Image Processing and Computer Vision
2.0
Course Syllabus 2017-2018
Schedule 2017-2018
Lab Exercises 2017-2018
1. Installation
2. Python for IPCV
3. Histogram Equilization
4. Skin Color Detection
5. Warping and Estimation
6. Convolutions
7. Local Structure
8. Histogram of Oriented Gradients
9. Image Stitching using SIFT
10. Camera Calibration
11. Motion Tracking
Lecture Notes
Image Processing and Computer Vision
Docs
»
Lab Exercises 2017-2018
View page source
Lab Exercises 2017-2018
ΒΆ
1. Installation
1.1. OpenCV
1.2. Standard Images and Data Sets
1.2.1. Skin Color Data Set
1.2.2. Standard Images
2. Python for IPCV
2.1. Python for Image Processing
2.1.1. Contrast Stretching
2.1.2. Linear Filtering
3. Histogram Equilization
4. Skin Color Detection
5. Warping and Estimation
6. Convolutions
7. Local Structure
7.1. What you will learn
7.2. Coordinate Axes
7.3. Analytical Local Structure
7.4. Gaussian Convolution
7.5. Separable Gaussian Convolution
7.6. Gaussian Derivatives
7.7. Comparison of theory and practice
7.8. Canny Edge Detector
8. Histogram of Oriented Gradients
8.1. Step 1: Preprocessing
8.2. Step 2: Calculate the Gradient Images
8.3. Step 3: Calculate HOG in 8x8 Cells
8.4. Step 4: Block Normalization
8.5. Step 5: Calculate the HOG feature vector
8.6. Step 6: Visualizing the HOG
8.7. And Beyond
9. Image Stitching using SIFT
9.1. What you will learn
9.2. Introduction
9.3. Projective Transform
9.4. SIFT
9.5. Matching Descriptors
9.6. RANSAC
9.7. Stitching it all together
9.8. Report
10. Camera Calibration
10.1. What you will learn
10.2. Camera Calibration
11. Motion Tracking
11.1. Tracking an Object
11.1.1. Exercise 1
11.1.2. Exercise 2
11.2. Egomotion: Simulating an Optical Mouse
11.2.1. Exercise 3