Under submission:

  • B. ten Cate, V. Dalmau, and J. Opršal (under submission). Right-Adjoints for Datalog Programs, and Homomorphism Dualities over Restricted Classes. (arxiv).
  • B. ten Cate and R. Koudijs (under submission). Characterising Modal Formulas with Examples. (arxiv).
  • B. ten Cate and J. Comer (under submission). Craig Interpolation for Decidable First-Order Fragments (arxiv).

2024:

  • B. ten Cate, V. Dalmau, Ph. Kolaitis, W. Wu (2024). When do homomorphism counts help in query algorithms? To appear in Proceedings of ICDT 2024. (arxiv).
  • B. ten Cate, M. Funk, J. Ch. Jung, and C. Lutz (2024). On the Non-Efficient PAC Learnability of Conjunctive Queries. Information Processsing Letters 183: 106431. (arxiv).

2023:

  • B. ten Cate, M. Funk, J. Ch. Jung, and C. Lutz (2023). SAT-Based PAC Learning of Description Logic Concepts. Proceedings of IJCAI 2023. (arxiv). 🥇Distinguished Paper Award
  • B. ten Cate, V. Dalmau, M. Funk, and C. Lutz (2023). Extremal Fitting Problems for Conjunctive Queries. Proceedings of PODS 2023 (arxiv). 🥇Best Paper Award
  • B. ten Cate and J. Comer (2023). Craig Interpolation for Guarded Fragments. Presentation at the LICS Workshop on the Decision Problem in First-Order Logic (DPFO 2023) (arxiv).
  • B. ten Cate, M. Funk, J. Ch. Jung, and C. Lutz. SAT-Based PAC Learning of Description Logic Concepts (extended abstract). Description Logic Workshop 2023.
  • B. Bogaerts, B. ten Cate, B. McLean, and J. Van den Bussche. Preservation theorems for Tarski’s relation algebra. Presentation at DaLí 2023. (arxiv).

2022:

  • B. ten Cate and V. Dalmau (2022). Conjunctive Queries: Unique Characterizations and Exact Learnability. ACM Transactions on Database Systems 47(4): 14:1 – 14:41. (arxiv).
  • J. van Benthem, B. ten Cate, and R. Koudijs (2022). Local Dependence and Guarding. Proceedings of AIML 2022: 135-154 (arxiv).
  • B. ten Cate and R. Koudijs (2022). Characterising Modal Formulas with Examples. Short presentation at AIML 2022 (arxiv).
  • B. ten Cate (2022). Lyndon Interpolation for Modal Logic via Type Elimination Sequences. ILLC Technical Report X-2022-01.

2021:

For older publications, see DBLP or Google Scholar.