Artificial intelligence & Information retrieval

Month: April 2019

Using process mining for understanding the structure of interaction processes

Svitlana Vakulenko explains how we have recently used process mining techniques to understand the structure of interaction processes, which will in turn help us to improve information-seeking dialogue systems. We extract a new model of information-seeking dialogues, QRFA, for Query, Request, Feedback, Answer. The QRFA model better reflects conversation flows observed in real information-seeking conversations than models proposed previously. QRFA allows us to identify malfunctioning in dialogue system transcripts as deviations from the expected conversation flow described by the model via conformance analysis.

Read the full post.

Investeer in kennisbasis AI of word een toeschouwer

In een opiniestuk voor NRC Handelsblad en NRC Next beargumenteer ik dat artificiële intelligentie ons leven hoe dan ook zal veranderen en dat Nederland voor de keuze staat om vol mee te doen in de ontwikkeling van AI en het spel mee te bepalen, of om de bank te blijven zitten. Wie niet actief meedoet, heeft geen invloed – niet op het spel en al helemaal niet op de spelregels. Investeer in de AI-kennisbasis, investeer in talent. Kom van de bank!

Het hele stuk is hier te vinden.

Learning to answer questions by taking broader contexts into account

Mostafa Dehghani has posted an explanation of our recent work on TraCRNet (“tracker net”) to learn how to answer questions from multiple, possible long documents. TraCRNet uses the universal transformer and is able to go beyond understanding a set of input documents separately and combine their information in multiple steps. TraCRNet is highly parallellizable and far more robust against noisy input than previous proposals for addressing the question answering task.

See this page for the full post.

© 2022 Maarten de Rijke

Theme by Anders NorenUp ↑