Mary Ellen Rudin and my children Marije (l) and Josine (r) in 1992
Click here to download

Papers 1976 -- ????

1976

  1. J. van Mill, A note on Wallman compactifications, Nw. Arch. Wisk., 24 (1976), 168-172.
  2. J. van Mill, Compactifications in which the collection of multiple points is Lindelof semi-stratifiable, Proc. Kon. Ned. Akad. Wet. A., 79 (1976), 349-356.
  3. J. van Mill, Recent results on superextensions, Proc. Fourth Prague Top. Symp., 4 (1976), 279-283.

1977

  1. J. van Mill, A countable space no compactification of which is supercompact, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 25 (1977), 1129-1132.
  2. J. van Mill, Every Hausdorff compactification of a locally compact separable space is a GA-compactification, Can. J. Math., 24 (1977), 125-131.
  3. J. van Mill, Relations between βX - X and a certain subspace of λX, Math. Z., 156 (1977), 187-302.
  4. J. van Mill, Supercompactness and Wallman spaces, MC Tracts, 1977, pp. 1-238.

1978

  1. P. C. Baayen, J. van Mill, Compactifications of locally compact spaces with zero-dimensional remainder, Top. Appl., 9 (1978), 125-129.
  2. E. K. van Douwen, J. van Mill, Parovicenko's characterization of βω-ω implies CH, Proc. Amer. Math. Soc., 72 (1978), 539-541.
  3. J. van Mill, A pseudo-interior of λI, Comp. Math., 36 (1978), 75-82.
  4. J. van Mill, C. F. Mills, On the character of supercompact spaces, Top. Proc., 3 (1978), 227-236.
  5. J. van Mill, M. van de Vel, Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. Akad. Wet. A., 82 (1978), 76-90.
  6. J. van Mill, M. van de Vel, Path connectedness, contractibility, and LC-properties of superextensions, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 26 (1978), 261-269.
  7. J. van Mill, E. Wattel, An external characterization of spaces that admit binary normal subbases, Amer. J. Math., 100 (1978), 987-994.
  8. J. van Mill, E. Wattel, Souslin dendrons, Proc. Amer. Math. Soc., 72 (1978), 545-555.

1979

  1. M Hušek, J van Mill, CF Mills, Some very small continua, Top. Structures 2 P. C. Baayen and J. van Mill, eds., Amsterdam, Math. Centre Tracts 115, (1979), pp. 147-151.
  2. J van Mill, A simple observation concerning the existence of non-limit points in small compact F-spaces, Top. Structures 2 P.C. Baayen and J. van Mill, eds., Amsterdam, Math. Centre Tracts 115 (1979), pp. 167-168.
  3. J van Mill, Extenders from βX - X to βX, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 27 (1979), 117-121.
  4. J van Mill, Not every K1-embedded subspace is K0-embedded, Can. J. Math., 31 (1979), 818-823.
  5. J van Mill, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, Fund. Math., 103 (1979), 151-175.
  6. J van Mill, Weak P-points in compact F-spaces, Top. Proc., 4 (1979), 609-628.
  7. J van Mill, CF Mills, Closed Gδ-subsets of supercompact Hausdorff spaces, Proc. Kon. Akad. Wet. A., 82 (1979), 155-162.
  8. J van Mill, A Schrijver, Subbase characterizations of compact topological spaces, Top. Appl., 10 (1979), 183-201.
  9. J van Mill, A Schrijver, Superextensions which are Hilbert cubes, Per. Math. Hung., 10 (1979), 15-24.
  10. J van Mill, M van de Vel, On an internal property of Absolute Retracts, Top. Proc., 4 (1979), 193-200.
  11. J van Mill, M van de Vel, On superextensions and hyperspaces, Top. Structures 2 P.C. Baayen and J. van Mill, eds., Amsterdam, Math. Centre Tracts 115 (1979), pp. 169-180.
  12. J van Mill, J Vermeer, Wallman compactifications and the Continuum Hypothesis, Top. Structures 2 P. C. Baayen and J. van Mill, eds., Amsterdam, Math. Centre Tracts 115 (1979), pp. 181-185.
  13. J van Mill, E Wattel, Dendrons, Top. Structures 2 P. C. Baayen and J. van Mill, eds., Amsterdam, Math. Centre Tracts 115 (1979), pp. 59-81.
  14. CF Mills, J van Mill, A nonsupercompact continuous image of a supercompact space, Houston J. Math., 5 (1979), 241-247.

1980

  1. M. G. Bell, J. van Mill, The compactness number of a compact topological space I, Fund. Math., 106 (1980), 163-173.
  2. E. K. van Douwen, J. van Mill, Subspaces of basically disconnected spaces or quotients of countably complete Boolean Algebras, Trans. Amer. Math. Soc., 259 (1980), 121-127.
  3. A. Dow, J. van Mill, On nowhere dense ccc P-sets, Proc. Amer. Math. Soc., 80 (1980), 697-700.
  4. K. Kunen, J. van Mill, C. F. Mills, On nowhere dense closed P-sets, Proc. Amer. Math. Soc., 78 (1980), 119-123.
  5. J. van Mill, A Peano continuum homeomorphic to its own square but not to its countable infinite product, Proc. Amer. Math. Soc., 80 (1980), 703-705.
  6. J. van Mill, Superextensions of metrizable continua are Hilbert cubes, Fund. Math., 107 (1980), 201-224.
  7. J. van Mill, When Uκ can be mapped onto Uω, Proc. Amer. Math. Soc., 80 (1980), 701-702.
  8. J. van Mill, C. F. Mills, A boojum and other snarks, Proc. Kon. Ned. Akad. Wet. A., 42 (1980), 419-424.
  9. J. van Mill, C. F. Mills, A topological property enjoyed by near points but not by large points, Top. Appl., 11 (1980), 199-209.

1981

  1. E. K. van Douwen, J. van Mill, βω-ω is not first order homogeneous, Proc. Amer. Math. Soc., 81 (1981), 503-504.
  2. I. Juhasz, J. van Mill, Countably compact spaces all countable subsets of which are scattered, Comm. Math. Univ. Car., 22 (1981), 851-855.
  3. G. Kozlowski, J. van Mill, J. J. Walsh, AR-maps obtained from cell-like maps, Proc. Amer. Math. Soc., 82 (1981), 299-302.
  4. J. van Mill, A counterexample in ANR theory, Top. Appl., 12 (1981), 315-320.
  5. J. van Mill, A rigid space X for which XxX is homogeneous; an application of infinite-dimensional topology,, Proc. Amer. Math. Soc., 83 (1981), 597-600.
  6. J. van Mill, Characterization of some zero-dimensional separable metric spaces, Trans. Amer. Math. Soc., 264 (1981), 205-215.
  7. J. van Mill, M. van de Vel, Subbases, convex sets, and hyperspaces, Pacific J. Math., 92 (1981), 385-402.
  8. J. van Mill, E. Wattel, Selections and orderability, Proc. Amer. Math. Soc., 83 (1981), 601-605.

1982

  1. R. D. Anderson, D. W. Curtis, J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc., 272 (1982), 311-321.
  2. E. K. van Douwen, J van Mill, Supercompact spaces, Top. Appl., 13 (1982), 21-32.
  3. A Dow, J. van Mill, An extremally disconnected Dowker space, Proc. Amer. Math. Soc., 86 (1982), 669-672.
  4. A. Gutek, J. van Mill, Continua that are locally a bundle of arcs, Top. Proc., 7 (1982), 63-69.
  5. J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math., 101 (1982), 141-146.
  6. J. van Mill, Homogeneous subsets of the real line that do not admit the structure of a topological group, Indag. Math., 44 (1982), 37-43.
  7. J. van Mill, Homogeneous subsets of the real line, Compositio Math., 45 (1982), 3-13.
  8. J. van Mill, Inductive Cech completeness and dimension, Compositio Math., 45 (1982), 145-153.
  9. J. van Mill, Representing countable groups by homeomorphism groups in Hilbert space, Math. Annalen, 259 (1982), 321-329.
  10. J. van Mill, Sixteen topological types in βω−ω, Top. Appl., 13 (1982), 43-57.
  11. J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc., 84 (1982), 143-148.
  12. J. van Mill, The reduced measure algebra and a K1-space which is not K0, Top. Appl., 13 (1982), 123-132.
  13. J. van Mill, Types of weak P-points in βω-ω, Proc. Fifth Prague Topological Symposium, 5 (1982), 481-485.
  14. J. van Mill, Weak P-points in Cech-Stone compactifications, Trans. Amer. Math. Soc., 273 (1982), 657-678.
  15. J. van Mill, T. C. Przymusinski, There is no compactification theorem for the small inductive dimension, Top. Appl., 13 (1982), 133-136.
  16. J. van Mill, M. van de Vel, On an internal property of absolute retracts, II, Top. Appl., 13 (1982), 59-68.
  17. J. van Mill, E. Wattel, Subbase characterizations of subspaces of compact trees, Top. Appl., 13 (1982), 321-326.
  18. J. van Mill, R. G. Woods, Perfect images of zero-dimensional separable metric spaces, Canad. Math. Bull., 25 (1982), 41-47.

1983

  1. D. W. Curtis, J. van Mill, Zero-dimensional countable dense unions of Z-sets in the Hilbert cube, Fund. Math., 118 (1983), 103-108.
  2. E. K. van Douwen, J. van Mill, Spaces without remote points, Pacific J. Math., 105 (1983), 69-75.
  3. F. van Engelen, J. van Mill, Decompositions of rigid spaces, Proc. Amer. Math. Soc., 89 (1983), 103-108.
  4. J. van Mill, A boundary set for the Hilbert cube containing no arcs, Fund. Math., 118 (1983), 93-102.
  5. J. van Mill, A rational vector space not homeomorphic to a normed rational vector space, Top. Proc., 8 (1983), 329-332.
  6. J. van Mill, A remark on the Rudin-Keisler order of ultrafilters, Houston J. Math., 9 (1983), 70-79.
  7. J. van Mill, A topological group having no homeomorphisms other than translations, Trans. Amer. Math. Soc., 280 (1983), 491-498.
  8. J. van Mill, An almost fixed point theorem for metrizable continua, Archiv der Mathematik, 40 (1983), 159-169.
  9. J. van Mill, Boolean algebras and raising maps to zero-dimensional spaces, Canad. Math. Bull., 26 (1983), 70-79.
  10. J. van Mill, Characterization of a certain subset of the Cantor set, Fund. Math., 118 (1983), 81-91.
  11. J. van Mill, Closed images of topological groups, Topology, Coll. Math. Soc. Bolyai János, Budapest (Hungary), 41 (1983), pp. 419-426.
  12. J. van Mill, S. W. Williams, A compact F-space not co-absolute with βN - N, Top. Appl., 15 (1983), 59-64.

1984

  1. F. van Engelen, J. van Mill, Borel sets in compact spaces: some Hurewicz-type theorems, Fund. Math., 124 (1984), 271-286.
  2. F. van Engelen, J. van Mill, A pathological homogeneous subspace of the real line, Topology and Order II (H. Bennett and D. J. Lutzer, eds.), Math. Centre Tracts, 169 (1984), pp. 31-36.
  3. J. van Mill, A uniquely homogeneous space need not be a topological group, Fund. Math., 122 (1984), 255-264.
  4. J. van Mill, An introduction to βω, Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, (1984), pp. 503-567.
  5. J. van Mill, Homeomorphism groups and homogeneous spaces, Proc. Amer. Math. Soc., 92 (1984), 449-454.
  6. J. van Mill, J. Mogilski, Property C and fine homotopy equivalences, Proc. Amer. Math. Soc., 90 (1984), 118-120.
  7. J. van Mill, E. Wattel, Orderability from selections: another solution to the orderability problem, Fund. Math., 121 (1984), 219-229.

1985

  1. J. M. Aarts, J. Bruijning, J. van Mill, A compactification problem of J. De Groot, Top. Appl., 21 (1985), 217-222.
  2. W. W. Comfort, J. van Mill, On the product of homogeneous spaces, Top. Appl., 21 (1985), 297-308.
  3. J. J. Dijkstra, T. Grilliot, J. van Mill, DJ Lutzer, Function spaces of low Borel complexity, Proc. Amer. Math. Soc., 94 (1985), 703-710.
  4. J. J. Dijkstra, J. van Mill, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, Fund. Math., 125 (1985), 143-153.
  5. KP Hart, H. Junnila, J. van Mill, A Dowker group, Comm. Math. Univ. Car., 26 (1985), 799-810.
  6. KP Hart, J. van Mill, A method for constructing ordered continua, Top. Appl., 21 (1985), 35-49.
  7. KP Hart, J. van Mill, A separable normal topological group which is not Lindelof, Top. Appl., 20 (1985), 279-287.
  8. D. J. Lutzer, J. van Mill, R. Pol, Descriptive complexity of function spaces, Trans. Amer. Math. Soc., 291 (1985), 121-128.
  9. J. van Mill, Set theory and topology, CWI Newsletter , 7 (1985), 10-14.
  10. J. van Mill, E. Wattel, Partitioning spaces into homeomorphic rigid parts, Coll. Math., 50 (1985), 95-102.

1986

  1. H. P. Barendregt, J. van Mill, Are there countable topological combinatory algebras?, Indag. Math., 48 (1986), 233-241.
  2. J. van Mill, An easy proof that βN-N-p is not normal, Ann. Math. Silesianae, 2(14) (1986), 81-84.
  3. J. van Mill, Another counterexample in ANR theory, Proc. Amer. Math. Soc., 97 (1986), 136-138.
  4. J. van Mill, Infinite-Dimensional Normed Linear Spaces and Domain Invariance, Mathematics and Computer Science II (J. K. Lenstra M. Hazewinkel and L. G. L. T. Meertens, eds.), North-Holland, Amsterdam, (1986), pp. 105-110.
  5. J. van Mill, Local contractibility, cell-like maps, and dimension, Proc. Amer. Math. Soc., 98 (1986), 534-536.
  6. J. van Mill, R. Pol, The Baire category theorem in products of linear spaces and topological groups, Top. Appl., 22 (1986), 267-282.
  7. J. van Mill, M. van de Vel, Equality of the Lebesgue and the inductive dimension functions for compact spaces with a uniform convexity, Colloq. Math., 50 (1986), 187-200.

1987

  1. W. W. Comfort, J. van Mill, A homogeneous extremally disconnected countably compact space, Top. Appl., 25 (1987), 65-73.
  2. J. van Mill, An infinite-dimensional pre-Hilbert space all bounded linear operators of which are simple, Coll. Math., 54 (1987), 491-498.
  3. J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc., 101 (1987), 173-180.
  4. J. van Mill, Topological equivalence of certain function spaces, Compositio Math., 63 (1987), 159-188.
  5. J. van Mill, n-dimensional totally disconnected topological groups, Math. Japonica, 32 (1987), 267-273.
  6. J. van Mill, R. Pol, A remark on the separable extension property, Indag. Math., 90 (1987), 193-196.

1988

  1. J. van der Bijl, J. van Mill, Linear spaces, Absolute Retracts, and the Compact Extension Property, Proc. Amer. Math. Soc., 104 (1988), 942-952.
  2. W. W. Comfort, J. van Mill, On the existence of free topological groups, Top. Appl., 29 (1988), 245-265.
  3. D. W. Curtis, J. van Mill, The compact extension property, Proceedings of the Sixth Prague Topological Symposium, Heldermann Verlag, Praha, 6 (1988), pp. 115-119.
  4. J. van Mill, Totally divergent dense sets in Cantor cubes, Comm. Math. Univ. Car., 29 (1988), 711-713.
  5. R. M. Shortt, J. van Mill, Automorphism groups for measurable spaces, Top. Appl., 30 (1988), 27-42.

1989

  1. J. Baars, J. A. M. de Groot, J. van Mill, A theorem on function spaces, Proc. Amer. Math. Soc., 105 (1989), 1020-1024.
  2. J. Baars, J. A. M. de Groot, J. van Mill, J. Pelant, On topological and linear homeomorphisms of certain function spaces, Top. Appl., 32 (1989), 267-277.
  3. W. W. Comfort, J. van Mill, Concerning connected, pseudocompact Abelian groups, Top. Appl., 33 (1989), 21-45.
  4. E. K. van Douwen, K. Kunen, J. van Mill, There can be proper dense C -embedded subspaces in βω- ω, Proc. Amer. Math. Soc., 105 (1989), 462-470.
  5. J. van Mill, A homeomorphism on s not conjugate to an extendable homeomorphism, Proc. Amer. Math. Soc., 105 (1989), 250-253.
  6. J. van Mill, In memoriam: Eric Karel van Douwen (1946-1987), Top. Appl., 31 (1989), 1-18.
  7. J. van Mill, Infinite-dimensional topology: prerequisites and introduction, North-Holland, 1989, pp. 1-406.

1990

  1. J. J. Dijkstra, T. Dobrowolski, W. Marciszewski, J. van Mill, J Mogilski, Recent classification and characterization results in geometric topology, Bull. Amer. Math. Soc., 22 (1990), 277-283.
  2. KP Hart, J. van Mill, Countably Compact Groups with Non-Countably-Compact Product, General Topology and Applications, Marcel Dekker, Inc., New York, USA, (1990), pp. 127-131.
  3. KP Hart, J. van Mill, Open Problems on βω, Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, Amsterdam, (1990), pp. 97-125.
  4. J. van Mill, An infinite-dimensional homogeneous indecomposable continuum, Houston J. Math., 16 (1990), 195-201.
  5. J. van Mill, Every totally disconnected separable metrizable topological group is an autohomeomorphism group, Top. Appl., 35 (1990), 127-135.
  6. G. M. Reed, J van Mill, Open problems in topology, Elsevier, 1990, pp. 1-692.

1991

  1. J. van der Bijl, J. van Mill, The compact extension property: the role of compactness, Comm. Math. Univ. Car., 32 (1991), 369-375.
  2. W. W. Comfort, J. van Mill, Some topological groups with, and some without, proper dense subgroups, Top. Appl., 41 (1991), 3-15.
  3. J. J. Dijkstra, J. van Mill, Stability of a fake topological Hilbert space, Rocky Mountain J. Math., 21 (1991), 1225-1234.
  4. KP Hart, J. van Mill, A countably compact topological group H such that H times H is not countably compact, Trans. Amer. Math. Soc., 323 (1991), 811-821.
  5. KP Hart, J. van Mill, Discrete sets and the maximal totally bounded group topology, J. Pure and Appl. Alg. , 70 (1991), 73-80.
  6. J. van Mill, R. Pol, On the existence of weakly n-dimensional spaces, Proc. Amer. Math. Soc., 113 (1991), 581-585.

1992

  1. J. van der Bijl, T. Dobrowolski, KP Hart, J. van Mill, Admissibility, homeomorphism extension and the AR-property in topological linear spaces, Top. Appl., 48 (1992), 63-81.
  2. J. J. Dijkstra, J. van Mill, Topological classification of infinite-dimensional spaces with absorbers, Recent Progress in General Topology (M. Hušek and J. van Mill, eds.), North-Holland Publishing Company, Amsterdam, 1 (1992), pp. 145-165.
  3. J. J. Dijkstra, J. van Mill, J. Mogilski, An AR-map whose range is more infinite-dimensional than its domain, Proc. Amer. Math. Soc., 114 (1992), 279-285.
  4. J. J. Dijkstra, J. van Mill, J. Mogilski, Classification of finite-dimensional universal pseudo-boundaries and pseudo-interiors, Trans. Amer. Math. Soc., 332 (1992), 693-709.
  5. J. J. Dijkstra, J. van Mill, J. Mogilski, The space of infinite-dimensional compact spaces and other topological copies of l2fω, Pacific J. Math., 152 (1992), 255-273.
  6. H. Gladdines, J. van Mill, Hyperspaces of locally connected continua of euclidean spaces, Top. Proc., 17 (1992), 343-349.
  7. N. Hindman, J. van Mill, P. Simon, Increasing chains of ideals and orbit closures in βZ, Proc. Amer. Math. Soc., 114 (1992), 1167-1172.
  8. M. Hušek, J. van Mill (eds.), Recent Progress in General Topology I, North-Holland, Amsterdam, 1992, pp. 1-796.
  9. J. van Mill, Sierpinski's technique and subsets of R, Top. Appl., 44 (1992), 241-261.

1993

  1. J. Baars, H. Gladdines, J. van Mill, Absorbing systems in infinite-dimensional manifolds, Top. Appl., 50 (1993), 147-182.
  2. J. Baars, J. A. M. de Groot, J. van Mill, J. Pelant, An example of lp-equivalent spaces which are not lp-equivalent, Proc. Amer. Math. Soc., 119 (1993), 963-969.
  3. E. K. van Douwen, J. van Mill, The homeomorphism extension theorem for βω-ω, Ann. New York Acad. Sci., 704 (1993), 345-350.
  4. H. Gladdines, J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math., 142 (1993), 173-188.
  5. H. Gladdines, J. van Mill, Hyperspaces of infinite-dimensional compacta, Compositio Math., 88 (1993), 143-153.
  6. J. van Mill, R. Pol, A countable space with a closed subspace without measurable extender, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 41 (1993), 279-283.

1994

  1. H. Becker, F. van Engelen, J. van Mill, Disjoint embeddings of compacta, Mathematika, 41 (1994), 221-232.
  2. W. W. Comfort, H. Gladdines, J. van Mill, Proper pseudocompact subgroups of pseudocompact abelian groups, Annals of the New York Ac. Sci. , 728 (1994), 237-247.
  3. W. W. Comfort, J. van Mill, Groups with only resolvable group topologies, Proc. Amer. Math. Soc., 120 (1994), 687-696.
  4. A. Dow, J. van Mill, Dense extremally disconnected subspaces, Proc. Amer. Math. Soc., 121 (1994), 931-936.
  5. J. van Mill, E.K. van Douwen: collected papers, North-Holland, 1994, pp. 1-1550.

1995

  1. R. N. Ball, W. W. Comfort, S. Garcia-Ferreira, A. W. Hager, J. van Mill, L. C. Robertson, ε-spaces, Rocky Mountain J. Math, 25 (1995), 867-886.
  2. R. Cauty, T.. Dobrowolski, H. Gladdines, J. van Mill, Les hyperespaces des retractes absolus et des retractes absolus de voisinage du plan, Fund. Math., 148 (1995), 257-282.
  3. K. Kunen, J van Mill, Measures on Corson compact spaces, Fund. Math., 147 (1995), 61-72.
  4. J. van Mill, R. Pol, Baire 1 functions which are not countable unions of continuous functions, Acta Math. Hungar., 66 (1995), 289-300.
  5. J. van Mill, R. Pol, Remark on products of 1-dimensional compacta, Q&A in General Topology, 13 (1995), 97-98.
  6. J. van Mill, J. E. Vaughan, Is ω - u absolutely countably compact?, Annals of the New York Ac. Sci., 767 (1995), 161-164.

1996

  1. J. J. Dijkstra, J. van Mill, Groups without convergent sequences, Top. Appl., 74 (1996), 275-282.
  2. J. J. Dijkstra, J. van Mill, On remainders without arcs,, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 44 (1996), 263-266.
  3. J. J. Dijkstra, J. van Mill, On the dimension of Hilbert space remainders, Proc. Amer. Math. Soc., 124 (1996), 3261-3263.
  4. J. van Mill, J. Pelant, R. Pol, Selections that characterize topological completeness, Fund. Math., 149 (1996), 127-141.
  5. J. van Mill, A. Ran, On a generalization of Lyapounov's theorem, Indag. Math., 7 (1996), 227-242.

1997

  1. A. Bella, J. van Mill, Tight points and countable fan-tightness, Top. Appl., 76 (1997), 1-7.
  2. H. Brandsma, M. van Hartskamp, J. van Mill, On colorings of topological groups, Top. Proc., 22 (1997), 25-41.
  3. H. Brandsma, J. van Mill, Every Kunen-like L-space has a non-monolithic hyperspace, Top. Proc., 22 (1997), 15-24.
  4. W. W. Comfort, J. van Mill, How many ω-bounded subgroups?, Top. Appl., 77 (1997), 105-113.
  5. J. J. Dijkstra, J. van Mill, Projections of planar Cantor sets in potential theory, Indag. Math., 8 (1997), 173-180.
  6. J. J. Dijkstra, J. van Mill, Two point set extensions-a counterexample, Proc. Amer. Math. Soc., 125 (1997), 2501-2502.
  7. T. Koetsier, J. van Mill, General topology, in particular dimension theory, in the Netherlands: the decisive influence of Brouwers intuitionism, Handbook of the history of general topology (C. E. Aull and R. Lowen, eds.), Kluwer Academic Publishers, Dordrecht, (1997), pp. 135-180.

1998

  1. H. Brandsma, J. van Mill, A compact HL-space need not have a monolithic hyperspace, Proc. Amer. Math. Soc., 126 (1998), 3407-3411.
  2. H. Brandsma, J. van Mill, Monotone normality, measures and hyperspaces, Top. Appl., 85 (1998), 287-298.
  3. J. J. Dijkstra, K. Kunen, J. van Mill, Hausdorff measures and two point set extensions, Fund. Math., 157 (1998), 43-60.
  4. J. J. Dijkstra, J. van Mill, Extending monotone mappings, Coll. Math., 77 (1998), 201-210.
  5. M. van Hartskamp, J. van Mill, Normal spaces and fixed points of Cech-Stone extensions, Top. Appl., 87 (1998), 21-27.
  6. W. Marciszewski, J. van Mill, An example of tp*-equivalent spaces which are not tp-equivalent, Top. Appl., 85 (1998), 281-285.

1999

  1. J. van Mill, Easier proofs of coloring theorems, Top. Appl, 97 (1999) 155-163.
  2. T. Koetsier and J. van Mill, By their fruits ye shall know them: some remarks on the interaction of general topology with other areas of mathematics, History of topology (I. M. James, ed.), North-Holland, Amsterdam, 1999, pp. 199-239.
  3. J. van Mill, Cp(X) is not Gδσ: a simple proof, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 47 (1999), 319-323.

2000

  1. S.A. Bogatyi, V.V. Fedorchuk, and J. van Mill,  On mappings of sigma-compact spaces into Cartesian spaces, Top. Appl, 107 (2000) 13-24.
  2. H. Brandsma and J. van Mill, There are many Kunen compact L-spaces, Proc. Amer. Math. Soc. 128 (2000), 2165-2170.
  3. V.V. Fedorchuk and J. van Mill, Dimensionsgrad for locally connected Polish spaces, Fund. Math. 163 (2000), 77-82.
  4. M. van Hartskamp and J. van Mill, Some examples related to colorings, Comment. Math. Univ. Carolinae, 41 (2000), 821-827.
  5. K.P. Hart, J. van Mill and R. Pol, Remarks on hereditarily indecomposable continua, Top. Proc. 25 (2000), 179-206.

2001

  1. J. van Mill and R. Pol, Note on weakly n-dimensional spaces, Monatsh. für Math. 132 (2001), 25-33.
  2. K. Bouhjar, J. J. Dijkstra and J. van Mill, Three-point sets, Top. Appl. 112 (2001), 215-227.
  3. J. van Mill, On Dow's solution of Bell's problem, Top. Appl. 11 (2001), 191-193.
  4. J. van Mill, The infinite-dimensional topology of function spaces, North-Holland, pp. 630

2002

  1. J.J. Dijkstra and J. van Mill, Topological equivalence of discontinuous norms, Israel J. Math. 128 (2002), 177-196.
  2. J.J. Dijkstra and J. van Mill, On sets that meet every hyperplane in n-space in at most n-points, Bull. London Math. Soc. 34 (2002), 361-368.
  3. A. Bella, A. Dow, K.P. Hart, M. Hrušak, J. van Mill and P. Ursino, Embeddings into P(N)/fin and extension of automorphisms , Fund. Math. 174 (2002), 271-284.
  4. J.J. Dijkstra and J. van Mill, Infinite-dimensional topology, Recent Progress in General Topology II (M. Hušek and J. van Mill (eds.)), North-Holland Publishing Company, Amsterdam 2002, pp. 115-130.
  5. M. Hušek and J. van Mill (eds.), Recent Progress in General Topology II, North-Holland Publishing Company, Amsterdam 2002.
  6. J. van Mill, A locally connected continuum without convergent sequences, Top. Appl. 126 (2002), 273-280.

2003

  1. A. Dow and J. van Mill, Omega-far points in large spaces, Top. Appl. 129 (2003), 79-87.
  2. J. van Mill, On the character and pi-weight of homogeneous compacta, Israel J. Math. 133 (2003), 321-338.
  3. J. van Mill, J. Pelant and R. Pol, Note on function spaces with the topology of pointwise convergence, Archiv der Math. 80 (2003), 655-663

2004

  1. J. J. Dijkstra and J. van Mill, Homeomorphism groups of manifolds and Erdös space, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 29-38
  2. J. van Mill and R. Pol, On spaces without non-trivial subcontinua and the dimension of their products , Top. Appl. 142 (2004), 31-48
  3. J. J. Dijkstra, J. van Mill and J. Steprans, Complete Erdös space is unstable , Math. Proc. Camb. Phil. Soc. 137 (2004), 465-473
  4. J. van Mill, A note on the Effros theorem, Amer. Math. Monthly 111 (2004), 801-806
  5. J. van Mill, A note on Ford's example, Top. Proc. 28 (2004), 689-694

2005

  1. J. van Mill, On the cardinality of power homogeneous compacta, Top. Appl. 146-147 (2005), 421-428
  2. J. van Mill, Strong local homogeneity and coset spaces, Proc. Amer. Math. Soc. 133 (2005), 2243-2249
  3. J. van Mill and G. J. Ridderbos, Notes on retracts of coset spaces, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 53 (2005), 169-179
  4. I. Juhasz and J. van Mill, Almost disjoint families of connected sets, Top. Appl. 152 (2005), 209-218
  5. M. Abry, J. J. Dijkstra and J. van Mill, Sums of almost zero-dimensional spaces, Top. Proc. 29 (2005), 1-12
  6. J. van Mill, On countable dense and strong local homogeneity, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 53 (2005), 401-408

2006

  1. J. van Mill, Not all homogeneous Polish spaces are products, Houston J. Math. 32 (2006), 489-492
  2. J. J. Dijkstra and J. van Mill, A counterexample concerning line-free groups and complete Erdös space, Proc. Amer. Math. Soc. 134 (2006), 2281-2283
  3. J. J. Dijkstra and J. van Mill, On the group of homeomorphisms of the real line that map the pseudoboundary onto itself, Canad. J. Math. 58 (2006), 529-547
  4. V. V. Fedorchuk, A. V. Ivanov and J. van Mill, Intermediate dimensions of products, Top. Appl. 153 (2006), 3265-3276
  5. J. van Mill and R. Pol, A complete C-space whose square is strongly infinite-dimensional, Israel J. Math. 154 (2006), 209-220
  6. J. van Mill and G. J. Ridderbos, Retral spaces and continua with the fixed point property, Comment. Math. Univ. Carolin. 47 (2006), 661-668.
  7. T. Dobrowolski and J. van Mill, Selections and near-selections in metric linear spaces without local convexity, Fund. Math. 192 (2006), 215-232.
  8. J. van Mill, M. G. Tkachenko, V. V. Tkachuk and R. G. Wilson, Local properties and maximal Tychonoff connected spaces, Tsukuba J. Math. 30 (2006), 241-257.

2007

  1. I. Juhasz and J. van Mill, Covering compacta by discrete subspaces, Top. Appl. 154 (2007), 283-286.
  2. M. Abry, J. J. Dijkstra and J. van Mill, On one-point connectifications, Top. Appl. 154 (2007), 725-733.
  3. J. van Mill, Homogeneous spaces and transitive actions by analytic groups, Bull. London Math. Soc. 39 (2007), 329-336.
  4. A. V. Arhangel'skii, J. van Mill and G. J. Ridderbos, A new bound on the cardinality of power homogeneous compacta, Houston J. Math. 33 (2007), 781-793.
  5. D. Basile and J. van Mill, A homogeneous space of point-countable but not of countable type, Comment. Math. Univ. Carolin. 48 (2007) 459-463.
  6. J. van Mill, V. V. Tkachuk and R. G. Wilson, Classes defined by stars and neighbourhood assignments, Top. Appl. 154 (2007), 2127-2134.
  7. W. W. Comfort and J. van Mill, Extremal pseudocompact Abelian groups are compact metrizable, Proc. Amer. Math. Soc. 135 (2007), 4039-4044.
  8. A. Dow and J. van Mill, On n-to-one continuous images of βN-N, Studia Sci. Math. Hungar. 44 (2007), 355--366.

2008

  1. D. Basile and J. van Mill, Ohio completeness and products, Top. Appl. 155 (2008), 180-189.
  2. W. W. Comfort and J. van Mill, On the supremum of the pseudocompact group topologies, Top. Appl. 155 (2008), 213-224.
  3. D. Basile, J. van Mill and G. J. Ridderbos, Sum theorems for Ohio completeness, Colloq. Math. 113 (2008), 91-104.
  4. J. van Mill, Homogeneous spaces and transitive actions by Polish groups, Israel J. Math. 165 (2008), 133-159.
  5. J. J. Dijkstra, J. van Mill and K. Valkenburg On nonseparable Erdös spaces, J. Math. Soc. Japan 60 (2008), 793-818.
  6. J. van Mill, A countable dense homogeneous space with a dense rigid open subspace, Fund. Math. 201 (2008), 91-98.
  7. D. J. Lutzer, J. van Mill and V. Tkachuk, Amsterdam properties of C_p(X) imply discreteness of X, Canad. Math. Bull. 51 (2008), 570-578.

2009

  1. J. J. Dijkstra and J. van Mill, Characterizing complete Erdös space, Canad. J. Math. 61 (2009), 122-140.
  2. J. van Mill, Homogeneous spaces and transitive actions by ℵ0 bounded groups, Top. Proc. 33 (2009), 153-161.
  3. J. van Mill, On the G-compactifications of the rational numbers, Monatshefte für Mathematik 157 (2009), 257-266.
  4. J. van Mill, Analytic groups and pushing small sets apart, Trans. Amer. Math. Soc. 361 (2009), 5417-5434.
  5. D. Basile, J. van Mill, and G-J. Ridderbos, kappa-Ohio completeness, J. Math. Soc. Japan 61 (2009), 1293-1301.

2010

  1. J. van Mill and R. Pol, An example concerning the Menger-Urysohn formula, Proc. Amer. Math. Soc. 138 (2010), 3749-3752.
  2. J. van Mill and R. Pol, Nagata's contributions to dimension theory, Sci. Math. Jpn. 71 (2010), 249-254.
  3. J. J. Dijkstra and J. van Mill, Erdös space and homeomorphism groups of manifolds, Mem. Amer. Math. Soc. 208 (2010), no. 979.

2011

  1. O. T. Alas, L. R. Junqueira, J. van Mill, V. V. Tkachuk and R. G. Wilson, On the extent of star countable spaces, Cent. Eur. J. Math. 9 (2011), 603-615.
  2. K. P. Hart and J. van Mill, Covering dimension and finite-to-one maps, Top. Appl. 158 (2011), 2512-2519.
  3. J. van Mill, On countable dense and strong n-homogeneity, Fund. Math. 214 (2011), 215-239.

2012

  1. J. van Mill and M. Tuncali, Plane continua and totally disconnected sets of buried points, Proc. Amer. Math. Soc. 140 (2012), 351-356.
  2. J. van Mill, A compact F-space with noncoinciding dimensions, Top. Appl. 159 (2012), 1625-1633.
  3. J. J. Dijkstra and J. van Mill, Negligible sets in Erdös spaces, Top. Appl. 159 (2012), 2947-2950.
  4. A. V. Arhangel'skii and J. van Mill, On uniquely homogeneous spaces, I, J. Math. Soc. Japan. 64 (2012), 903-926.
  5. J. van Mill, Homeomorphism groups of homogeneous compacta need not be minimal, Top. Appl. 159 (2012), 2506-2509.
  6. J. van Mill, Polish Topology, Wiad. Mat. 48, (2012), 199-207.
  7. D. Gauld and J. van Mill, Homeomorphism groups and metrisation of manifolds, New Zealand J. Math. 42, (2012), 37-43.
  8. I. Juhasz and J. van Mill, Can a free ultrafilter be connectedly generated?, Questions and Answers in General Topology 30 (2012), 103-104.

2013

  1. A. V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Top. Proc. 42 (2013), 157-163.
  2. Y. Hattori and J. van Mill, On the separation dimension of Kω , Bull. Polish Acad. Sci. Math. 61 (2013), 67-70.
  3. I. Juhasz, J. van Mill and W. Weiss, Variations on ω-boundedness, Israel J. Math. 194 (2013), 745-766.
  4. W. W. Comfort and J. van Mill, Extremal pseudocompact Abelian groups: a unified treatment, Comment. Math. Univ. Carolinae 54 (2013), 197-217.
  5. J. van Mill, Brouwers dimensionsgrad: controverse en verwarring, Nieuw Archief voor Wiskunde 5/14 (2013), 130-138.
  6. A. V. Arhangel'skii and J. van Mill, On the cardinality of countable dense homogeneous spaces, Proc. Amer. Math. Soc. 141 (2013), 4031-4038.
  7. J. van Mill, On countable dense and n-homogeneity, Canad. Math. Bull. 56 (2013), 860-869.
  8. T. Dube, S. Iliadis, J. van Mill and I. Naaido, Universal frames, Top. Appl 160 (2013), 2454-2464

2014

  1. A. V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder III, Indag. Math. 25 (2014), 35-43.
  2. KP Hart, J van Mill, P Simon (eds.), Recent Progress in Topology III, Springer, 2014, pp. 1-903.
  3. A. V. Arhangel'skii and J. van Mill, Topological homogeneity, In: Recent Progress in General Topology III (KP Hart, J. van Mill, P. Simon (eds.)), Springer 2014, pp. 1-68.
  4. KP Hart, L. Luo and J van Mill, Unions of F-spaces, Top. Proc., 43 (2014), 293-300.
  5. T. Dube, S. Iliadis, J. van Mill and I. Naidoo, A pseudocompact completely regular frame which is not spatial, Order 31 (2014), 115-120.
  6. T. Koetsier and J. van Mill, Irmgard Gawehn en de topologische karakterisering van varieteiten, een poging tot rehabilitatie, Nw. Arch. Wisk., 5/15 (2014), 100-110.
  7. M. Hrušak and J. van Mill, Nearly countable dense homogeneous spaces, Canad. J. Math., 66 (2014), 743-758.
  8. R. Hernandez-Gutierrez, M. Hrušak amd J. van Mill, Countable dense homogeneity and λ-sets, Fund. Math., 226 (2014), 157-172.
  9. A. V. Arhangel'skii and J. van Mill, On uniquely homogeneous spaces, II, Houston J. Math. 40 (2014), 555-568.
  10. M. Bonanzinga, F. Cammaroto, J. van Mill and B. A. Pansera, Monotone partitions and almost partitions, Top. Appl., 178 (2014), 411-416.
  11. W. Brian, J. van Mill and R. Suabedissen, Homogeneity and generalizations of 2-point sets, Houston J. Math., 40 (2014), 885-898.

2015

  1. J. van Mill, A note on an unusual characterization of the pseudo-arc, Top. Proc., 45 (2015), 1-4.
  2. A. V. Arhangel'skii and J. van Mill, Topological groups with a bc-base, Top. Appl., 179 (2015), 5-12.
  3. J. van Mill and V. V. Tkachuk, Every k-separable Cech-complete space is subcompact, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 109 (2015), 65-71.
  4. J. van Mill, On nowhere first-countable compact spaces with countable π-weight, Comm. Math. Univ. Car., 56 (2015), 237-241.
  5. J. van Mill, Countable Dense Homogeneous rimcompact spaces and local connectivity, Filomat 29 (2015), 179-182.
  6. G. Bezhanishvili, N. Bezhanishvili, J. Lucero-Bryan and J. van Mill, S4.3 and hereditarily extremally disconnected spaces, Georgian Math. J. 22 (2015), 469-475.
  7. A. V. Arhangel'skii and J. van Mill, Nonhomogeneity of remainders, II,, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys., 63 (2015), 67-71.
  8. A. V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, II, Top. Appl., 195 (2015), 143-150.
  9. A. W. Hager and J. van Mill, Egoroff, s, and convergence properties in some archimedean vector lattices, Studia Math., 231 (2015), 269-285.

2016

  1. A. V. Arhangel'skii and J. van Mill, Nonhomogeneity of remainders, Proc. Amer. Math. Soc., 144 (2016), 4065-4073.
  2. A. Medini, J. van Mill and L. Zdomskyy, A homogeneous space whose complement is rigid, Israel J. Math., 214 (2016), 583-595.
  3. A. V. Arhangel'skii and J. van Mill, Nonnormality of remainders of some topological groups, Comm. Math. Univ. Car. 57 (2016), 345-352.
  4. J. van Mill, Brouwer versus Menger: scheiden doet lijden Nw. Arch. Wisk., 5/17 (2016), 264-270.
  5. J. van Mill, Every crowded pseudocompact ccc space is resolvable Top. Appl., 213 (2016), 127-134.

2017

  1. A. V. Arhangel'skii and J. van Mill, Nonhomogeneity of remainders, II, Top. Proc., 49 (2017), 1-8.
  2. J.J. Dijkstra, M. Levin and J. van Mill, A short proof of Torunczyk's characterization theorems Proc. Amer. Math. Soc., 144 (2017), 901-914.
  3. P. Groeneboom, J. van Mill, A.W. van der Vaart, Statistics as both a purely mathematical activity and an applied science (In Memoriam Kobus Oosterhoff (1933-2015)) Nw. Arch. Wisk., 5/18 (2017), 55-59.