Our KDD 2014 paper “Personalized search result diversification via structure learning” by Shangsong Liang, Zhaochun Ren and Maarten de Rijke is available online now.
This paper is concerned with the problem of personalized diversification of search results, with the goal of enhancing the performance of both plain diversification and plain personalization algorithms. In previous work, the problem has mainly been tackled by means of unsupervised learning. To further enhance the performance, we propose a supervised learning strategy. Specifically, we set up a structured learning framework for conducting supervised personalized diversification, in which we add features extracted directly from the tokens of documents and those utilized by unsupervised personalized diversification algorithms, and, importantly, those generated from our proposed user-interest latent Dirichlet topic model. Based on our proposed topic model whether a document can cater to a user’s interest can be estimated in our learning strategy. We also define two constraints in our structured learning framework to ensure that search results are both diversified and consistent with a user’s interest. We conduct experiments on an open personalized diversification dataset and find that our supervised learning strategy outperforms unsupervised personalized diversification methods as well as other plain personalization and plain diversification methods.