Unified Thread- and Data-Mapping for Multi-Threaded Multi-Phase Applications on SPM Many-Cores

Abstract

Scratchpad Memories (SPMs) are more scalable than caches as they offer better performance with lower power and area overheads. This scalability advocates their suitability as on-chip memory in many-cores. However, SPM many-cores delegate the responsibility of thread- and data-mapping to the software. The mapping is especially challenging in the case of multi-threaded multi-phase applications. Threads from these applications exhibit both inter- and intra-phase data-sharing patterns. These patterns intricately intertwine thread- and data- mapping across phases. The accompanying qualitative mapping is the key to extract application performance on SPM many-cores.State-of-the-art framework for SPM many-cores performs thread- and data-mapping independently. Furthermore, it can only operate with single-phase multi-threaded applications. We are the first to propose in this work, a unified thread- and data-mapping framework for NoC-based SPM many-cores when executing multi-threaded multi-phase applications. Experimental evaluations show, on average, 1.36x performance improvement compared to the state-of-the-art framework for multi-threaded multi-phase applications.

Publication
Design Automation and Test in Europe
Anuj Pathania
Anuj Pathania
Assistant Professor

Anuj Pathania is an Assistant Professor in the Parallel Computing Systems (PCS) group at the University of Amsterdam (UvA). His research focuses on the design of sustainable systems deployed in power-, thermal-, energy- and reliability-constrained environments.