Power-and Cache-Aware Task Mapping with Dynamic Power Budgeting for Many-Cores

Abstract

Two factors primarily affect the performance of multi-threaded tasks on many-core processors with logically-shared and physically-distributed Last-Level Cache (LLC): the LLC latencies of threads running on different cores and the per-core power budgets that aim to guarantee thermally safe operation. Two knobs affect these factors: First, the mapping of threads to cores affects both the LLC latencies and the power budgets. Second, dynamic power budgeting refines the power budgets during task execution. A mapping that spatially distributes threads across the many-core increases the power budgets, but unfortunately also increases the LLC latencies. Contrarily, mapping all threads near the center of the many-core minimizes the LLC latencies, but unfortunately also decreases the power budgets. Consequently, both metrics cannot be simultaneously optimal, which leads to a Pareto-optimization for task mapping that has formerly not been exploited. Dynamic power budgeting reallocates the power budgets according to the tasks’ execution phases. This results in a dynamically changing non-uniform power budget, which further increases the performance. We are the first to present a run-time algorithm PCGov combining task-agnostic task mapping and task-aware dynamic power budgeting for many-cores with shared distributed LLC. PCGov yields up to 21 percent lower response time and 13 percent lower energy consumption compared to the state-of-the-art, with a low overhead of less than 0.5 percent.

Publication
IEEE Transactions on Computers
Anuj Pathania
Anuj Pathania
Assistant Professor

Anuj Pathania is an Assistant Professor in the Parallel Computing Systems (PCS) group at the University of Amsterdam (UvA). His research focuses on the design of sustainable systems deployed in power-, thermal-, energy- and reliability-constrained environments.