Our Coling 2014 paper “Prior-informed distant supervision for temporal evidence classification” by Ridho Reinanda and Maarten de Rijke is available online now.

Temporal evidence classification, i.e., finding associations between temporal expressions and relations expressed in text, is an important part of temporal relation extraction. To capture the variations found in this setting, we employ a distant supervision approach, modeling the task as multi-class text classification. There are two main challenges with distant supervision: (1) noise generated by incorrect heuristic labeling, and (2) distribution mismatch between the target and distant supervision examples. We are particularly interested in addressing the second problem and propose a sampling approach to handle the distribution mismatch. Our prior-informed distant supervision approach improves over basic distant supervision and outperforms a purely supervised approach when evaluated on TAC-KBP data, both on classification and end-to-end metrics.

Now playing: The Durutti Column — At First Sight