Image Processing and Computer Vision
2.0
  • Course Syllabus 2016-2017
  • Schedule 2016-2017
  • Lab Exercises 2016-2017
    • 1. Installation
    • 2. Histogram Equilization
    • 3. Skin Color Detection
    • 4. Warping and Estimation
    • 5. Convolutions
    • 6. Local Structure
    • 7. Histogram of Oriented Gradients
    • 8. Image Stitching using SIFT
    • 9. Camera Calibration
    • 10. Motion Tracking
  • Lecture Notes
Image Processing and Computer Vision
  • Docs »
  • Lab Exercises 2016-2017
  • View page source

Lab Exercises 2016-2017ΒΆ

  • 1. Installation
    • 1.1. OpenCV
    • 1.2. Standard Images and Data Sets
      • 1.2.1. Skin Color Data Set
      • 1.2.2. Standard Images
  • 2. Histogram Equilization
  • 3. Skin Color Detection
  • 4. Warping and Estimation
  • 5. Convolutions
  • 6. Local Structure
    • 6.1. What you will learn
    • 6.2. Coordinate Axes
    • 6.3. Analytical Local Structure
    • 6.4. Gaussian Convolution
    • 6.5. Separable Gaussian Convolution
    • 6.6. Gaussian Derivatives
    • 6.7. Comparison of theory and practice
    • 6.8. Canny Edge Detector
  • 7. Histogram of Oriented Gradients
    • 7.1. Step 1: Preprocessing
    • 7.2. Step 2: Calculate the Gradient Images
    • 7.3. Step 3: Calculate HOG in 8x8 Cells
    • 7.4. Step 4: Block Normalization
    • 7.5. Step 5: Calculate the HOG feature vector
    • 7.6. Step 6: Visualizing the HOG
    • 7.7. And Beyond
  • 8. Image Stitching using SIFT
    • 8.1. What you will learn
    • 8.2. Introduction
    • 8.3. Projective Transform
    • 8.4. SIFT
    • 8.5. Matching Descriptors
    • 8.6. RANSAC
    • 8.7. Stitching it all together
    • 8.8. Report
  • 9. Camera Calibration
    • 9.1. What you will learn
    • 9.2. Camera Calibration
  • 10. Motion Tracking
    • 10.1. Tracking an Object
      • 10.1.1. Exercise 1
      • 10.1.2. Exercise 2
    • 10.2. Egomotion: Simulating an Optical Mouse
      • 10.2.1. Exercise 3
Next Previous

© Copyright 2017, Rein van den Boomgaard.

Built with Sphinx using a theme provided by Read the Docs.