Making the website

It will be glorious, stay tuned!

Ugh, since I'm working with some old setup, have to use html5 with some basic php, so no fancy content management here. Trying to make it look fancy anyways...

7th Jun 2019; last edit 17th Jun 2019 by Oliver
tags: website

On the arXiv

Recent posts

Relativistic plasma dynamics


With numerical simulations of accreting compact objects, we study the transport of angular momentum and magnetic field, the ejection of relativistic jets and model horizon scale structure observed by the Event Horizon Telescope.

Pulsar Wind Nebulae

PWN are unique laboratories to investigate relativistic plasma. Among other things, they teach us about fluid instabilities, relativistic shocks, magnetic dissipation, particle acceleration and turbulent processes.

Radiative signatures

By modeling the non-thermal radiation emitted from astrophysical plasma, we extract important source parameters and understand particle energetization in a regime impossible to study in the laboratory.

Computational methods

The main tools of my research

Black Hole Accretion Code [BHAC]

Build upon the MPI-AMRVAC framework, the Black Hole Accretion Code solves the equations of general relativistic magnetohydrodynamics (GRMHD). Its modular design allows to simulate not only Einstein gravity, but also Black Holes in arbitrary metric theories of gravity and other compact objects. BHAC is the workhorse GRMHD-code for the blackholecam collaboration and provides source models for the Event Horizon Telescope Collaboration.

Adaptive Mesh Refinement Versatile Advection Code [MPI-AMRVAC]

With a current focus on solar- and non-relativistic astrophysical applications, MPI-AMRVAC offers a wide range of advanced features for the solution of (quasi-) conservation laws. Adaptive grids can be employed in cartesian, cylindrical and (stretched) spherical geometries. The code has been modernized recently and the documentation is frequently updated.