[1] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Algebraic tools for system construction. In E. Clarke and D. Kozen, editors, Proceedings Logics of Programs, volume 164 of Lecture Notes in Computer Science, pages 34–45. Springer-Verlag, 1983. doi:10.1007/3-540-12896-4_353
[2] J. A. Bergstra and J. W. Klop. The algebra of recursively defined processes and the algebra of regular processes. In J. Paredaens, editor, Proceedings 11th ICALP, volume 172 of Lecture Notes in Computer Science, pages 82–95. Springer-Verlag, 1984. doi:10.1007/ 3-540-13345-3_7
[3] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Information and Control, 60(1–3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X
[4] J. A. Bergstra and J. V. Tucker. Top-down design and the algebra of communicating processes. Science of Computer Programming, 5(2):171–199, 1984. doi:10.1016/0167-6423(85)90010-3
[5] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction. Theoretical Computer Science, 37(1):77–121, 1985. doi:10.1016/0304-3975(85)90088-X
[6] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asynchronous communication mechanisms. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Proceedings Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science, pages 76–95. Springer-Verlag, 1985. doi:10.1007/3-540-15670-4_4
[7] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae, 9(2):127–168, 1986. Electronic version of preprint
[8] J. A. Bergstra and J. W. Klop. Algebra of communicating processes. In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proceedings Mathematics and Computer Science I, volume 1 of CWI Monograph, pages 89–138. North-Holland, 1986. Electronic version of preprint
[9] J. A. Bergstra and J. W. Klop. Process algebra: Specification and verification in bisimulation semantics. In M. Hazewinkel, J. K. Lenstra, and L. G. L. T. Meertens, editors, Proceedings Mathematics and Computer Science II, volume 4 of CWI Monograph, pages 61–94. North-Holland, 1986. Electronic version of preprint
[10] J. A. Bergstra and J. W. Klop. Verification of an alternating bit protocol by means of process algebra. In W. Bibel and K. P. Jantke, editors, Mathematical Methods of Specification and Synthesis of Software Systems, volume 215 of Lecture Notes in Computer Science, pages 9–23. Springer-Verlag, 1986. doi:10.1007/3-540-16444-8_1
[11] E. Kranakis. Approximating the projective model. In Mathematical Logic and its Applications, pages 273–282. Plenum Publishing Corporation, 1986. doi:10.1007/978-1-4613-0897-3_19
[12] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Conditional axioms and α∕β-calculus in process algebra. In M. Wirsing, editor, Formal Description of Programming Concepts III, pages 53–75. North-Holland, 1987. Electronic version of preprint
[13] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science, 51(1–2):129–176, 1987. doi:10.1016/0304-3975(87)90052-1
[14] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Ready trace semantics for concrete process algebra with the priority operator. Computer Journal, 30(6):498–506, 1987. doi:10.1093/comjnl/30.6.498
[15] J. C. M. Baeten and R. J. van Glabbeek. Another look at abstraction in process algebra. In Th. Ottmann, editor, Proceedings 14th ICALP, volume 267 of Lecture Notes in Computer Science, pages 84–94. Springer-Verlag, 1987. doi:10.1007/3-540-18088-5_8
[16] J. C. M. Baeten and R. J. van Glabbeek. Merge and termination in process algebra. In K. V. Nori, editor, Proceedings 7th Conference on Foundations of Software Technology and Theoretical Computer Science, volume 287 of Lecture Notes in Computer Science, pages 153–172. Springer-Verlag, 1987. doi:10.1007/3-540-18625-5_49
[17] J. A. Bergstra, J. W. Klop, and E.-R. Olderog. Failures without chaos: A new process semantics for fair abstraction. In Formal Description of Programming Concepts III, pages 77–103. North-Holland, 1987. Electronic version of preprint
[18] J. A. Bergstra and J. Tiuryn. Process algebra semantics for queues. Fundamenta Informaticae, 10:213–224, 1987. Electronic version of preprint
[19] E. Kranakis. Fixed points equations with parameters in the projective model. Information and Control, 75(3):264–288, 1987. doi:10. 1016/0890-5401(87)90003-4
[20] R. J. van Glabbeek. Bounded nondeterminism and the approximation induction principle in process algebra. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, STACS 87, volume 247 of Lecture Notes in Computer Science, pages 336–347. Springer-Verlag, 1987. doi:10.1007/BFb0039617
[21] R. J. van Glabbeek and F. W. Vaandrager. Petri net models for algebraic theories of concurrency. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors, Proceedings PARLE, Volume II, volume 259 of Lecture Notes in Computer Science, pages 224–242. Springer-Verlag, 1987. doi:10.1007/3-540-17945-3_13
[22] J. C. M. Baeten and J. A. Bergstra. Global renaming operators in concrete process algebra. Information and Computation, 78(3):205–245, 1988. doi:10.1016/0890-5401(88)90027-2
[23] J. A. Bergstra. ACP with signals. In J. Grabowski, P. Lescanne, and W. Wechler, editors, Algebraic and Logic Programming, volume 343 of Lecture Notes in Computer Science, pages 11–20. Springer-Verlag, 1988. doi:10.1007/3-540-50667-5_53
[24] J. A. Bergstra and J. W. Klop. A complete inference system for regular processes with silent moves. In F. R. Drake and J. K. Truss, editors, Proceeedings Logic Colloquium 1986, pages 21–81. North-Holland, 1988. doi:10.1016/S0049-237X(09)70651-2
[25] J. A. Bergstra, J. W. Klop, and E.-R. Olderog. Readies and failures in the algebra of communicating processes. SIAM Journal of Computing, 17(6):1134–1177, 1988. doi:10.1137/0217073
[26] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. An operational semantics for process algebra. In Mathematical Problems in Computation Theory, pages 47–81. Polish Scientific Publishers, 1989. doi:10.4064/ -21-1-47-81
[27] J. C. M. Baeten and R. J. van Glabbeek. Abstraction and empty process in process algebra. Fundamenta Informaticae, 12:221–241, 1989. Electronic version of preprint
[28] J. A. Bergstra and J. W. Klop. ACPτ: A universal axiom system for process specification. In M. Wirsing and J. A. Bergstra, editors, Algebraic Methods: Theory, Tools and Applications, volume 394 of Lecture Notes in Computer Science, pages 447–463. Springer-Verlag, 1989. doi:10.1007/BFb0015048
[29] J. A. Bergstra and J. W. Klop. Process theory based on bisimulation semantics. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in Computer Science, pages 50–122. Springer-Verlag, 1989. doi:10.1007/BFb0013021
[30] S. Mauw. An algebraic specification of process algebra, including two examples. In M. Wirsing and J. A. Bergstra, editors, Algebraic Methods: Theory, Tools and Applications, volume 394 of Lecture Notes in Computer Science, pages 507–554. Springer-Verlag, 1989. doi:10.1007/ BFb0015050
[31] S. Mauw and G. J. Veltink. An introduction to PSFd. In J. Diaz and F. Orejas, editors, TAPSOFT’89, volume 352 of Lecture Notes in Computer Science, pages 272–285. Springer-Verlag, 1989. doi:10.1007/ 3-540-50940-2_41
[32] S. Mauw and G. J. Veltink. A process specification formalism. Fundamenta Informaticae, 13(2):85–139, 1989.
[33] W. P. Weijland. The algebra of synchronous processes. Fundamenta Informaticae, 12:139–162, 1989. Electronic version of preprint
[34] J. C. M. Baeten and J. A. Bergstra. Process algebra with a zero object. In J. C. M. Baeten and J. W. Klop, editors, CONCUR’90, volume 458 of Lecture Notes in Computer Science, pages 83–98. Springer-Verlag, 1990. doi:10.1007/BFb0039053
[35] J. A. Bergstra. A process creation mechanism in process algebra. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 81–88. Cambridge University Press, Cambridge, 1990. doi:10.1017/ CBO9780511608841.006
[36] J. A. Bergstra and J. W. Klop. An introduction to process algebra. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 1–21. Cambridge University Press, Cambridge, 1990. doi:10.1017/ CBO9780511608841.002
[37] J. F. Groote. A new strategy for proving ω-completeness applied to process algebra. In J. C. M. Baeten and J. W. Klop, editors, CONCUR’90, volume 458 of Lecture Notes in Computer Science, pages 314–331. Springer-Verlag, 1990. doi:10.1007/BFb0039068
[38] J. F. Groote. Specification and verification of real time systems in ACP. In L. Logrippo, R. L. Probert, and H. Ural, editors, PSTV’90, pages 261–274. North-Holland, 1990. Electronic version of preprint
[39] L. Kossen and W. P. Weijland. Correctness proofs for systolic algorithms: Palindromes and sorting. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 89–125. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.007
[40] C. P. J. Koymans and J. C. Mulder. A modular approach to protocol verification using process algebra. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 261–306. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.012
[41] S. Mauw. Process algebra as a tool for the specification and verification of CIM-architectures. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 53–80. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.005
[42] J. C. Mulder. On the Amoebe protocol. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 147–171. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.009
[43] J. C. Mulder and W. P. Weijland. Verification of an algorithm for log-time sorting by square comparison. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 127–145. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.008
[44] E. R. Nieuwland. Proving mutual exclusion with process algebra. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 45–51. Cambridge University Press, Cambridge, 1990. doi:10.1017/ CBO9780511608841.004
[45] F. W. Vaandrager. Process algebra semantics of POOL. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 173–236. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841. 010
[46] F. W. Vaandrager. Some observations on redundancy in a context. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 237–260. Cambridge University Press, Cambridge, 1990. doi:10.1017/ CBO9780511608841.011
[47] F. W. Vaandrager. Two simple protocols. In J. C. M. Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical Computer Science, pages 23–44. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511608841.003
[48] W. P. Weijland. Verification of a systolic algorithm in process algebra. In K. McEvoy and J. V. Tucker, editors, Theoretical Foundations of VLSI Design, volume 10 of Cambridge Tracts in Theoretical Computer Science, pages 139–158. Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9780511569838.006
[49] G. J. Akkerman and J. C. M. Baeten. Term rewriting analysis in process algebra. CWI Quarterly, 4(4):257–267, 1991. Electronic version of preprint
[50] J. C. M. Baeten and J. A. Bergstra. Asynchronous communication in real space process algebra. In J. Vytopyl, editor, FTRTFT’91, volume 571 of Lecture Notes in Computer Science, pages 473–492. Springer-Verlag, 1991. doi:10.1007/3-540-55092-5_26
[51] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3(2):142–188, 1991. doi:10.1007/ BF01898401
[52] J. C. M. Baeten and J. A. Bergstra. Recursive process definitions with the state operator. Theoretical Computer Science, 82(2):285–302, 1991. doi:10.1016/0304-3975(91)90225-Q
[53] J. C. M. Baeten, J. A. Bergstra, S. Mauw, and G. J. Veltink. A process specification formalism based on static COLD. In J. A. Bergstra and L. M. G. Feijs, editors, Algebraic Methods II: Theory, Tools and Applications, volume 490 of Lecture Notes in Computer Science, pages 303–335. Springer-Verlag, 1991. doi:10.1007/3-540-53912-3_27
[54] A. S. Klusener. Completeness in real time process algebra. In J. C. M. Baeten and J. F. Groote, editors, CONCUR’91, volume 527 of Lecture Notes in Computer Science, pages 376–392. Springer-Verlag, 1991. doi:10.1007/3-540-54430-5_101
[55] S. Mauw and F. Wiedijk. Specification of the transit node in PSFd. In J. A. Bergstra and L. M. G. Feijs, editors, Algebraic Methods II: Theory, Tools and Applications, volume 490 of Lecture Notes in Computer Science, pages 341–361. Springer-Verlag, 1991. doi:10.1007/ 3-540-53912-3_28
[56] A. Ponse. Process expressions and Hoare’s logic: Showing an irreconcilability of context-free recursion with Scott’s induction rule. Information and Computation, 95(2):192–217, 1991. doi:10.1016/ 0890-5401(91)90044-3
[57] F. W. Vaandrager. On the relationship between process algebra and input/output automata. In LICS’91, pages 387–398. IEEE Computer Society Press, 1991. doi:10.1109/LICS.1991.151662
[58] J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra (extended abstract). In W. R. Cleaveland, editor, CONCUR’92, volume 630 of Lecture Notes in Computer Science, pages 401–420. Springer-Verlag, 1992. doi:10.1007/BFb0084806
[59] J. C. M. Baeten and J. A. Bergstra. Process algebra with signals and conditions. In M. Broy, editor, Programming and Mathematical Methods, volume F88 of NATO ASI Series, pages 273–323. Springer-Verlag, 1992. doi:10.1007/978-3-642-77572-713
[60] J. C. M. Baeten and J. A. Bergstra. The state operator in real time process algebra. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages 107–123. Springer-Verlag, 1992. doi:10.1007/BFb0031989
[61] J. C. M. Baeten and F. W. Vaandrager. An algebra for process creation. Acta Informatica, 29:303–334, 1992. doi:10.1007/BF01178776
[62] J. A. Bergstra and J. W. Klop. A convergence theorem in process algebra. In J. W. de Bakker and J. J. M. M. Rutten, editors, Ten Years of Concurrency Semantics, pages 164–195. World Scientific, 1992. Electronic version of preprint
[63] J. F. Groote. A short proof of the decidability of bisimulation for normed BPA-processes. Information Processing Letters, 42:167–171, 1992. doi:10.1016/0020-0190(92)90142-I
[64] A. S. Klusener. Abstraction in real time process algebra. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages 325–352. Springer-Verlag, 1992. doi:10.1007/BFb0031999
[65] A. S. Klusener. The silent step in time. In W. R. Cleaveland, editor, CONCUR’92, volume 630 of Lecture Notes in Computer Science, pages 421–435. Springer-Verlag, 1992. doi:10.1007/BFb0084807
[66] J. C. M. Baeten and J. A. Bergstra. Non interleaving process algebra. In E. Best, editor, CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 308–323. Springer-Verlag, 1993. doi:10.1007/ 3-540-57208-2_22
[67] J. C. M. Baeten and J. A. Bergstra. Real space process algebra. Formal Aspects of Computing, 5(6):481–529, 1993. doi:10.1007/ BF01211247
[68] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation equivalence for processes generating context-free languages. Journal of the ACM, 40(3):653–682, 1993. doi:10.1145/174130.174141
[69] W. J. Fokkink. An elimination theorem for regular behaviours with integration. In E. Best, editor, CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 432–446. Springer-Verlag, 1993. doi:10.1007/3-540-57208-2_30
[70] F. W. Vaandrager. Expressiveness results for process algebras. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Semantics: Foundations and Applications, volume 666 of Lecture Notes in Computer Science, pages 609–638. Springer-Verlag, 1993. doi:10. 1007/3-540-56596-5_49
[71] R. J. van Glabbeek. A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In A. M. Borzyszkowski and S. Sokolowski, editors, MFCS’93, volume 711 of Lecture Notes in Computer Science, pages 473–484. Springer-Verlag, 1993. doi:10.1007/3-540-57182-5_39
[72] R. J. van Glabbeek and F. W. Vaandrager. Modular specification of process algebras. Theoretical Computer Science, 113(2):293–348, 1993. doi:10.1016/0304-3975(93)90006-F
[73] G. J. Veltink. The PSF toolkit. Computer Networks and ISDN Systems, 25:875–898, 1993. doi:10.1016/0169-7552(93)90053-7
[74] J. C. M. Baeten and J. A. Bergstra. On sequential composition, action prefixes and process prefix. Formal Aspects of Computing, 6(3):250–268, 1994. doi:10.1007/BF01215407
[75] J. C. M. Baeten and J. A. Bergstra. Process algebra with partial choice. In B. Jonsson and J. Parrow, editors, CONCUR’94, volume 836 of Lecture Notes in Computer Science, pages 465–480. Springer-Verlag, 1994. doi:10.1007/978-3-540-48654-1_34
[76] J. C. M. Baeten, J. A. Bergstra, and R. N. Bol. A real time process logic. In D. M. Gabbay and H. J. Ohlbach, editors, ICTL 1994, volume 827 of Lecture Notes in Artificial Intelligence, pages 30–47. Springer-Verlag, 1994. doi:10.1007/BFb0013979
[77] J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with combinators. In E. Börger, Y. Gurevich, and K. Meinke, editors, CSL’93, volume 832 of Lecture Notes in Computer Science, pages 36–65. Springer-Verlag, 1994. doi:10.1007/BFb0049323
[78] J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. Computer Journal, 37(4):243–258, 1994. doi:10. 1093/comjnl/37.4.243
[79] J. A. Bergstra, A. Ponse, and J. J. van Wamel. Process algebra with backtracking. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency (Reflections and Perspectives), volume 803 of Lecture Notes in Computer Science, pages 46–91. Springer-Verlag, 1994. doi:10.1007/3-540-58043-3_17
[80] M. A. Bezem and J. F. Groote. A correctness proof of a one-bit sliding window protocol in μCRL. Computer Journal, 37(4):289–307, 1994. doi:10.1093/comjnl/37.4.289
[81] M. A. Bezem and J. F. Groote. Invariants in process algebra with data. In B. Jonsson and J. Parrow, editors, CONCUR’94, volume 836 of Lecture Notes in Computer Science, pages 401–416. Springer-Verlag, 1994. doi:10.1007/978-3-540-48654-1_30
[82] W. J. Fokkink. A complete equational axiomatization for prefix iteration. Information Processing Letters, 52(6):333–337, 1994. doi:10. 1016/0020-0190(94)00163-4
[83] W. J. Fokkink and H. Zantema. Basic process algebra with iteration: Completeness of its equational axioms. Computer Journal, 37(4):259–267, 1994. doi:10.1093/comjnl/37.4.259
[84] J. F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra. Information and Computation, 115(2):354–371, 1994. doi:10.1006/inco.1994.1101
[85] J. F. Groote and A. Ponse. Process algebra with guards: Combining Hoare logic with process algebra. Formal Aspects of Computing, 6(2):115–164, 1994. doi:10.1007/BF01221097
[86] J. F. Groote and A. Ponse. Proof theory for μCRL: A language for processes with data. In D. J. Andrews, J. F. Groote, and C. A. Middelburg, editors, Semantics of Specification Languages, Workshops in Computing Series, pages 232–251. Springer-Verlag, 1994. doi:10.1007/ 978-1-4471-3229-5_13
[87] H. P. Korver and J. Springintveld. A computer-checked verification of Milner’s scheduler. In M. Hagiya and J. C. Mitchell, editors, TACS’94, volume 789 of Lecture Notes in Computer Science, pages 161–178. Springer-Verlag, 1994. doi:10.1007/3-540-57887-0_95
[88] S. Mauw and H. Mulder. Regularity of BPA-systems is decidable. In B. Jonsson and J. Parrow, editors, CONCUR’94, volume 836 of Lecture Notes in Computer Science, pages 34–47. Springer-Verlag, 1994. doi:10.1007/978-3-540-48654-1_4
[89] A. Ponse. Process algebra and dynamic logic. In J. van Eijk and A. Visser, editors, Logic and Information Flow, pages 125–148. MIT Press, 1994. Electronic version of preprint
[90] M. P. A. Sellink. Verifying process algebra proofs in type theory. In D. J. Andrews, J. F. Groote, and C. A. Middelburg, editors, Semantics of Specification Languages, Workshops in Computing Series, pages 315–339. Springer-Verlag, 1994. doi:10.1007/978-1-4471-3229-5_18
[91] J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra with abstraction. In H. Reichel, editor, Fundamentals of Computation Theory, volume 965 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 1995. doi:10.1007/3-540-60249-6_38
[92] J. C. M. Baeten and J. A. Bergstra. Graph isomorphism models for non interleaving process algebra. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 299–318. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_13
[93] J. C. M. Baeten and J. A. Bergstra. Real time process algebra with infinitesimals. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 148–187. Springer-Verlag, 1995. doi:10. 1007/978-1-4471-2120-6_7
[94] J. C. M. Baeten, J. A. Bergstra, and S. A. Smolka. Axiomatizing probabilistic processes: ACP with generative probabilities. Information and Computation, 121:234–255, 1995. doi:10.1006/inco.1995.1135
[95] J. C. M. Baeten, J. A. Bergstra, and Gh. Ştefănescu. Process algebra with feedback. In A. Ponse, Y. Venema, and M. de Rijke, editors, Modal Logic and Process Algebra, pages 13–37. Stanford CSLI Publications, 1995. Electronic version of preprint
[96] J. C. M. Baeten and S. Mauw. Delayed choice: An operator for joining message sequence charts. In D. Hogrefe and S. Leue, editors, Formal Description Techniques VII, pages 340–354. Chapman and Hall, 1995. doi:10.1007/978-0-387-34878-0_27
[97] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume IV, pages 149–268. Oxford University Press, Oxford, 1995. Electronic version of preprint
[98] J. A. Bergstra and C. A. Middelburg. Process algebra semantics of φSDL. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1995, volume 95-14 of Computer Science Report, pages 309–346. Department of Mathematics and Computer Science, Eindhoven University of Technology, 1995. Electronic version of preprint
[99] J. O. Blanco. Definability with the state operator in process algebra. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 218–241. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_9
[100] J. O. Blanco. Normed BPP and BPA. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, pages 242–251. Springer-Verlag, 1995. doi:10.1007/ 978-1-4471-2120-6_10
[101] J. J. Brunekreef. Process specification in a UNITY format. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 319–337. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_14
[102] P. R. D’ Argenio and S. Mauw. Delayed choice for process algebra with abstraction. In I. Lee and S. A. Smolka, editors, CONCUR’95, volume 962 of Lecture Notes in Computer Science, pages 501–515. Springer-Verlag, 1995. doi:10.1007/3-540-60218-6_38
[103] W. J. Fokkink and A. S. Klusener. An effective axiomatization for real time ACP. Information and Computation, 122(2):286–299, 1995. doi:10.1006/inco.1995.1151
[104] J. F. Groote and H. Korver. A correctness proof of the bakery protocol in μCRL. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 63–86. Springer-Verlag, 1995. doi:10.1007/ 978-1-4471-2120-6_3
[105] J. F. Groote and A. Ponse. The syntax and semantics of μCRL. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_2
[106] J. F. Groote and S. F. M. van Vlijmen. A modal logic for μCRL. In A. Ponse, Y. Venema, and M. de Rijke, editors, Modal Logic and Process Algebra, pages 131–150. Stanford CSLI Publications, 1995.
[107] J. A. Hillebrand. The ABP and CABP – a comparison of performances in real time process algebra. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 124–147. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_6
[108] M. J. Koens and L. H. Oei. A real time μCRL specification of a system for traffic regulation at signalized intersections. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 252–279. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_11
[109] R. J. van Glabbeek. On the expressiveness of ACP. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 188–217. Springer-Verlag, 1995. doi:10.1007/978-1-4471-2120-6_8
[110] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic processes. Information and Computation, 121(1):59–80, 1995. doi:10.1006/inco.1995.1123
[111] J. J. van Wamel. Inductive proofs with sets, and some applications in process algebra. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1994, Workshops in Computing Series, pages 87–105. Springer-Verlag, 1995. doi:10.1007/ 978-1-4471-2120-6_4
[112] J. J. Vereijken. Fischer’s protocol in timed process algebra. In A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes 1995, volume 95-14 of Computer Science Report, pages 245–284. Department of Mathematics and Computer Science, Eindhoven University of Technology, 1995. Electronic version of preprint
[113] L. Aceto, W. J. Fokkink, R. J. van Glabbeek, and A. Ingólfsdóttir. Axiomatizing prefix iteration with silent steps. Information and Computation, 127(1):26–40, 1996. doi:10.1006/inco.1996.0047
[114] J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Formal Aspects of Computing, 8(2):188–208, 1996. doi:10.1007/ BF01214556
[115] J. A. Bergstra and P. Klint. The discrete time ToolBus (extended abstract). In M. Wirsing and M. Nivat, editors, AMAST’96, volume 1101 of Lecture Notes in Computer Science, pages 286–305. Springer-Verlag, 1996. doi:10.1007/BFb0014323
[116] W. J. Fokkink. On the completeness of the equations for the Kleene star in bisimulation. In M. Wirsing and M. Nivat, editors, AMAST’96, volume 1101 of Lecture Notes in Computer Science, pages 180–194. Springer-Verlag, 1996. doi:10.1007/BFb0014315
[117] J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theoretical Computer Science, 170(1–2):47–81, 1996. doi:10.1016/S0304-3975(96)80702-X
[118] J. F. Groote and J. van der Pol. A bounded retransmission protocol for large data packets. In M. Wirsing and M. Nivat, editors, AMAST’96, volume 1101 of Lecture Notes in Computer Science, pages 536–550. Springer-Verlag, 1996. doi:10.1007/BFb0014338
[119] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996. doi:10.1145/233551.233556
[120] J. C. M. Baeten and J. A. Bergstra. Bounded stacks, bags and queues. In A. Mazurkiewicz and J. Winkowski, editors, CONCUR’97, volume 1243 of Lecture Notes in Computer Science, pages 104–118. Springer-Verlag, 1997. doi:10.1007/3-540-63141-0_8
[121] J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra: Absolute time, relative time and parametric time. Fundamenta Informaticae, 29(1–2):51–76, 1997. doi:10.3233/FI-1997-291203
[122] J. C. M. Baeten and J. A. Bergstra. Process algebra with propositional signals. Theoretical Computer Science, 177(2):381–405, 1997. doi:10.1016/S0304-3975(96)00253-8
[123] J. A. Bergstra, J. A. Hillebrand, and A. Ponse. Grid protocols based on synchronous communication. Science of Computer Programming, 29(1–2):199–233, 1997. doi:10.1016/S0167-6423(96) 00035-4
[124] J. A. Bergstra, C. A. Middelburg, and Gh. Ştefănescu. Network algebra for asynchronous dataflow. International Journal of Computer Mathematics, 65(1–2):57–88, 1997. doi:10.1080/00207169708804599
[125] M. A. Bezem and A. Ponse. Two finite specifications of a queue. Theoretical Computer Science, 177(2):487–508, 1997. doi:10.1016/ S0304-3975(96)00257-5
[126] S. H. J. Bos and M. A. Reniers. The I2C-bus in discrete-time process algebra. Science of Computer Programming, 29(1–2):235–258, 1997. doi:10.1016/S0167-6423(96)00036-6
[127] W. J. Fokkink. Axiomatizations for the perpetual loop in process algebra. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th ICALP, volume 1256 of Lecture Notes in Computer Science, pages 571–581. Springer-Verlag, 1997. doi:10.1007/ 3-540-63165-8_212
[128] W. J. Fokkink and H. Zantema. Termination modulo equations by abstract commutation with an application to iteration. Theoretical Computer Science, 177(2):407–424, 1997. doi:10.1016/S0304-3975(96) 00254-X
[129] L. A. Fredlund, J. F. Groote, and H. P. Korver. Formal verification of a leader election protocol in process algebra. Theoretical Computer Science, 177(2):459–486, 1997. doi:10.1016/S0304-3975(96)00256-3
[130] J. J. van Wamel. Process algebra with language matching. Theoretical Computer Science, 177(2):425–458, 1997. doi:10.1016/ S0304-3975(97)88197-2
[131] J. L. M. Vrancken. The algebra of communicating processes with empty process. Theoretical Computer Science, 177(2):287–328, 1997. doi:10.1016/S0304-3975(96)00250-2
[132] J. C. M. Baeten and J. A. Bergstra. Deadlock behaviour in split and ST bisimulation. In I. Castellani and C. Palamidessi, editors, EXPRESS’98, volume 16 of Electronic Notes in Theoretical Computer Science, pages 101–114. Elsevier, 1998. doi:10.1016/S1571-0661(04) 00117-3
[133] J. A. Bergstra and P. Klint. The discrete time ToolBus – A software coordination architecture. Science of Computer Programming, 31(2–3):205–229, 1998. doi:10.1016/S0167-6423(97)00021-X
[134] J. A. Bergstra and A. Ponse. Bochvar-McCarthy logic and process algebra. Information Processing Letters, 39(4):95–103, 1998. doi:10. 1305/ndjfl/1039118863
[135] J. A. Bergstra and A. Ponse. Kleene’s three-valued logic and process algebra. Notre Dame Journal of Formal Logic, 67(2):464–484, 1998. doi:10.1016/S0020-0190(98)00083-0
[136] J. F. Groote and R. Mateescu. Verification of temporal properties of processes in a setting with data. In A. M. Haeberer, editor, AMAST’98, volume 1548 of Lecture Notes in Computer Science, pages 74–90. Springer-Verlag, 1998. doi:10.1007/3-540-49253-4_8
[137] J. F. Groote, F. Monin, and J. van der Pol. Checking verifications of protocols and distributed systems by computer. In D. Sangiorgi and R. de Simone, editors, CONCUR’98, volume 1466 of Lecture Notes in Computer Science, pages 629–658. Springer-Verlag, 1998. doi:10.1007/ BFb0055652
[138] H. P. Korver and A. Sellink. Example verifications using alphabet axioms. Formal Aspects of Computing, 10:43–58, 1998. doi:10.1007/ PL00003925
[139] H. P. Korver and A. Sellink. A formal axiomatization for alphabet reasoning with parametrized processes. Formal Aspects of Computing, 10:30–42, 1998. doi:10.1007/PL00003924
[140] C. Shankland and M. B. van der Zwaag. The tree identify protocol of IEEE 1394 in μCRL. Formal Aspects of Computing, 10(5–6):509–531, 1998. doi:10.1007/s001650050030
[141] S. Andova. Process algebra with probabilistic choice. In J. P. Katoen, editor, ARTS’99, volume 1601 of Lecture Notes in Computer Science, pages 111–129. Springer-Verlag, 1999. doi:10.1007/ 3-540-48778-6_7
[142] S. Andova. Time and probability in process algebra. In T. Rus, editor, AMAST 2000, volume 1816 of Lecture Notes in Computer Science, pages 323–338. Springer-Verlag, 2000. doi:10.1007/ 3-540-45499-3_24
[143] J. C. M. Baeten, J. A. Bergstra, and M. A. Reniers. Discrete time process algebra with silent step. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin Milner, pages 535–569. MIT Press, Cambridge, 2000.
[144] J. A. Bergstra and A. Ponse. Process algebra with four-valued logic. Journal of Applied Non-Classical Logics, 10(1):27–53, 2000. doi:10.1080/11663081.2000.10510987
[145] S. Andova and J. C. M. Baeten. Abstraction in probabilistic process algebra. In T. Margaria and Wang Yi, editors, TACAS 2001, volume 2031 of Lecture Notes in Computer Science, pages 204–219. Springer-Verlag, 2001. doi:10.1007/3-540-45319-9_15
[146] J. C. M. Baeten and A. A. Basten. Partial-order process algebra. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 769–872. Elsevier, Amsterdam, 2001. doi:10. 1016/B978-044482830-9/50031-X
[147] J. C. M. Baeten and C. A. Middelburg. Process algebra with timing: Real time and discrete time. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 627–684. Elsevier, Amsterdam, 2001. doi:10.1016/B978-044482830-9/50028-X
[148] J. C. M. Baeten and C. A. Middelburg. Real time process algebra with time-dependent conditions. Journal of Logic and Algebraic Programming, 48(1–2):1–37, 2001. doi:10.1016/S1567-8326(01) 00004-2
[149] J. A. Bergstra, W. J. Fokkink, and A. Ponse. Process algebra with recursive operations. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 333–389. Elsevier, Amsterdam, 2001. doi:10.1016/B978-044482830-9/50023-0
[150] J. A. Bergstra, C. A. Middelburg, and Y. S. Usenko. Discrete time process algebra and the semantics of SDL. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 1209–1268. Elsevier, Amsterdam, 2001. doi:10.1016/ B978-044482830-9/50036-9
[151] J. A. Bergstra and A. Ponse. Non-regular iterators in process algebra. Theoretical Computer Science, 269:203–229, 2001. doi:10.1016/ S0304-3975(00)00413-8
[152] J. A. Bergstra and A. Ponse. Process algebra and conditional composition. Information Processing Letters, 80:41–49, 2001. doi:10. 1016/S0020-0190(01)00216-2
[153] J. A. Bergstra and A. Ponse. Register-machine based processes. Journal of the ACM, 48(6):1207–1241, 2001. doi:10.1145/504794. 504799
[154] J. F. Groote, A. Ponse, and Y. S. Usenko. Linearization in parallel pCRL. Journal of Logic and Algebraic Programming, 48(1–2):39–70, 2001. doi:10.1016/S1567-8326(01)00005-4
[155] J. F. Groote and M. A. Reniers. Algebraic process verification. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 1151–1208. Elsevier, Amsterdam, 2001. doi:10. 1016/B978-044482830-9/50035-7
[156] J. F. Groote and J. Springintveld. Focus points and convergent process operators: A proof strategy for protocol verification. Journal of Logic and Algebraic Programming, 49:31–60, 2001. doi:10.1016/ S1567-8326(01)00010-8
[157] J. F. Groote and J. J. van Wamel. Analysis of three hybrid systems in timed μCRL. Science of Computer Programming, 39(2–3):215–247, 2001. doi:10.1016/S0167-6423(00)00010-1
[158] J. F. Groote and J. J. van Wamel. The parallel composition of uniform processes with data. Theoretical Computer Science, 266(1–2):631–652, 2001. doi:10.1016/S0304-3975(00)00324-8
[159] A. Ponse and Y. S. Usenko. Equivalence of recursive specifications in process algebra. Information Processing Letters, 80:59–65, 2001. doi:10.1016/S0020-0190(01)00218-6
[160] M. B. van der Zwaag. The cones and foci proof technique for timed transition systems. Information Processing Letters, 80:33–40, 2001. doi:10.1016/S0020-0190(01)00215-0
[161] J. F. Groote, M. A. Reniers, J. J. van Wamel, and M. B. van der Zwaag. Completeness of timed μCRL. Fundamenta Informaticae, 50(3–4):361–402, 2002. Electronic version
[162] C. A. Middelburg. Process algebra with nonstandard timing. Fundamenta Informaticae, 53(1):55–77, 2002. Electronic version
[163] Y. S. Usenko. State space generation for the HAVi leader election protocol. Science of Computer Programming, 43:1–33, 2002. doi:10. 1016/S0167-6423(01)00018-1
[164] J. C. M. Baeten. Embedding untimed into timed process algebra: The case for explicit termination. Mathematical Structures in Computer Science, 13:589–618, 2003. doi:10.1017/S0960129503004006
[165] J. A. Bergstra, A. Ponse, and M.B van der Zwaag. Branching time and orthogonal bisimulation equivalence. Theoretical Computer Science, 309:313–355, 2003. doi:10.1016/S0304-3975(03)00277-9
[166] C. A. Middelburg. Revisiting timing in process algebra. Journal of Logic and Algebraic Programming, 54(1–2):109–127, 2003. doi:10.1016/ S1567-8326(02)00029-2
[167] J. C. M. Baeten and M. A. Reniers. Timed process algebra (with a focus on explicit termination and relative timing). In M. Bernardo and F. Corradini, editors, SFM-RT 2004, volume 3185 of Lecture Notes in Computer Science, pages 59–97. Springer-Verlag, 2004. doi:10.1007/ 978-3-540-30080-9_3
[168] J. A. Bergstra and C. A. Middelburg. Located actions in process algebra with timing. Fundamenta Informaticae, 61(3–4):183–211, 2004. Electronic version
[169] T. A. C. Willemse. Embedding of hybrid automata in process algebra. In E. Boiten, J. Derrick, and G. Smith, editors, IFM 2004, volume 2999 of Lecture Notes in Computer Science, pages 343–362. Springer-Verlag, 2004. doi:10.1007/978-3-540-24756-2_19
[170] B. Badban, W. Fokkink, J. F. Groote, J. Pang, and J. van der Pol. Verification of a sliding window protocol in μCRL and PVS. Formal Aspects of Computing, 17:342–388, 2005. doi:10.1007/ s00165-005-0070-0
[171] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2–3):131–146, 2005. doi:10.1016/j.tcs.2004. 07.036
[172] J. C. M. Baeten and M. Bravetti. A ground-complete axiomatization of finite state processes in process algebra. In M. Abadi and L. de Alfaro, editors, CONCUR 2005, volume 3653 of Lecture Notes in Computer Science, pages 248–262. Springer-Verlag, 2005. doi:10.1007/11539452_21
[173] J. C. M. Baeten and F. Corradini. Regular expressions in process algebra. In LICS’05, pages 12–19. IEEE Computer Society Press, 2005. doi:10.1109/LICS.2005.43
[174] J. A. Bergstra and C. A. Middelburg. Model theory for process algebra. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and R. C. de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes in Computer Science, pages 445–495. Springer-Verlag, 2005. doi:10.1007/11601548_21
[175] J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems. Theoretical Computer Science, 335(2–3):215–280, 2005. doi:10. 1016/j.tcs.2004.04.019
[176] J. A. Bergstra and C. A. Middelburg. Strong splitting bisimulation equivalence. In J. L. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, CALCO 2005, volume 3629 of Lecture Notes in Computer Science, pages 83–97. Springer-Verlag, 2005. doi:10.1007/ 11548133_6
[177] P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra. Journal of Logic and Algebraic Programming, 62:191–245, 2005. doi:10. 1016/j.jlap.2004.02.001
[178] J. F. Groote, F. Monin, and J. van der Pol. A computer checked algebraic verification of a distributed summation algorithm. Formal Aspects of Computing, 17(1):19–37, 2005. doi:10.1007/ s00165-004-0052-7
[179] J. F. Groote and T. A. C. Willemse. Model-checking processes with data. Science of Computer Programming, 56:251–273, 2005. doi:10. 1016/j.scico.2004.08.002
[180] L. Aceto, W. J. Fokkink, A. Ingólfsdóttir, and S. Nain. Bisimilarity is not finitely based over BPA with interrupt. Theoretical Computer Science, 366:60–81, 2006. doi:10.1007/11548133_4
[181] S. Andova, J. C. M. Baeten, and T. A. C. Willemse. A complete axiomatisation of branching bisimulation for probabilistic systems with an application in protocol verification. In C. Baier and H. Hermanns, editors, CONCUR 2006, volume 4137 of Lecture Notes in Computer Science, pages 327–342. Springer-Verlag, 2006. doi:10.1007/11817949_ 22
[182] J. A. Bergstra and C. A. Middelburg. Continuity controlled hybrid automata. Journal of Logic and Algebraic Programming, 68(1–2):5–53, 2006. doi:10.1016/j.jlap.2005.10.002
[183] J. A. Bergstra and C. A. Middelburg. Splitting bisimulations and retrospective conditions. Information and Computation, 204(7):1083–1138, 2006. doi:10.1016/j.ic.2006.03.003
[184] J. A. Bergstra and C. A. Middelburg. Preferential choice and coordination conditions. Journal of Logic and Algebraic Programming, 70(2):172–200, 2007. doi:10.1016/j.jlap.2006.08.004
[185] K. L. Man and M. P. Schellekens. Analysis of a mixed-signal circuit in hybrid process algebra ACPhssrt. Engineering Letters, 15(2):Article 21, 2007. Electronic version
[186] A. Ponse and M. B. van der Zwaag. A generalization of ACP using Belnap’s logic. Journal of Logic and Algebraic Programming, 70(2):222–235, 2007. doi:10.1016/j.jlap.2006.08.006
[187] J. A. Bergstra and C. A. Middelburg. Parallel processes with implicit computational capital. Electronic Notes in Theoretical Computer Science, 209:55–81, 2008. doi:10.1016/j.entcs.2008.04. 004
[188] S. Andova and S. Georgievska. On compositionality, efficiency, and applicability of abstraction in probabilistic systems. In M. Nielsen et al, editor, SOFSEM 2009, volume 5404 of Lecture Notes in Computer Science, pages 67–78. Springer-Verlag, 2009. doi:10.1007/ 978-3-540-95891-8_10
[189] J. A. Bergstra and C. A. Middelburg. An interface group for process components. Fundamenta Informaticae, 99(4):355–382, 2010. doi:10.3233/FI-2010-254
[190] J. A. Bergstra and C. A. Middelburg. A process calculus with finitary comprehended terms. Theory of Computing Systems, 53(4):645–668, 2013. doi:10.1007/s00224-013-9468-x
[191] J. C. M. Baeten, S. P. Luttik, T. Muller, and P. J. A. van Tilburg. Expressiveness modulo bisimilarity of regular expressions with parallel composition. Mathematical Structures in Computer Science, 26(6):933–968, 2016. doi:10.1017/S0960129514000309
[192] J. A. Bergstra and C. A. Middelburg. Contradiction-tolerant process algebra with propositional signals. Fundamenta Informaticae, 153(1–2):29–55, 2017. doi:10.3233/FI-2017-1530
[193] J. A. Bergstra and C. A. Middelburg. Process algebra with strategic interleaving. Theory of Computing Systems, 63(3):488–505, 2019. doi:10.1007/s00224-018-9873-2
[194] C. A. Middelburg. Probabilistic process algebra and strategic interleaving. Scientific Annals of Computer Science, 30(2):205–243, 2020. doi:10.7561/SACS.2020.2.205
[195] J. A. Bergstra and C. A. Middelburg. Using Hoare logic in a process algebra setting. Fundamenta Informaticae, 179(4):321–344, 2021. doi:10.3233/FI-2021-2026
[196] C. A. Middelburg. Imperative process algebra with abstraction. Scientific Annals of Computer Science, 32(1):137–179, 2022. doi:10.7561/SACS.2022.1.137
[197] C. A. Middelburg. Imperative process algebra and models of parallel computation. Theory of Computing Systems, 68(3):529–570, 2024. doi:10.1007/s00224-024-10164-0
[198] C. A. Middelburg. Dormancy-aware timed branching bisimilarity, with an application to communication protocol analysis. Theoretical Computer Science, 1008: Article 114681, 2024. doi:10.1016/j.tcs.2024.114681