Attentive Encoder-based Extractive Text Summarization by Chong Feng, Fei Cai, Honghui Chen, and Maarten de Rijke is available online now at this location.

In previous work on text summarization, encoder-decoder architectures and attention mechanisms have both been widely used. Attention-based encoder-decoder approaches typically focus on taking the sentences preceding a given sentence in a document into account for document representation, failing to capture the relationships between a sentence and sentences that follow it in a document in the encoder. We propose an attentive encoder-based summarization (AES) model to generate article summaries. AES can generate a rich document representation by considering both the global information of a document and the relationships of sentences in the document. A unidirectional recurrent neural network (RNN) and a bidirectional RNN are considered to construct the encoders, giving rise to unidirectional attentive encoder-based summarization (Uni-AES) and bidirectional attentive encoder-based summarization (Bi-AES), respectively. Our experimental results show that Bi-AES outperforms Uni-AES. We obtain substantial improvements over a relevant start-of-the-art baseline.

The paper will be presented at CIKM 2018 in October 2018.