4.2.2. \(\ZT\)-Transform Properties¶
Time Domain |
Z-domain |
---|---|
Synthesis (Inverse Z=Transform)
\[x[n] = \frac{1}{2\pi j}\oint_C X(z)z^{n-1}dz\]
|
Analysis (Z-Transform)
\[X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}\]
|
Complex Conjugate
\[x[n]^\ast\]
|
\[X^\ast(z^\ast)\]
|
Real Signal
\[x[n]\in\setR\]
|
\[X(z^\star) = X^\star(z)\]
|
Time Shift
\[x[n-n_0]\]
|
‘Phase’ factor
\[z^{-n_0} X(z)\]
|
Time difference
\[x[n] - x[n-1]\]
|
\[(1-z^{-1}) X(z)\]
|
Convolution
\[x[n] \ast y[n]\]
|
Multiplication
\[X(z) Y(z)\]
|
The properties in the above table are easy to prove. Some proofs are given below.
Complex Conjugate
Let calculate the Z-transform of \(x[n]^\ast\):
\[\begin{split}\sum_{n=-\infty}^{\infty} x[n]^\ast z^{-n} &=
\sum_{n=-\infty}^{\infty} \left(x[n] (z^{-n})^\ast \right)^\ast \\
&= \left(\sum_{n=-\infty}^{\infty} x[n] (z^{-n})^\ast \right)^\ast \\
&= \left(\sum_{n=-\infty}^{\infty} x[n] (z^\ast)^{-1} \right)^\ast \\
&= \left( X(z^\ast) \right)^\ast = X^\ast(z^\ast)\end{split}\]
Time Shift
The Z-transform of \(x[n-n_0]\) is given by
\[\begin{split}\sum_{m=-\infty}^{\infty} x[n-n_0] z^{-n} &= \sum_{k=-\infty}^{\infty} x[k] z^{-(k+n_0)}\\
&= \sum_{k=-\infty}^{\infty} x[k] z^{-k} z^{-n_0}\\
&= z^{-n_0} \sum_{k=-\infty}^{\infty} x[k] z^{-k}\\
&= z^{-n_0} X(z)\end{split}\]
Convolution Property
The definition of the convolution is:
\[x[n] \ast y[n] = \sum_{m=-\infty}^{\infty} x[n-m] y[m]\]
Its Z-transform is:
\[\begin{split}\sum_{n=-\infty}^{\infty} \left(x[n]\ast y[n]\right)z^{-n} &=
\sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} x[n-m] y[m]\right) z^{-n}\\
&= \sum_{m=-\infty}^{\infty} y[m] \sum_{n=-\infty}^{\infty} x[n-m] z^{-n}\\\end{split}\]
In the last summation we recognize the Z-transform of the shifted signal \(x\) so:
\[\begin{split}\sum_{n=-\infty}^{\infty} \left(x[n]\ast y[n]\right)z^{-n} &=
\sum_{m=-\infty}^{\infty} y[m] z^{-m} X(z)\\
&= X(z) Y(z)\end{split}\]
Summarizing:
\[x[n]\ast y[n] \ZTright X(z) Y(z)\]