Vakcode OWIN 5122MAST6Y
Studielast 6 ECTS
Leerdoelen Introduction to the theory and
a little practice of Bayesian statistics for parameters in
function spaces
Inhoud A Bayesian statistical procedure
consists of specifiying a prior probability distribution
for the unknown parameter, viewing the likelihood of the
statistical model as giving the conditional distribution
of the data given the parameter, and next updating the
prior distribution to the conditional distribution of the
parameter given the data, i.e. the posterior distribution.
In this course we shall be interested in the
'nonparametric' situation that the parameter is (possibly)
a function, or another infinite-dimensional object. Then
both prior and posterior are probabiity distributions on a
function space. One example of a prior is the distribution
of a stochastic process, for instance a Dirichlet or
Gaussian process. We shall study examples of prior
distributions (their definition, existence and some
properties), and study the properties of the resulting
posterior distributions. For the latter we adopt the
'frequentist framework', in which it is assumed that the
data are generated according to a given parameter, and are
usually concerned with the question whether the posterior
is able to reconstruct this parameter, for instance if the
amount of data would increase indefinitely.
Aanbevolen voorkennis Integratietheorie
of Kansrekening
Aanmelden Opgave tijdens de hiervoor
vastgestelde inschrijfperiode via https://www.sis.uva.nl
voor aanvang van het semester is verplicht. Zie voor meer
informatie de A-Z lijst van de opleidingspagina onder vak-
en tentamenaanmelding.
Onderwijsvorm Lectures and some exercises
Studiemateriaal Lecture
Notes 'Nonparametric Bayesian Statistics', (B.
Kleijn, A. van der Vaart, J. van Zanten, 2012); Supplement
`Functional Analysis'; Presentation
AiO-school Hilversum 2016 (B. Kleijn, 2016, 111 pp.)
Toetsvorm Homework assignments Set
I Set
II Set
III Set
IV
|