3D-TTP: Efficient Transient Temperature-Aware Power Budgeting for 3D-Stacked Processor-Memory Systems


The heat produced during computation severely limits the performance of multi-/many-core processors. High-performance 3D-stacked processor-memory systems stack cores and main memory on a single die. However, 3D-stacked systems suffer more severe thermal issues than their non-stacked planar 2D counterparts. Consequently, the aggressive thermal throttling required for their thermally-safe operation limits the potential performance gains. Power budgeting is an effective thermal management technique that prevents thermal throttling in multi-/many-core processors by assigning a thermally-safe power budget to cores within the processors. State-of-the-art power budgeting techniques for 2D processors do not account for the vertical thermal coupling between the layers of the 3D-stacked system and will fail to prevent thermal throttling in them. Furthermore, estimating thermals for a 3D-stacked processor with power budgeting requires a finer-grained RC thermal model than non-stacked processors. This requirement inhibits the porting of existing power budgeting solutions for 2D processors to 3D-stacked processor-memory systems. This work is the first to present the linear algebra-based algorithmic time-invariant transformations required to enable power budgeting in 3D-stacked systems. Based on the transformations, we propose the first transient-temperature-aware power budgeting technique, 3D-TTP, for 3D-stacked systems. Detailed interval thermal simulations with the advanced CoMeT simulator designed for 3D-stacked systems also confirm no thermal violations with our 3D-TTP technique. 3D-TTP exhibits an average 11.41% speedup over the state-of-the-art reactive-based thermal management technique.

IEEE Computer Society Annual Symposium on VLSI
Anuj Pathania
Anuj Pathania
Assistant Professor

Anuj Pathania is an Assistant Professor in the Parallel Computing Systems (PCS) group at the University of Amsterdam (UvA). His research focuses on the design of sustainable systems deployed in power-, thermal-, energy- and reliability-constrained environments.