.
Zhao, Z., Grosso, P., Koning, R., van der Ham, J., de Laat,
C.: Network resource selection for data transfer processes in scientific
workflows. In: The 5th Workshop on Workflows in Support of Large-Scale
Science. pp. 1–6. IEEE, New Orleans, LA, USA (2010). https://doi.org/10.1109/WORKS.2010.5671840. 192.
Zhao, Z., Grosso, P., Koning, R., Ham, J., de Laat, C.: An
Architecture Including Network QoS in Scientific Workflows. In: 2010 Ninth
International Conference on Grid and Cloud Computing. pp. 104–109. IEEE,
Nanjing, China (2010). https://doi.org/10.1109/GCC.2010.32. 193.
Zhao, Z., Belloum, A., Bubak, M., Hertzberger, B.: Support for Cooperative Experiments in
VL-e: From Scientific Workflows to Knowledge Sharing. In: 2008 IEEE Fourth
International Conference on eScience. pp. 329–330. IEEE, Indianapolis, IN,
USA (2008). https://doi.org/10.1109/eScience.2008.120. 194.
Wibisono,
A., Zhao, Z., Belloum,
A., Bubak, M.: A Framework for Interactive Parameter Sweep Applications. In:
Bubak, M., van Albada, G.D., Dongarra, J., and
Sloot, P.M.A. (eds.) Computational Science – ICCS 2008. pp. 481–490. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_55. 195.
Wibisono,
A., Zhao, Z., Belloum,
A., Bubak, M.: A Framework for Interactive Parameter Sweep Applications. In:
2008 Eighth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID). pp. 703–703. IEEE, Lyon, France (2008). https://doi.org/10.1109/CCGRID.2008.111. 196.
Belloum, A., Zhao,
Z., Bubak, M.: International Workshop on Applications of Workflows in
Computational Science (AWCS 08). In: Bubak, M., van Albada,
G.D., Dongarra, J., and Sloot, P.M.A. (eds.) Computational Science – ICCS
2008. pp. 459–462. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_52. 197.
Zhao, Z., Belloum, A., De Laat, C.,
Adriaans, P., Hertzberger, B.: Using Jade agent
framework to prototype an e-Science workflow bus. In: Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ’07). pp. 655–660. IEEE, Rio de Janeiro, Brazil
(2007). https://doi.org/10.1109/CCGRID.2007.120. 198.
Zhao, Z., Belloum, A., de Laat, C.,
Adriaans, P., Hertzberger, B.: Distributed
execution of aggregated multi domain workflows using an agent framework. In:
2007 IEEE Congress on Services (Services 2007). pp. 183–190. IEEE, Salt Lake
City, UT, USA (2007). https://doi.org/10.1109/SERVICES.2007.30. 199.
Wibisono,
A., Vasyunin, D., Korkhov,
V., Zhao, Z., Belloum,
A., de Laat, C., Adriaans, P., Hertzberger, B.:
WS-VLAM: A GT4 Based Workflow Management System. In: Shi, Y., van Albada, G.D., Dongarra, J., and Sloot, P.M.A. (eds.)
Computational Science – ICCS 2007. pp. 191–198. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72588-6_34. 200.
Terpstra,
F., Zhao, Z., Mulder, W.,
Adriaans, P.: Towards a Formal Foundation for Aggregating Scientific
Workflows. In: Shi, Y., van Albada, G.D., Dongarra,
J., and Sloot, P.M.A. (eds.) Computational Science – ICCS 2007. pp. 216–219.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72588-6_38. 201.
Zhao, Z., Booms, S., Belloum, A.,
Laat, C., Hertzberger, B.: VLE-WFBus:
A Scientific Workflow Bus for Multi e-Science Domains. In: 2006 Second IEEE
International Conference on e-Science and Grid Computing (e-Science’06). pp.
11–11. IEEE, Amsterdam, The Netherlands (2006). https://doi.org/10.1109/E-SCIENCE.2006.261095. 202.
Zhao, Z., van Albada, D., Sloot,
P.: Rapid Prototyping of Complex Interactive Simulation Systems. In: 10th
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’05). pp. 366–375. IEEE, Shanghai, China (2005). https://doi.org/10.1109/ICECCS.2005.69. 203.
Zhao, Z., Belloum, A., Yakali, H., Sloot, P., Hertzberger,
B.: Dynamic Work.ow in a Grid Enabled Problem
Solving Environment. In: The Fifth International Conference on Computer and
Information Technology (CIT’05). pp. 339–345. IEEE, Shanghai, China (2005). https://doi.org/10.1109/CIT.2005.101. 204.
Zhao, Z., Belloum, A., Wibisono,
A., Terpstra, F., de Boer, P.T., Sloot, P., Hertzberger,
B.: Scientific workflow management: between generality and applicability. In:
Fifth International Conference on Quality Software (QSIC’05). pp. 357–364.
IEEE, Melbourne, Australia (2005). https://doi.org/10.1109/QSIC.2005.56. 205.
Zhao, Z., Belloum, A., Sloot, P., Hertzberger, B.: Agent technology and scientific workflow
management in an e-science environment. In: 17th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’05). pp. 5 pp. – 23.
IEEE, Hong Kong, China (2005). https://doi.org/10.1109/ICTAI.2005.29. 206.
Zhao, Z., Belloum, A., Sloot, P., Hertzberger, B.: Agent Technology and Generic Workflow
Management in an e-Science Environment. In: Zhuge, H. and Fox, G.C. (eds.)
Grid and Cooperative Computing - GCC 2005. pp. 480–485. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11590354_61. 207.
Zhao,
Z. (2004, december 09). An agent
based architecture for constructing Interactive Simulation Systems. UvA Universiteit van
Amsterdam. Promoter/co-promoter:
prof. dr. P.M.A. Sloot & dr. G.D. van Albada. [Link] 208.
Zhao, Z., van Albada, D., Sloot,
P.: Agent-Based Flow Control for HLA Components. SIMULATION. 81, 487–501
(2005). https://doi.org/10.1177/0037549705058060. 209. Zajac, K., Tirado-Ramos, A., Zhao, Z., Sloot, P., Bubak, M.: Grid Services for HLA-Based
Distributed Simulation Frameworks. In: Fernández Rivera, F., Bubak, M., Gómez
Tato, A., and Doallo, R. (eds.) Grid Computing. pp. 147–154.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24689-3_19. 210.
Zhao, Z., van Albada, G.D., Tirado-Ramos,
A., Zajac, K., Sloot, P.M.A.: ISS-Studio: A Prototype for a User-Friendly
Tool for Designing Interactive Experiments in Problem Solving Environments.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya,
A.Y., and Gorbachev, Y.E. (eds.) Computational Science — ICCS 2003. pp.
679–688. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-44860-8_70. 211.
Tirado-Ramos,
A., Zajac, K., Zhao, Z., Sloot,
P.M.A., van Albada, D., Bubak, M.: Experimental
Grid Access for Dynamic Discovery and Data Transfer in Distributed
Interactive Simulation Systems. In: Sloot, P.M.A., Abramson, D., Bogdanov,
A.V., Dongarra, J.J., Zomaya, A.Y., and Gorbachev, Y.E. (eds.) Computational
Science — ICCS 2003. pp. 284–292. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003). https://doi.org/10.1007/3-540-44860-8_29. 212.
Zhao, Z., Belleman, R.G., van Albada,
G.D., Sloot, P.M.A.: AG-IVE: An Agent Based Solution to Constructing
Interactive Simulation Systems. In: Sloot, P.M.A., Hoekstra, A.G., Tan,
C.J.K., and Dongarra, J.J. (eds.) Computational Science — ICCS 2002. pp.
693–703. Springer Berlin Heidelberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-46043-8_70. 213.
Zhao, Z., Belleman,
R.G., Albada, G.D. van & Sloot,
P.M.A. (2002). Reusability and Efficiency in Constructing
Interactive Simulation Systems. In
E.F. Deprettere, A.S.Z. Belloum, J.W.J. Heijnsdijk &
F. van der Stappen (Eds.), ASCI 2002, Proceedings
of the eighth annual conference of the Advanced School for Computing and
Imaging (pp. 268-275). Delft: ASCI. [Link] 214.
Zhao, Z., Belleman,
R.G., Albada, G.D. van & Sloot,
P.M.A. (2002). Scenario Switches and State Updates in an
Agent-based Solution to Constructing Interactive Simulation Systems. In Proceedings of the Communication Networks
and Distributed Systems Modeling and
Simulation Conference (CNDS 2002) (pp. 3-10). [Link] 215.
Zhao,
Z., Belleman R.
G., Albada G.D.and Sloot P.M.A.
(2001): System integration for
interactive simulation systems using intelligent agents, in
R.L. Lagendijk; J.W.J. Heijnsdijk; A.D. Pimentel and M.H.F. Wilkinson, editors,
Proceedings of the 7th annual conference of the Advanced School for Computing
and Imaging, pp. 399-406. ASCI, May 2001. ISBN 90-803086-6-8. [Link] 216.
Belleman,R.G., Zhao,Z., Albada G.D. van and Sloot P.M.A
(2000) Design considerations
for the construction of immersive dynamic exploration environments, in
L.J. van Vliet; J.W.J. Heijnsdijk;
T. Kielmann and P.M.W. Knijnenburg,
editors, ASCI 2000, Proceedings of the sixth annual conference of the
Advanced School for Computing and Imaging, pp. 195-201. ASCI, Delft, June
2000. ISBN 90-803086-5-x. [Link] Peer-reviewed abstracts and
posters 217.
Wijers, B.-C., Pelouze, G., Koulouzis, S., Greuell, K.
& Zhao, Z. Radar Aeroecology in the
cloud. A Virtual Lab for continental scale Aeroecological
analysis. https://meetingorganizer.copernicus.org/EGU25/EGU25-11500.html
(2025) doi:10.5194/egusphere-egu25-11500. 218.
Hienola, A., Bundke, U., Vermeulen, A., Adamaki,
A., Gutierez, M., Drago, F., Brus, M., Bailo, D., Dema, C., & Zhao, Z.
ENVRI-Hub Advancing Integrated Environmental Research and Policy. https://meetingorganizer.copernicus.org/EGU25/EGU25-2813.html
(2025) doi:10.5194/egusphere-egu25-2813. 219.
Pelouze, G., Koulouzis, S., Greuell, K., Soveizi, N. & Zhao,
Z. Notebook-as-a-VRE (NaaVRE): collaborative
virtual labs to build digital twins of ecosystems. https://meetingorganizer.copernicus.org/EGU25/EGU25-10262.html
(2025) doi:10.5194/egusphere-egu25-10262. 220.
Bundke,
U., Adamaki, A. Bailo, D., Brus, M., Dema, C., De
Nart, D., Drago, F., Gutierrez David, M., Hienola,
A., Petzold, A., Vermeulen, A., & Zhao, Z. The ENVRI-Hub:
Advancing Multidisciplinary Collaboration and FAIR Data Integration in
Environmental Research. https://meetingorganizer.copernicus.org/EGU25/EGU25-9099.html
(2025) doi:10.5194/egusphere-egu25-9099. 221.
Li,
N., Zhu, P., Gabriel Pelouze, G., Koulouzis, S., Zhao, Z., Zhao, Z.: Research Notebook
Retrieval with Explainable Query Reformulation. oral (2024). https://doi.org/10.5194/egusphere-egu24-19358
222.
Bundke,
U., Bailo, D., Carval, T., Cervone, L., De Nart, D., Dema, C., Ferrari, T.,
Petzold, A., Thijsse, P., Vermeulen, A., Zhao,
Z.: ENVRI-Hub-NEXT, the open-access platform of the environmental
sciences community in Europe. display (2024). https://doi.org/10.5194/egusphere-egu24-8465 223.
Pelouze, G., Koulouzis, S., Zhao,
Z.: Notebook-as-a-VRE (NaaVRE): From private
notebooks to a collaborative cloud virtual research environment. oral (2024).
https://doi.org/10.5194/egusphere-egu24-17978
224.
Petzold,
A., Bundke, U., Hienola, A., Laj, P., Lund Myhre,
C., Vermeulen, A., Adamaki, A., Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao,
Z., and Asmi, A. (2023): Opinion: New directions in atmospheric research
offered by research infrastructures combined with open and data-intensive
science, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1423 225.
Shi,
Y., Koulouzis, S., Bianchi, R., Timmermans, J.,
Kissling, W. D., and Zhao, Z. (2023): Generating geospatial data
products of ecosystem structure from LiDAR using Notebook-as-a-VRE (NaaVRE), EGU General Assembly 2023, Vienna, Austria,
24–28 Apr 2023, EGU23-11716, https://doi.org/10.5194/egusphere-egu23-11716,
2023. 226.
Petzold,
A., Bundke, U., Schleiermacher, C., Gomes, A. R., Seemeyer,
K., Adamaki, A., Vermeulen, A., Zhao, Z.,
Boulanger, D., Carval, T., and Hienola, A. (2023):
The ENVRI-Hub as a service for accelerating FAIRification
of the Environment Domain Research Infrastructures, EGU General Assembly
2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7708, https://doi.org/10.5194/egusphere-egu23-7708,
2023. 227.
Petzold,
A., Asmi, A., Gomes, R., Seemeyer, K., Adamaki, A., Vermeulen, A., Bailo, D., Jeffery, K.,
Glaves, H., Zhao, Z., Stocker, M., Hellstrom, M(2021).:
Creating ENVRI-hub, the Open-Access Platform of the Environmental Sciences
Community in Europe. 2021, IN53A-04. [2021AGUFMIN53A..04P] 228.
Alex
Boyko, Siamak Farshidi, Zhiming Zhao,
State-of-the-art instance matching methods for knowledge graphs, The
Sixteenth International Workshop on Ontology Matching (OM-2021), in the
context of 20th International Semantic Web Conference ISWC-2021, online [OA] 229.
Koulouzis, S., Shi, Y., Wan, Y., Bianchi, R., Kissling, D., Zhao,
Z.: Enabling LiDAR data processing as a service in a Jupyter
environment (2021). EGU General Assembly 2021, online, 19–30 Apr 2021,
EGU21-8294, https://doi.org/10.5194/egusphere-egu21-8294 230.
Petzold,
A., Asmi, A., Seemeyer, K., Adamaki,
A., Vermeulen, A., Bailo, D., Jeffery, K., Glaves, H., Zhao, Z.,
Stocker, M., Hellström, M.: Advancing the FAIRness
and Openness of Earth system science in Europe. pico
(2021). https://doi.org/10.5194/egusphere-egu21-8052 231.
Liao,
X., Goldfarb, D., Magagna, B., Stocker, M., Thijsse,
P., Schaap, D., Zhao, Z.: ENVRI knowledge base: A community knowledge
base for research, innovation and society. oral (2020). https://doi.org/10.5194/egusphere-egu2020-20708 232.
Zhao, Z., Martin, P., Koulouzis, S.: (2019)
Optimizing environmental data services on federated Cloud and
e-Infrastructures, EGU, April 2019 [2019EGUGA..21.3683Z] 233.
Koulouzis, S., Carval, T., Martin, P., Grenier, B., Chen, Y.,
Heikkinen, J., Zhao, Z.: Dynamic Optimization for Time-critical Data
Services: A Case Study in Euro-Argo Research Infrastructure. 20th EGU General Assembly, EGU2018,
Proceedings from the conference held 4-13 April,
2018 in Vienna, Austria, p.16012. [2018EGUGA..2016012K] 234.
Nieva
de la Hidalga, A., Hardisty, A.R., Magagna, B.,
Martin, P.W., Zhao, Z.: Use of the ENVRI Reference Model to Support the
Design of Environmental Research Infrastructures. 18552 (2018). [2018EGUGA..2018552N] 235.
Kutsch,
W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin,
Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.;
Atkinson, M. (2017) Data interoperability between European
Environmental Research Infrastructures and their contribution to global data
networks, AGU 2018, American Geophysical Union, Fall Meeting 2017, abstract
#IN44B-01. [2017AGUFMIN44B..01K] Technical report and
newsletters 236. Zhao, Z., Martin, P. Jeffery K., (2017) VRE in the
Data for Science Approach to Common Challenges in ENVRIPLUS, ERCIM, Newsletter, April 2017 237. Ghijsen, M., Ham, J. van
der, Grosso, P., Dumitru,
C., Zhu, H., Zhao, Z. & Laat, C. de (2013). A semantic-web approach for modeling computing
infrastructures.
(SNE technical report 2013-01). Amsterdam: Universiteit van
Amsterdam, System and Network Engineering. [Full
text] 238. Hertzberger, L.O., Belleman, R.G., Jansen, M.G., Zhao,
Z., Hooft, P. van, Belloum,
A.S.Z., Mirzadeh, N., Yakali,
H.H., Liere, R. van, Nuallain,
B.S., Verstoep, K., Groep, D.L.
& Bouwhuis, M.C. (2005). Recommendation to VLeIT: Scientific workflow management systems for
the PoC r1. (Internal report). Amsterdam: Informatics
Institute. Supervised PhD thesis 239. Hongyun
Liu (2024) Robust Resource Management for Time-Critical
Tasks in the Cloud-Edge Continuum, (ISBN: 979-88-9379-233-1) 240. Ruyue
Xin (2023) Towards effective performance diagnosis for distributed
applications, (ISBN: 978-94-6473-267-2) 241. Zeshun
Shi (2022) Enhancing Service-Level Agreements using Decentralized Auctions
and Witnesses, [ISBN: 978-94-6421-916-6] 242. Yang
Hu (2019) Resource Scheduling for Quality-Critical Applications on Cloud
Infrastructure, University of Amsterdam, [ISBN: 978-94-028-1713-3]. 243. Huan
Zhou (2019) Seamless Infrastructure Programming and Control for
Quality-critical Cloud Applications, [ISBN: 978-94-028-1727-0] In Chinese 244. Zhao, Z., Liao, X., Wang, X., Ruan, C.,
Zhu, Y., Feng, D. (2019), An
Reference Model approach for developing agriculture big data infrastructures,
Journal of East China Normal University (Natural Sc 2019 Vol.2019 (2): 77-96, [10.3969/j.issn.1000-5641.2019.02.009] 245. Demchenko, Y., Zhao, Z., Grosso,
P., Wibisono, A., de Laat, C., (2013) 科研信息化基础 设施的大数据挑战 (Big Data Challenges for e-Science
Infrastructure) China
Science and Technology Resources Review, Vol.45 No.1 30-35,40 Jan. 2013. ISSN
1674-1544 [10.3772/j.issn.1674-1544.2013.01.006] |
|
|
|
|
|
|
||
|
|
|
||
|
|
|
Update date: April 12, 2025