Dark Silicon Management: An Integrated and Coordinated Cross-Layer Approach

Abstract

This paper presents an integrated and coordinated cross-layer sensing and optimization flow for distributed dark silicon management for tiled heterogeneous manycores under a critical temperature constraint. We target some of the key challenges in dark silicon for manycores, such as: directly focusing on power density/temperature instead of considering simple per-chip power constraints, considering tiled heterogeneous architectures with different types of cores and accelerators, handling the large volumes of raw sensor information, and maintaining scalability. Our solution is separated into three abstraction layers: a sensing layer (involving hardware monitors and pre-processing), a dark silicon layer (that derives thermally-safe mappings and voltage/frequency settings), and an agent layer (used for selecting the parallelism of applications and thread-to-core mapping based on alternatives/constraints from the dark silicon layer).

Publication
Information Technology
Anuj Pathania
Anuj Pathania
Assistant Professor

Anuj Pathania is an Assistant Professor in the Parallel Computing Systems (PCS) group at the University of Amsterdam (UvA). His research focuses on the design of sustainable systems deployed in power-, thermal-, energy- and reliability-constrained environments.