A new proof of the McKinsey-Tarski Theorem.
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill.* Submitted, July 2017.*

A new game equivalence and its modal logic.
Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist.* Proceedings of TARK 2017. To appear. *

Quotient dynamics: the logic of abstraction.
Alexandru Batag, Nick Bezhanishvili, Julia Ilin, Aybuke Ozgun.* Proceedings of LORI VI. To appear.*

A propositional dynamic logic for instantial neighborhood models.
Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist.* Proceedings of LORI VI. To appear. *

A simple propositional calculus for compact Hausdorff spaces.
Guram Bezhanishvili, Nick Bezhanishvili, Thomas Santoli, Yde Venema.* Submitted, May 2017.*

Tarski's theorem on intuitionistic logic, for polyhedra.
Nick Bezhanishvili, Vincenzo Marra, Daniel McNeill, Andrea Pedrini.* Submitted, January 2017.*

Subframization and stabilization for superintuitionistic logics.
Guram Bezhanishvili, Nick Bezhanishvili, Julia Ilin.* Submitted, October 2016.*

Tychonoff HED-spaces and Zemanian extensions of S4.3.
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill.* Submitted, October 2016.*

Stable modal logics.
Guram Bezhanishvili, Nick Bezhanishvili, Julia Ilin.* Submitted, February 2016.*

The topological theory of full belief.
Alexandru Batag, Nick Bezhanishvili, Aybuke Ozgun, Sonja Smets.* Submitted, December 2015.*

35. Krull dimension in modal logic.
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill.* To appear in Journal of Symbolic Logic.*

34. One-step Heyting algebras and hypersequent calculi with the
bounded proof property. Nick Bezhanishvili, Silvio Ghilardi, Frederik Lauridsen.* To appear in Journal of Logic and Computation.*

33. Stable formulas in intuitionistic logic.
Nick Bezhanishvili and Dick de Jongh. * To appear in Notre Dame Journal of Formal Logic. *

32. A bimodal perspective on possibility semantics.
Johan van Benthem, Nick Bezhanishvili, Wesley H. Holliday.* Journal of Logic and Computation, 27 (5), pp. 1353-1389, 2017.*

31. Canonical formulas for k-potent commutative, integral residuated lattices.
Nick Bezhanishvili, Nick Galatos, Luca Spada.* Algebra Universalis, 77(3), pp. 321-343, 2017.*

30. Sahlqvist preservation for topological fixed-point logic. Nick Bezhanishvili and Sumit Sourabh.* Journal of Logic and Computation, 27(3), pp. 679-703, 2017.*

29. Irreducible equivalence relations, Gleason spaces, and de Vries duality.
Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde Venema.* Applied Categorical Structures, 25(3), pp. 381-401, 2017.*

28. Instantial neighbourhood logic.
Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist, Junhua Yu.* Review of Symbolic Logic, 10(1), pp. 116-144, 2017. *

27. Locally finite reducts of Heyting algebras and canonical formulas.
Guram Bezhanishvili and Nick Bezhanishvili. * Notre Dame Journal of Formal Logic, 58(1), pp. 21-44, 2017.*

26. Cofinal stable logics.
Guram Bezhanishvili, Nick Bezhanishvili, Julia Ilin.* Studia Logica, 104(6), pp. 1287-1317, 2016*

25. Admissible bases via stable canonical rules.
Nick Bezhanishvili, David Gabelaia, Silvio Ghilardi, Mamuka Jibladze.* Studia Logica, 104(2), pp. 317-341, 2016*

24. Stable canonical rules.
Guram Bezhanishvili, Nick Bezhanishvili and Rosalie Iemhoff.* Journal of Symbolic Logic, 81(01), pp. 284-315, 2016.*

23. S4.3 and hereditarily extremally disconnected spaces.
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill.* Georgian Mathematical Journal, 22(4), pp. 469-475, 2015.*

22. Modal operators on compact regular frames and de Vries algebras.
Guram Bezhanishvili, Nick Bezhanishvili, and John Harding. * Applied Categorical Structures, 23(3), pp. 365-379, 2015*.

21. Modal compact Hausdorff spaces.
Guram Bezhanishvili, Nick Bezhanishvili, and John Harding. * Journal of Logic and Computation, 25(1), pp. 1-35, 2015*.

20. The bounded proof property via step algebras and step frames.
Nick Bezhanishvili and Silvio Ghilardi. * Annals of Pure and Applied Logic, 165 (12), pp. 1832-1863, 2014*

19. Canonical formulas for wK4.
Guram Bezhanishvili and Nick Bezhanishvili. * Review of Symbolic Logic,
vol.4, pp. 731-762, 2012.*

18. Preservation of Sahlqvist fixed point equations in completions of relativized fixed point Boolean algebras with operators.
Nick Bezhanishvili and Ian Hodkinson. *Algebra Universalis, vol. 68, pp. 43-56, 2012.*

17. Sahlqvist theorem for modal fixed point logic.
Nick Bezhanishvili and Ian Hodkinson, * Theoretical Computer Science, vol. 424, pp. 1-19, 2012.*

16. Sahlqvist correspondence for modal mu-calculus.
Johan van Benthem, Nick Bezhanishvili, Ian Hodkinson, *Studia Logica, vol. 100, pp. 31-60, 2012. *

15. Extendible formulas in two variables in intuitionistic logic.
Nick Bezhanishvili and Dick de Jongh, *Studia Logica, vol. 100, pp. 61-89, 2012. *

14. Finitely generated
free Heyting algebras via Birkhoff duality and coalgebra.
Nick Bezhanishvili and Mai Gehrke. *Logical Methods in Computer Science, vol. (2:9), pp. 1-24, 2011*.

13. An algebraic approach to canonical formulas: Modal case.
Guram Bezhanishvili and Nick Bezhanishvili. *Studia Logica, vol. 99, pp. 337-369, 2011. *

12. Vietoris bisimulations. Nick Bezhanishvili,
Gaelle Fontaine, Yde Venema.* Journal of Logic and Computation, vol. 20, number 5, pp. 1017-1040, 2010*.

11. Bitopological duality for distributive
lattices and Heyting algebras. Guram Bezhanishvili, Nick Bezhanishvili,
David Gabelaia, Alexander Kurz.* Mathematical Structures in Computer Science, Vol. 20, Issue 03, pp. 359-393, 2010*.

10. An algebraic approach to canonical
formulas: Intuitionistic case. Guram Bezhanishvili and Nick Bezhanishvili.* Review of Symbolic Logic, vol 2, number 3, pp.
517-549, 2009*.

9. Profinite Heyting algebras. Guram Bezhanishvili and Nick Bezhanishvili.*
Order, vol. 25 (3), pp. 211-223, 2008*.

8. Frame based formulas
for intermediate logics. Nick Bezhanishvili.* Studia Logica, vol. 90, pp. 139-159, 2008*.

7. The Kuznetsov-Gerciu and Rieger-Nishimura
logics: The boundaries of the finite model property. Guram Bezhanishvili, Nick Bezhanishvili,
Dick de Jongh.* Logic and Logical Philosophy, vol. 17, pp. 73-110, 2008*.

6. Transfer results for hybrid logic
Part I: the case without the satisfaction operators.
Nick Bezhanishvili and Balder ten Cate. *Journal of Logic and
Computation, 16, pp. 177-197,
2006*.

5. All normal extensions of S5-squared
are finitely axiomatizable. Nick Bezhanishvili and Ian Hodkinson.
*Studia Logica, vol. 78, pp. 443-457, 2004*.

4. Varieties of two dimensional
cylindric algebras. Part II. Nick Bezhanishvili.
*Algebra Universalis, vol. 51, pp. 177-206, 2004*.

3. All proper
normal extensions of S5-square have the
polynomial size model property. Nick Bezhanishvili and Maarten Marx.
*Studia Logica, vol. 73, pp. 367-382, 2003*.

2. Varieties of two dimensional
cylindric algebras Part I: Diagonal-free case.
Nick Bezhanishvili. *Algebra Universalis, vol. 48, pp. 11-42, 2002*.

1. Pseudomonadic algebras as algebraic
models of doxastic modal logic. Nick Bezhanishvili. *Mathematical Logic Quarterly, vol. 48, issue 4, pp. 624-636, 2002*.

13. Universal models for the positive fragment of
intuitionistic logic. Nick Bezhanishvili, Dick de Jongh, Apostolos Tzimoulis, Zhiguang Zhao.*
11th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2015, Revised Selected Papers, Hansen, H.H., Murray, S.E., Sadrzadeh, M., Zeevat, H. (Eds.), Lecture Notes in Computer Science, pp. 229-250, 2017.*

12. The topology of full and weak belief.
Alexandru Baltag, Nick Bezhanishvili, Aybuke Ozgun, Sonja Smets. *
11th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2015. Revised Selected Papers, Hansen, H.H., Murray, S.E., Sadrzadeh, M., Zeevat, H. (Eds.), Lecture Notes in Computer Science,
pp. 205-228, 2017.*

11. Games for topological fixpoint logic.
Nick Bezhanishvili and Clemens Kupke.* Proceedings of the Seventh International Symposium on Games, Automata,
Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September 2016, pp. 46-60, 2016.*

10. Justified belief and the topology of evidence.
Alexandru Baltag, Nick Bezhanishvili, Aybuke Ozgun, Sonja Smets.* Proceedings of the 23rd International Workshop on Logic, Language, Information, and Computation, WoLLIC 2016, Vaananen, J., Hirvonen, A., de Queiroz, R. (Eds.),
Lecture Notes in Computer Science 9803, Springer, pp. 83-103, 2016.*

9. Duality and universal models for the
meet-implication fragment of IPC.
Nick Bezhanishvili, Dion Coumans, Sam van Gool, and Dick de Jongh. *
10th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2013, Gudauri, Georgia, September 23-27, 2013. Revised Selected Papers,
Aher, M., Hole, D., Jerabek, E., Kupke, C. (Eds.), pp. 97-116, 2015.*

8. Multiple-conclusion rules, hypersequents syntax and step frames.
Nick Bezhanishvili and Silvio Ghilardi. * In Proceedings of Advances in Modal Logic (AiML) 2014, R. Gore, B. Kooi, and A. Kurucz (Eds.), College Publications, pp. 54-61, 2014.* Full version is available
here.

7. The topology of belief, belief revision and defeasible knowledge.
Alexandru Baltag, Nick Bezhanishvili, Aybuke Ozgun, Sonja Smets. * In Logic, Rationality, and Interaction, Proceedings of LORI 4, Grossi, D., Roy, O. and Huang, H. (Eds.),
Lecture Notes in Computer Science 8196, Springer, pp. 27-40, 2013. *

6. Bounded proofs and step frames.
Nick Bezhanishvili and Silvio Ghilardi. * In Automated Reasoning with Analytic Tableaux and Related Methods,
Proceedings of Tableaux 2013, Galmiche, D. and Larchey-Wendling, D. (Eds.), Lecture Notes in Artificial Intelligence 8123, Springer, pp. 44-58, 2013.*

5. Minimization via Duality. Nick Bezhanishvili, Clemens Kupke,
and Prakash Panangaden.* L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 191--205. Springer, Heidelberg, 2012.*

4. Free Heyting Algebras: Revisited. Nick Bezhanishvili
and Mai Gehrke.* CALCO'09, LNCS 5728, pp. 251-266, 2009*.

3. Free modal algebras: A coalgebraic perspective.
Nick Bezhanishvili and Alexander Kurz.* CALCO'07, LNCS 4624, pp. 143-157, 2007*.

2. Distributive lattices
with quantifier: Topological representation.
Nick Bezhanishvili.
*Proceedings of ESSLLI'99 Student Session, 1999*.

1. Pseudomonadic algebras.
Nick Bezhanishvili.
*Proceedings of ESSLLI'96 Student Session, 1996*.

4. Changing a semantics: opportunism or courage?
Hijnal Andreka, Johan van Benthem, Nick Bezhanishvili, Istvan Nemeti.* The Life and Work of Leon Henkin, Birkhauser, pp. 307 - 337, 2014.*

3. Structures for epistemic logic. Nick Bezhanishvili and Wiebe van der Hoek.*
To appear in Logical and Informational Dynamics, A. Baltag and S. Smets (Eds.), a volume in honour of Johan van Benthem, Trends in Logic, Springer, pp. 339 - 381, 2014.*

2. Free modal algebras revisited: the step-by-step method.
Nick Bezhanishvili, Silvio Ghilardi, and Mamuka Jibladze. *
In Leo Esakia on Duality in Modal and Intuitionistic Logics, G. Bezhanishvili (Ed.) Trends in Logic, Springer, pp. 43-62, 2014.*

1. Varieties of two-dimensional cylindric algebras. Nick Bezhanishvili.* In
Cylindric-like Algebras and Algebraic Logic, H. Andreka, M. Ferenczi, I. Nemeti (Eds.), Bolyai Society Mathematical Studies, Springer. pp. 37-59, 2013.*

2. An algebraic approach to filtrations for superintuitionistic logics.
Guram Bezhanishvili and Nick Bezhanishvili.* Liber Amicorum Albert Visser, Tributes Series, Volume 30, College Publications, pp. 47-56, 2016.*

1. De Jongh's characterization
of intuitionistic propositional calculus. Nick Bezhanishvili.
*Liber Amicorum Dick de Jongh*, 2004.

2. Lectures on Logic and Computation.
Nick Bezhanishvili and Valentin Goranko (Eds.),* ESSLLI 2010 Copenhagen, Denmark, August 2010,
ESSLLI 2011 Ljubljana, Slovenia, August 2011. Selected Courses/Lectures notes, Lecture Notes in Computer Science, Vol. 7388, 2012.
*

1. Logic, Language, and Computation.
Nick Bezhanishvili, Sebastian Loebner, Kerstin Schwabe, Luca Spada (Eds.),*
8th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2009, Bakuriani, Georgia, September 2009,
Revised Selected Papers, Lecture Notes in Artificial Intelligence, Vol. 6618, 2011.*

Lattices of Intermediate and Cylindric Modal Logics.
Nick Bezhanishvili. *ILLC, University of Amsterdam, 2006*.

Intuitionistic Logic. Nick Bezhanishvili
and Dick de Jongh.* ESSLLI'05 Course Notes*, 2005.