Our SIGIR 2014 paper “Fusion helps diversification” by Shangsong Liang, Zhaochun Ren and Maarten de Rijke is available online now.

A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance in terms of diversity metrics, we examine the impact of standard data fusion methods on result diversification. We take the output of a set of rankers, optimized for diversity or not, and find that data fusion can significantly improve state-of-the art diversification methods. We also introduce a new data fusion method, called diversified data fusion, which infers latent topics of a query using topic modeling, without leveraging outside information. Our experiments show that data fusion methods can enhance the performance of diversification and DDF significantly outperforms existing data fusion methods in terms of diversity metrics.