Artificial intelligence & Information retrieval

Month: June 2014

KDD 2014 paper on personalized search result diversification online

Our KDD 2014 paper “Personalized search result diversification via structure learning” by Shangsong Liang, Zhaochun Ren and Maarten de Rijke is available online now.

This paper is concerned with the problem of personalized diversification of search results, with the goal of enhancing the performance of both plain diversification and plain personalization algorithms. In previous work, the problem has mainly been tackled by means of unsupervised learning. To further enhance the performance, we propose a supervised learning strategy. Specifically, we set up a structured learning framework for conducting supervised personalized diversification, in which we add features extracted directly from the tokens of documents and those utilized by unsupervised personalized diversification algorithms, and, importantly, those generated from our proposed user-interest latent Dirichlet topic model. Based on our proposed topic model whether a document can cater to a user’s interest can be estimated in our learning strategy. We also define two constraints in our structured learning framework to ensure that search results are both diversified and consistent with a user’s interest. We conduct experiments on an open personalized diversification dataset and find that our supervised learning strategy outperforms unsupervised personalized diversification methods as well as other plain personalization and plain diversification methods.

Coling 2014 paper on temporal evidence classification online

Our Coling 2014 paper “Prior-informed distant supervision for temporal evidence classification” by Ridho Reinanda and Maarten de Rijke is available online now.

Temporal evidence classification, i.e., finding associations between temporal expressions and relations expressed in text, is an important part of temporal relation extraction. To capture the variations found in this setting, we employ a distant supervision approach, modeling the task as multi-class text classification. There are two main challenges with distant supervision: (1) noise generated by incorrect heuristic labeling, and (2) distribution mismatch between the target and distant supervision examples. We are particularly interested in addressing the second problem and propose a sampling approach to handle the distribution mismatch. Our prior-informed distant supervision approach improves over basic distant supervision and outperforms a purely supervised approach when evaluated on TAC-KBP data, both on classification and end-to-end metrics.

Now playing: The Durutti Column — At First Sight

ECAI 2014 paper on detecting the reputation polarity of microblog posts online

Our ECAI paper “Detecting the reputation polarity of microblog posts” by Cristina Garbacea, Manos Tsagkias and Maarten de Rijke is available online now.

We address the task of detecting the reputation polarity of social media updates, that is, deciding whether the content of an update has positive or negative implications for the reputation of a given entity. Typical approaches to this task include sentiment lexicons and linguistic features. However, they fall short in the social media domain because of its unedited and noisy nature, and, more importantly, because reputation polarity is not only encoded in sentiment-bearing words but it is also embedded in other word usage. To this end, automatic methods for extracting discriminative features for reputation polarity detection can play a role. We propose a data-driven, supervised approach for extracting textual features, which we use to train a reputation polarity classifier. Experiments on the RepLab 2013 collection show that our model outperforms the state-of-the-art method based on sentiment analysis by 20% accuracy.

Now playing: Nils Petter Molvaer — Blue Fandango

© 2022 Maarten de Rijke

Theme by Anders NorenUp ↑