Pareto-Optimal Power- and Cache-Aware Task Mapping for Many-Cores with Distributed Shared Last-Level Cache

Abstract

Two factors primarily affect performance of multi-threaded tasks on many-core processors with both shared and physically distributed Last-Level Cache (LLC): the power budget associated with a certain task mapping that aims to guarantee thermally safe operation and the non-uniform LLC access latency of threads running on different cores. Spatially distributing threads across the many-core increases the power budget, but unfortunately also increases the associated LLC latency. On the other side, mapping more threads to cores near the center of the many-core decreases the LLC latency, but unfortunately also decreases the power budget. Consequently, both metrics (LLC latency and power budget) cannot be simultaneously optimal, which leads to a Pareto-optimization that has formerly not been exploited. We are the first to present a run-time task mapping algorithm called PCMap that exploits this trade-off. Our approach results in up to 8.6% reduction in the average task response time accompanied by a reduction of up to 8.5% in the energy consumption compared to the state-of-the-art.

Publication
International Symposium on Embedded Multicore/Many-core Systems-on-Chip
Anuj Pathania
Anuj Pathania
Assistant Professor

Anuj Pathania is an Assistant Professor in the Parallel Computing Systems (PCS) group at the University of Amsterdam (UvA). His research focuses on the design of sustainable systems deployed in power-, thermal-, energy- and reliability-constrained environments.